interception_win.cpp 34 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
//===-- interception_linux.cpp ----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// Windows-specific interception methods.
//
// This file is implementing several hooking techniques to intercept calls
// to functions. The hooks are dynamically installed by modifying the assembly
// code.
//
// The hooking techniques are making assumptions on the way the code is
// generated and are safe under these assumptions.
//
// On 64-bit architecture, there is no direct 64-bit jump instruction. To allow
// arbitrary branching on the whole memory space, the notion of trampoline
// region is used. A trampoline region is a memory space withing 2G boundary
// where it is safe to add custom assembly code to build 64-bit jumps.
//
// Hooking techniques
// ==================
//
// 1) Detour
//
//    The Detour hooking technique is assuming the presence of an header with
//    padding and an overridable 2-bytes nop instruction (mov edi, edi). The
//    nop instruction can safely be replaced by a 2-bytes jump without any need
//    to save the instruction. A jump to the target is encoded in the function
//    header and the nop instruction is replaced by a short jump to the header.
//
//        head:  5 x nop                 head:  jmp <hook>
//        func:  mov edi, edi    -->     func:  jmp short <head>
//               [...]                   real:  [...]
//
//    This technique is only implemented on 32-bit architecture.
//    Most of the time, Windows API are hookable with the detour technique.
//
// 2) Redirect Jump
//
//    The redirect jump is applicable when the first instruction is a direct
//    jump. The instruction is replaced by jump to the hook.
//
//        func:  jmp <label>     -->     func:  jmp <hook>
//
//    On an 64-bit architecture, a trampoline is inserted.
//
//        func:  jmp <label>     -->     func:  jmp <tramp>
//                                              [...]
//
//                                   [trampoline]
//                                      tramp:  jmp QWORD [addr]
//                                       addr:  .bytes <hook>
//
//    Note: <real> is equilavent to <label>.
//
// 3) HotPatch
//
//    The HotPatch hooking is assuming the presence of an header with padding
//    and a first instruction with at least 2-bytes.
//
//    The reason to enforce the 2-bytes limitation is to provide the minimal
//    space to encode a short jump. HotPatch technique is only rewriting one
//    instruction to avoid breaking a sequence of instructions containing a
//    branching target.
//
//    Assumptions are enforced by MSVC compiler by using the /HOTPATCH flag.
//      see: https://msdn.microsoft.com/en-us/library/ms173507.aspx
//    Default padding length is 5 bytes in 32-bits and 6 bytes in 64-bits.
//
//        head:   5 x nop                head:  jmp <hook>
//        func:   <instr>        -->     func:  jmp short <head>
//                [...]                  body:  [...]
//
//                                   [trampoline]
//                                       real:  <instr>
//                                              jmp <body>
//
//    On an 64-bit architecture:
//
//        head:   6 x nop                head:  jmp QWORD [addr1]
//        func:   <instr>        -->     func:  jmp short <head>
//                [...]                  body:  [...]
//
//                                   [trampoline]
//                                      addr1:  .bytes <hook>
//                                       real:  <instr>
//                                              jmp QWORD [addr2]
//                                      addr2:  .bytes <body>
//
// 4) Trampoline
//
//    The Trampoline hooking technique is the most aggressive one. It is
//    assuming that there is a sequence of instructions that can be safely
//    replaced by a jump (enough room and no incoming branches).
//
//    Unfortunately, these assumptions can't be safely presumed and code may
//    be broken after hooking.
//
//        func:   <instr>        -->     func:  jmp <hook>
//                <instr>
//                [...]                  body:  [...]
//
//                                   [trampoline]
//                                       real:  <instr>
//                                              <instr>
//                                              jmp <body>
//
//    On an 64-bit architecture:
//
//        func:   <instr>        -->     func:  jmp QWORD [addr1]
//                <instr>
//                [...]                  body:  [...]
//
//                                   [trampoline]
//                                      addr1:  .bytes <hook>
//                                       real:  <instr>
//                                              <instr>
//                                              jmp QWORD [addr2]
//                                      addr2:  .bytes <body>
//===----------------------------------------------------------------------===//

#include "interception.h"

