sanitizer_deadlock_detector.h 13.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
//===-- sanitizer_deadlock_detector.h ---------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of Sanitizer runtime.
// The deadlock detector maintains a directed graph of lock acquisitions.
// When a lock event happens, the detector checks if the locks already held by
// the current thread are reachable from the newly acquired lock.
//
// The detector can handle only a fixed amount of simultaneously live locks
// (a lock is alive if it has been locked at least once and has not been
// destroyed). When the maximal number of locks is reached the entire graph
// is flushed and the new lock epoch is started. The node ids from the old
// epochs can not be used with any of the detector methods except for
// nodeBelongsToCurrentEpoch().
//
// FIXME: this is work in progress, nothing really works yet.
//
//===----------------------------------------------------------------------===//

#ifndef SANITIZER_DEADLOCK_DETECTOR_H
#define SANITIZER_DEADLOCK_DETECTOR_H

#include "sanitizer_bvgraph.h"
#include "sanitizer_common.h"

namespace __sanitizer {

// Thread-local state for DeadlockDetector.
// It contains the locks currently held by the owning thread.
template <class BV>
class DeadlockDetectorTLS {
 public:
  // No CTOR.
  void clear() {
    bv_.clear();
    epoch_ = 0;
    n_recursive_locks = 0;
    n_all_locks_ = 0;
  }

  bool empty() const { return bv_.empty(); }

  void ensureCurrentEpoch(uptr current_epoch) {
    if (epoch_ == current_epoch) return;
    bv_.clear();
    epoch_ = current_epoch;
    n_recursive_locks = 0;
    n_all_locks_ = 0;
  }

  uptr getEpoch() const { return epoch_; }

  // Returns true if this is the first (non-recursive) acquisition of this lock.
  bool addLock(uptr lock_id, uptr current_epoch, u32 stk) {
    CHECK_EQ(epoch_, current_epoch);
    if (!bv_.setBit(lock_id)) {
      // The lock is already held by this thread, it must be recursive.
      CHECK_LT(n_recursive_locks, ARRAY_SIZE(recursive_locks));
      recursive_locks[n_recursive_locks++] = lock_id;
      return false;
    }
    CHECK_LT(n_all_locks_, ARRAY_SIZE(all_locks_with_contexts_));
    // lock_id < BV::kSize, can cast to a smaller int.
    u32 lock_id_short = static_cast<u32>(lock_id);
    LockWithContext l = {lock_id_short, stk};
    all_locks_with_contexts_[n_all_locks_++] = l;
    return true;
  }

  void removeLock(uptr lock_id) {
    if (n_recursive_locks) {
      for (sptr i = n_recursive_locks - 1; i >= 0; i--) {
        if (recursive_locks[i] == lock_id) {
          n_recursive_locks--;
          Swap(recursive_locks[i], recursive_locks[n_recursive_locks]);
          return;
        }
      }
    }
    if (!bv_.clearBit(lock_id))
      return;  // probably addLock happened before flush
    if (n_all_locks_) {
      for (sptr i = n_all_locks_ - 1; i >= 0; i--) {
        if (all_locks_with_contexts_[i].lock == static_cast<u32>(lock_id)) {
          Swap(all_locks_with_contexts_[i],
               all_locks_with_contexts_[n_all_locks_ - 1]);
          n_all_locks_--;
          break;
        }
      }
    }
  }

  u32 findLockContext(uptr lock_id) {
    for (uptr i = 0; i < n_all_locks_; i++)
      if (all_locks_with_contexts_[i].lock == static_cast<u32>(lock_id))
        return all_locks_with_contexts_[i].stk;
    return 0;
  }

  const BV &getLocks(uptr current_epoch) const {
    CHECK_EQ(epoch_, current_epoch);
    return bv_;
  }

  uptr getNumLocks() const { return n_all_locks_; }
  uptr getLock(uptr idx) const { return all_locks_with_contexts_[idx].lock; }

 private:
  BV bv_;
  uptr epoch_;
  uptr recursive_locks[64];
  uptr n_recursive_locks;
  struct LockWithContext {
    u32 lock;
    u32 stk;
  };
  LockWithContext all_locks_with_contexts_[64];
  uptr n_all_locks_;
};

// DeadlockDetector.
// For deadlock detection to work we need one global DeadlockDetector object
// and one DeadlockDetectorTLS object per evey thread.
// This class is not thread safe, all concurrent accesses should be guarded
// by an external lock.
// Most of the methods of this class are not thread-safe (i.e. should
// be protected by an external lock) unless explicitly told otherwise.
template <class BV>
class DeadlockDetector {
 public:
  typedef BV BitVector;

  uptr size() const { return g_.size(); }

  // No CTOR.
  void clear() {
    current_epoch_ = 0;
    available_nodes_.clear();
    recycled_nodes_.clear();
    g_.clear();
    n_edges_ = 0;
  }