#if SANITIZER_WINDOWS
#include "sanitizer_common/sanitizer_platform.h"
#define WIN32_LEAN_AND_MEAN
#include <windows.h>

namespace __interception {

static const int kAddressLength = FIRST_32_SECOND_64(4, 8);
static const int kJumpInstructionLength = 5;
static const int kShortJumpInstructionLength = 2;
static const int kIndirectJumpInstructionLength = 6;
static const int kBranchLength =
    FIRST_32_SECOND_64(kJumpInstructionLength, kIndirectJumpInstructionLength);
static const int kDirectBranchLength = kBranchLength + kAddressLength;

static void InterceptionFailed() {
  // Do we have a good way to abort with an error message here?
  __debugbreak();
}

static bool DistanceIsWithin2Gig(uptr from, uptr target) {
#if SANITIZER_WINDOWS64
  if (from < target)
    return target - from <= (uptr)0x7FFFFFFFU;
  else
    return from - target <= (uptr)0x80000000U;
#else
  // In a 32-bit address space, the address calculation will wrap, so this check
  // is unnecessary.
  return true;
#endif
}

static uptr GetMmapGranularity() {
  SYSTEM_INFO si;
  GetSystemInfo(&si);
  return si.dwAllocationGranularity;
}

static uptr RoundUpTo(uptr size, uptr boundary) {
  return (size + boundary - 1) & ~(boundary - 1);
}

// FIXME: internal_str* and internal_mem* functions should be moved from the
// ASan sources into interception/.

static size_t _strlen(const char *str) {
  const char* p = str;
  while (*p != '\0') ++p;
  return p - str;
}

static char* _strchr(char* str, char c) {
  while (*str) {
    if (*str == c)
      return str;
    ++str;
  }
  return nullptr;
}

static void _memset(void *p, int value, size_t sz) {
  for (size_t i = 0; i < sz; ++i)
    ((char*)p)[i] = (char)value;
}

static void _memcpy(void *dst, void *src, size_t sz) {
  char *dst_c = (char*)dst,
       *src_c = (char*)src;
  for (size_t i = 0; i < sz; ++i)
    dst_c[i] = src_c[i];
}

static bool ChangeMemoryProtection(
    uptr address, uptr size, DWORD *old_protection) {
  return ::VirtualProtect((void*)address, size,
                          PAGE_EXECUTE_READWRITE,
                          old_protection) != FALSE;
}

static bool RestoreMemoryProtection(
    uptr address, uptr size, DWORD old_protection) {
  DWORD unused;
  return ::VirtualProtect((void*)address, size,
                          old_protection,
                          &unused) != FALSE;
}

static bool IsMemoryPadding(uptr address, uptr size) {
  u8* function = (u8*)address;
  for (size_t i = 0; i < size; ++i)
    if (function[i] != 0x90 && function[i] != 0xCC)
      return false;
  return true;
}

static const u8 kHintNop8Bytes[] = {
  0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00
};

template<class T>
static bool FunctionHasPrefix(uptr address, const T &pattern) {
  u8* function = (u8*)address - sizeof(pattern);
  for (size_t i = 0; i < sizeof(pattern); ++i)
    if (function[i] != pattern[i])
      return false;
  return true;
}

static bool FunctionHasPadding(uptr address, uptr size) {
  if (IsMemoryPadding(address - size, size))
    return true;
  if (size <= sizeof(kHintNop8Bytes) &&
      FunctionHasPrefix(address, kHintNop8Bytes))
    return true;
  return false;
}

static void WritePadding(uptr from, uptr size) {
  _memset((void*)from, 0xCC, (size_t)size);
}

static void WriteJumpInstruction(uptr from, uptr target) {
  if (!DistanceIsWithin2Gig(from + kJumpInstructionLength, target))
    InterceptionFailed();
  ptrdiff_t offset = target - from - kJumpInstructionLength;
  *(u8*)from = 0xE9;
  *(u32*)(from + 1) = offset;
}

static void WriteShortJumpInstruction(uptr from, uptr target) {
  sptr offset = target - from - kShortJumpInstructionLength;
  if (offset < -128 || offset > 127)
    InterceptionFailed();
  *(u8*)from = 0xEB;
  *(u8*)(from + 1) = (u8)offset;
}

#if SANITIZER_WINDOWS64
static void WriteIndirectJumpInstruction(uptr from, uptr indirect_target) {
  // jmp [rip + <offset>] = FF 25 <offset> where <offset> is a relative
  // offset.
  // The offset is the distance from then end of the jump instruction to the
  // memory location containing the targeted address. The displacement is still
  // 32-bit in x64, so indirect_target must be located within +/- 2GB range.
  int offset = indirect_target - from - kIndirectJumpInstructionLength;
  if (!DistanceIsWithin2Gig(from + kIndirectJumpInstructionLength,
                            indirect_target)) {
    InterceptionFailed();
  }
  *(u16*)from = 0x25FF;
  *(u32*)(from + 2) = offset;
}
#endif

static void WriteBranch(
    uptr from, uptr indirect_target, uptr target) {
#if SANITIZER_WINDOWS64
  WriteIndirectJumpInstruction(from, indirect_target);
  *(u64*)indirect_target = target;
#else
  (void)indirect_target;
  WriteJumpInstruction(from, target);
#endif
}

static void WriteDirectBranch(uptr from, uptr target) {
#if SANITIZER_WINDOWS64
  // Emit an indirect jump through immediately following bytes:
  //   jmp [rip + kBranchLength]
  //   .quad <target>
  WriteBranch(from, from + kBranchLength, target);
#else
  WriteJumpInstruction(from, target);
#endif
}

struct TrampolineMemoryRegion {
  uptr content;
  uptr allocated_size;
  uptr max_size;
};

static const uptr kTrampolineScanLimitRange = 1 << 31;  // 2 gig
static const int kMaxTrampolineRegion = 1024;
static TrampolineMemoryRegion TrampolineRegions[kMaxTrampolineRegion];

static void *AllocateTrampolineRegion(uptr image_address, size_t granularity) {
#if SANITIZER_WINDOWS64
  uptr address = image_address;
  uptr scanned = 0;
  while (scanned < kTrampolineScanLimitRange) {
    MEMORY_BASIC_INFORMATION info;
    if (!::VirtualQuery((void*)address, &info, sizeof(info)))
      return nullptr;

    // Check whether a region can be allocated at |address|.
    if (info.State == MEM_FREE && info.RegionSize >= granularity) {
      void *page = ::VirtualAlloc((void*)RoundUpTo(address, granularity),
                                  granularity,
                                  MEM_RESERVE | MEM_COMMIT,
                                  PAGE_EXECUTE_READWRITE);
      return page;
    }

    // Move to the next region.
    address = (uptr)info.BaseAddress + info.RegionSize;
    scanned += info.RegionSize;
  }
  return nullptr;
#else
  return ::VirtualAlloc(nullptr,
                        granularity,
                        MEM_RESERVE | MEM_COMMIT,
                        PAGE_EXECUTE_READWRITE);
#endif
}

// Used by unittests to release mapped memory space.
void TestOnlyReleaseTrampolineRegions() {
  for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) {
    TrampolineMemoryRegion *current = &TrampolineRegions[bucket];
    if (current->content == 0)
      return;
    ::VirtualFree((void*)current->content, 0, MEM_RELEASE);
    current->content = 0;
  }
}

static uptr AllocateMemoryForTrampoline(uptr image_address, size_t size) {
  // Find a region within 2G with enough space to allocate |size| bytes.
  TrampolineMemoryRegion *region = nullptr;
  for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) {
    TrampolineMemoryRegion* current = &TrampolineRegions[bucket];
    if (current->content == 0) {
      // No valid region found, allocate a new region.
      size_t bucket_size = GetMmapGranularity();
      void *content = AllocateTrampolineRegion(image_address, bucket_size);
      if (content == nullptr)
        return 0U;

      current->content = (uptr)content;
      current->allocated_size = 0;
      current->max_size = bucket_size;
      region = current;
      break;
    } else if (current->max_size - current->allocated_size > size) {
#if SANITIZER_WINDOWS64
        // In 64-bits, the memory space must be allocated within 2G boundary.
        uptr next_address = current->content + current->allocated_size;
        if (next_address < image_address ||
            next_address - image_address >= 0x7FFF0000)
          continue;
#endif
      // The space can be allocated in the current region.
      region = current;
      break;
    }
  }

  // Failed to find a region.
  if (region == nullptr)
    return 0U;