  // Allocate new deadlock detector node.
  // If we are out of available nodes first try to recycle some.
  // If there is nothing to recycle, flush the graph and increment the epoch.
  // Associate 'data' (opaque user's object) with the new node.
  uptr newNode(uptr data) {
    if (!available_nodes_.empty())
      return getAvailableNode(data);
    if (!recycled_nodes_.empty()) {
      for (sptr i = n_edges_ - 1; i >= 0; i--) {
        if (recycled_nodes_.getBit(edges_[i].from) ||
            recycled_nodes_.getBit(edges_[i].to)) {
          Swap(edges_[i], edges_[n_edges_ - 1]);
          n_edges_--;
        }
      }
      CHECK(available_nodes_.empty());
      // removeEdgesFrom was called in removeNode.
      g_.removeEdgesTo(recycled_nodes_);
      available_nodes_.setUnion(recycled_nodes_);
      recycled_nodes_.clear();
      return getAvailableNode(data);
    }
    // We are out of vacant nodes. Flush and increment the current_epoch_.
    current_epoch_ += size();
    recycled_nodes_.clear();
    available_nodes_.setAll();
    g_.clear();
    n_edges_ = 0;
    return getAvailableNode(data);
  }

  // Get data associated with the node created by newNode().
  uptr getData(uptr node) const { return data_[nodeToIndex(node)]; }

  bool nodeBelongsToCurrentEpoch(uptr node) {
    return node && (node / size() * size()) == current_epoch_;
  }

  void removeNode(uptr node) {
    uptr idx = nodeToIndex(node);
    CHECK(!available_nodes_.getBit(idx));
    CHECK(recycled_nodes_.setBit(idx));
    g_.removeEdgesFrom(idx);
  }

  void ensureCurrentEpoch(DeadlockDetectorTLS<BV> *dtls) {
    dtls->ensureCurrentEpoch(current_epoch_);
  }

  // Returns true if there is a cycle in the graph after this lock event.
  // Ideally should be called before the lock is acquired so that we can
  // report a deadlock before a real deadlock happens.
  bool onLockBefore(DeadlockDetectorTLS<BV> *dtls, uptr cur_node) {
    ensureCurrentEpoch(dtls);
    uptr cur_idx = nodeToIndex(cur_node);
    return g_.isReachable(cur_idx, dtls->getLocks(current_epoch_));
  }

  u32 findLockContext(DeadlockDetectorTLS<BV> *dtls, uptr node) {
    return dtls->findLockContext(nodeToIndex(node));
  }

  // Add cur_node to the set of locks held currently by dtls.
  void onLockAfter(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk = 0) {
    ensureCurrentEpoch(dtls);
    uptr cur_idx = nodeToIndex(cur_node);
    dtls->addLock(cur_idx, current_epoch_, stk);
  }

  // Experimental *racy* fast path function.
  // Returns true if all edges from the currently held locks to cur_node exist.
  bool hasAllEdges(DeadlockDetectorTLS<BV> *dtls, uptr cur_node) {
    uptr local_epoch = dtls->getEpoch();
    // Read from current_epoch_ is racy.
    if (cur_node && local_epoch == current_epoch_ &&
        local_epoch == nodeToEpoch(cur_node)) {
      uptr cur_idx = nodeToIndexUnchecked(cur_node);
      for (uptr i = 0, n = dtls->getNumLocks(); i < n; i++) {
        if (!g_.hasEdge(dtls->getLock(i), cur_idx))
          return false;
      }
      return true;
    }
    return false;
  }

  // Adds edges from currently held locks to cur_node,
  // returns the number of added edges, and puts the sources of added edges
  // into added_edges[].
  // Should be called before onLockAfter.
  uptr addEdges(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk,
                int unique_tid) {
    ensureCurrentEpoch(dtls);
    uptr cur_idx = nodeToIndex(cur_node);
    uptr added_edges[40];
    uptr n_added_edges = g_.addEdges(dtls->getLocks(current_epoch_), cur_idx,
                                     added_edges, ARRAY_SIZE(added_edges));
    for (uptr i = 0; i < n_added_edges; i++) {
      if (n_edges_ < ARRAY_SIZE(edges_)) {
        Edge e = {(u16)added_edges[i], (u16)cur_idx,
                  dtls->findLockContext(added_edges[i]), stk,
                  unique_tid};
        edges_[n_edges_++] = e;
      }
    }
    return n_added_edges;
  }

  bool findEdge(uptr from_node, uptr to_node, u32 *stk_from, u32 *stk_to,
                int *unique_tid) {
    uptr from_idx = nodeToIndex(from_node);
    uptr to_idx = nodeToIndex(to_node);
    for (uptr i = 0; i < n_edges_; i++) {
      if (edges_[i].from == from_idx && edges_[i].to == to_idx) {
        *stk_from = edges_[i].stk_from;
        *stk_to = edges_[i].stk_to;
        *unique_tid = edges_[i].unique_tid;
        return true;
      }
    }
    return false;
  }