  // Allocate the space in the current region.
  uptr allocated_space = region->content + region->allocated_size;
  region->allocated_size += size;
  WritePadding(allocated_space, size);

  return allocated_space;
}

// Returns 0 on error.
static size_t GetInstructionSize(uptr address, size_t* rel_offset = nullptr) {
  switch (*(u64*)address) {
    case 0x90909090909006EB:  // stub: jmp over 6 x nop.
      return 8;
  }

  switch (*(u8*)address) {
    case 0x90:  // 90 : nop
      return 1;

    case 0x50:  // push eax / rax
    case 0x51:  // push ecx / rcx
    case 0x52:  // push edx / rdx
    case 0x53:  // push ebx / rbx
    case 0x54:  // push esp / rsp
    case 0x55:  // push ebp / rbp
    case 0x56:  // push esi / rsi
    case 0x57:  // push edi / rdi
    case 0x5D:  // pop ebp / rbp
      return 1;

    case 0x6A:  // 6A XX = push XX
      return 2;

    case 0xb8:  // b8 XX XX XX XX : mov eax, XX XX XX XX
    case 0xB9:  // b9 XX XX XX XX : mov ecx, XX XX XX XX
      return 5;

    // Cannot overwrite control-instruction. Return 0 to indicate failure.
    case 0xE9:  // E9 XX XX XX XX : jmp <label>
    case 0xE8:  // E8 XX XX XX XX : call <func>
    case 0xC3:  // C3 : ret
    case 0xEB:  // EB XX : jmp XX (short jump)
    case 0x70:  // 7Y YY : jy XX (short conditional jump)
    case 0x71:
    case 0x72:
    case 0x73:
    case 0x74:
    case 0x75:
    case 0x76:
    case 0x77:
    case 0x78:
    case 0x79:
    case 0x7A:
    case 0x7B:
    case 0x7C:
    case 0x7D:
    case 0x7E:
    case 0x7F:
      return 0;
  }

  switch (*(u16*)(address)) {
    case 0x018A:  // 8A 01 : mov al, byte ptr [ecx]
    case 0xFF8B:  // 8B FF : mov edi, edi
    case 0xEC8B:  // 8B EC : mov ebp, esp
    case 0xc889:  // 89 C8 : mov eax, ecx
    case 0xC18B:  // 8B C1 : mov eax, ecx
    case 0xC033:  // 33 C0 : xor eax, eax
    case 0xC933:  // 33 C9 : xor ecx, ecx
    case 0xD233:  // 33 D2 : xor edx, edx
      return 2;

    // Cannot overwrite control-instruction. Return 0 to indicate failure.
    case 0x25FF:  // FF 25 XX XX XX XX : jmp [XXXXXXXX]
      return 0;
  }

  switch (0x00FFFFFF & *(u32*)address) {
    case 0x24A48D:  // 8D A4 24 XX XX XX XX : lea esp, [esp + XX XX XX XX]
      return 7;
  }

#if SANITIZER_WINDOWS64
  switch (*(u8*)address) {
    case 0xA1:  // A1 XX XX XX XX XX XX XX XX :
                //   movabs eax, dword ptr ds:[XXXXXXXX]
      return 9;
  }

  switch (*(u16*)address) {
    case 0x5040:  // push rax
    case 0x5140:  // push rcx
    case 0x5240:  // push rdx
    case 0x5340:  // push rbx
    case 0x5440:  // push rsp
    case 0x5540:  // push rbp
    case 0x5640:  // push rsi
    case 0x5740:  // push rdi
    case 0x5441:  // push r12
    case 0x5541:  // push r13
    case 0x5641:  // push r14
    case 0x5741:  // push r15
    case 0x9066:  // Two-byte NOP
      return 2;

    case 0x058B:  // 8B 05 XX XX XX XX : mov eax, dword ptr [XX XX XX XX]
      if (rel_offset)
        *rel_offset = 2;
      return 6;
  }