  // Test-only function. Handles the before/after lock events,
  // returns true if there is a cycle.
  bool onLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk = 0) {
    ensureCurrentEpoch(dtls);
    bool is_reachable = !isHeld(dtls, cur_node) && onLockBefore(dtls, cur_node);
    addEdges(dtls, cur_node, stk, 0);
    onLockAfter(dtls, cur_node, stk);
    return is_reachable;
  }

  // Handles the try_lock event, returns false.
  // When a try_lock event happens (i.e. a try_lock call succeeds) we need
  // to add this lock to the currently held locks, but we should not try to
  // change the lock graph or to detect a cycle.  We may want to investigate
  // whether a more aggressive strategy is possible for try_lock.
  bool onTryLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk = 0) {
    ensureCurrentEpoch(dtls);
    uptr cur_idx = nodeToIndex(cur_node);
    dtls->addLock(cur_idx, current_epoch_, stk);
    return false;
  }

  // Returns true iff dtls is empty (no locks are currently held) and we can
  // add the node to the currently held locks w/o chanding the global state.
  // This operation is thread-safe as it only touches the dtls.
  bool onFirstLock(DeadlockDetectorTLS<BV> *dtls, uptr node, u32 stk = 0) {
    if (!dtls->empty()) return false;
    if (dtls->getEpoch() && dtls->getEpoch() == nodeToEpoch(node)) {
      dtls->addLock(nodeToIndexUnchecked(node), nodeToEpoch(node), stk);
      return true;
    }
    return false;
  }

  // Finds a path between the lock 'cur_node' (currently not held in dtls)
  // and some currently held lock, returns the length of the path
  // or 0 on failure.
  uptr findPathToLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, uptr *path,
                      uptr path_size) {
    tmp_bv_.copyFrom(dtls->getLocks(current_epoch_));
    uptr idx = nodeToIndex(cur_node);
    CHECK(!tmp_bv_.getBit(idx));
    uptr res = g_.findShortestPath(idx, tmp_bv_, path, path_size);
    for (uptr i = 0; i < res; i++)
      path[i] = indexToNode(path[i]);
    if (res)
      CHECK_EQ(path[0], cur_node);
    return res;
  }

  // Handle the unlock event.
  // This operation is thread-safe as it only touches the dtls.
  void onUnlock(DeadlockDetectorTLS<BV> *dtls, uptr node) {
    if (dtls->getEpoch() == nodeToEpoch(node))
      dtls->removeLock(nodeToIndexUnchecked(node));
  }

  // Tries to handle the lock event w/o writing to global state.
  // Returns true on success.
  // This operation is thread-safe as it only touches the dtls
  // (modulo racy nature of hasAllEdges).
  bool onLockFast(DeadlockDetectorTLS<BV> *dtls, uptr node, u32 stk = 0) {
    if (hasAllEdges(dtls, node)) {
      dtls->addLock(nodeToIndexUnchecked(node), nodeToEpoch(node), stk);
      return true;
    }
    return false;
  }

  bool isHeld(DeadlockDetectorTLS<BV> *dtls, uptr node) const {
    return dtls->getLocks(current_epoch_).getBit(nodeToIndex(node));
  }

  uptr testOnlyGetEpoch() const { return current_epoch_; }
  bool testOnlyHasEdge(uptr l1, uptr l2) {
    return g_.hasEdge(nodeToIndex(l1), nodeToIndex(l2));
  }
  // idx1 and idx2 are raw indices to g_, not lock IDs.
  bool testOnlyHasEdgeRaw(uptr idx1, uptr idx2) {
    return g_.hasEdge(idx1, idx2);
  }

  void Print() {
    for (uptr from = 0; from < size(); from++)
      for (uptr to = 0; to < size(); to++)
        if (g_.hasEdge(from, to))
          Printf("  %zx => %zx\n", from, to);
  }

 private:
  void check_idx(uptr idx) const { CHECK_LT(idx, size()); }

  void check_node(uptr node) const {
    CHECK_GE(node, size());
    CHECK_EQ(current_epoch_, nodeToEpoch(node));
  }

  uptr indexToNode(uptr idx) const {
    check_idx(idx);
    return idx + current_epoch_;
  }

  uptr nodeToIndexUnchecked(uptr node) const { return node % size(); }

  uptr nodeToIndex(uptr node) const {
    check_node(node);
    return nodeToIndexUnchecked(node);
  }

  uptr nodeToEpoch(uptr node) const { return node / size() * size(); }

  uptr getAvailableNode(uptr data) {
    uptr idx = available_nodes_.getAndClearFirstOne();
    data_[idx] = data;
    return indexToNode(idx);
  }

  struct Edge {
    u16 from;
    u16 to;
    u32 stk_from;
    u32 stk_to;
    int unique_tid;
  };

  uptr current_epoch_;
  BV available_nodes_;
  BV recycled_nodes_;
  BV tmp_bv_;
  BVGraph<BV> g_;
  uptr data_[BV::kSize];
  Edge edges_[BV::kSize * 32];
  uptr n_edges_;
};

} // namespace __sanitizer

#endif // SANITIZER_DEADLOCK_DETECTOR_H