  switch (0x00FFFFFF & *(u32*)address) {
    case 0xe58948:    // 48 8b c4 : mov rbp, rsp
    case 0xc18b48:    // 48 8b c1 : mov rax, rcx
    case 0xc48b48:    // 48 8b c4 : mov rax, rsp
    case 0xd9f748:    // 48 f7 d9 : neg rcx
    case 0xd12b48:    // 48 2b d1 : sub rdx, rcx
    case 0x07c1f6:    // f6 c1 07 : test cl, 0x7
    case 0xc98548:    // 48 85 C9 : test rcx, rcx
    case 0xc0854d:    // 4d 85 c0 : test r8, r8
    case 0xc2b60f:    // 0f b6 c2 : movzx eax, dl
    case 0xc03345:    // 45 33 c0 : xor r8d, r8d
    case 0xc93345:    // 45 33 c9 : xor r9d, r9d
    case 0xdb3345:    // 45 33 DB : xor r11d, r11d
    case 0xd98b4c:    // 4c 8b d9 : mov r11, rcx
    case 0xd28b4c:    // 4c 8b d2 : mov r10, rdx
    case 0xc98b4c:    // 4C 8B C9 : mov r9, rcx
    case 0xc18b4c:    // 4C 8B C1 : mov r8, rcx
    case 0xd2b60f:    // 0f b6 d2 : movzx edx, dl
    case 0xca2b48:    // 48 2b ca : sub rcx, rdx
    case 0x10b70f:    // 0f b7 10 : movzx edx, WORD PTR [rax]
    case 0xc00b4d:    // 3d 0b c0 : or r8, r8
    case 0xd18b48:    // 48 8b d1 : mov rdx, rcx
    case 0xdc8b4c:    // 4c 8b dc : mov r11, rsp
    case 0xd18b4c:    // 4c 8b d1 : mov r10, rcx
    case 0xE0E483:    // 83 E4 E0 : and esp, 0xFFFFFFE0
      return 3;

    case 0xec8348:    // 48 83 ec XX : sub rsp, XX
    case 0xf88349:    // 49 83 f8 XX : cmp r8, XX
    case 0x588948:    // 48 89 58 XX : mov QWORD PTR[rax + XX], rbx
      return 4;

    case 0xec8148:    // 48 81 EC XX XX XX XX : sub rsp, XXXXXXXX
      return 7;

    case 0x058b48:    // 48 8b 05 XX XX XX XX :
                      //   mov rax, QWORD PTR [rip + XXXXXXXX]
    case 0x25ff48:    // 48 ff 25 XX XX XX XX :
                      //   rex.W jmp QWORD PTR [rip + XXXXXXXX]

      // Instructions having offset relative to 'rip' need offset adjustment.
      if (rel_offset)
        *rel_offset = 3;
      return 7;

    case 0x2444c7:    // C7 44 24 XX YY YY YY YY
                      //   mov dword ptr [rsp + XX], YYYYYYYY
      return 8;
  }

  switch (*(u32*)(address)) {
    case 0x24448b48:  // 48 8b 44 24 XX : mov rax, QWORD ptr [rsp + XX]
    case 0x246c8948:  // 48 89 6C 24 XX : mov QWORD ptr [rsp + XX], rbp
    case 0x245c8948:  // 48 89 5c 24 XX : mov QWORD PTR [rsp + XX], rbx
    case 0x24748948:  // 48 89 74 24 XX : mov QWORD PTR [rsp + XX], rsi
    case 0x244C8948:  // 48 89 4C 24 XX : mov QWORD PTR [rsp + XX], rcx
    case 0x24548948:  // 48 89 54 24 XX : mov QWORD PTR [rsp + XX], rdx
    case 0x244c894c:  // 4c 89 4c 24 XX : mov QWORD PTR [rsp + XX], r9
    case 0x2444894c:  // 4c 89 44 24 XX : mov QWORD PTR [rsp + XX], r8
      return 5;
    case 0x24648348:  // 48 83 64 24 XX : and QWORD PTR [rsp + XX], YY
      return 6;
  }

#else

  switch (*(u8*)address) {
    case 0xA1:  // A1 XX XX XX XX :  mov eax, dword ptr ds:[XXXXXXXX]
      return 5;
  }
  switch (*(u16*)address) {
    case 0x458B:  // 8B 45 XX : mov eax, dword ptr [ebp + XX]
    case 0x5D8B:  // 8B 5D XX : mov ebx, dword ptr [ebp + XX]
    case 0x7D8B:  // 8B 7D XX : mov edi, dword ptr [ebp + XX]
    case 0xEC83:  // 83 EC XX : sub esp, XX
    case 0x75FF:  // FF 75 XX : push dword ptr [ebp + XX]
      return 3;
    case 0xC1F7:  // F7 C1 XX YY ZZ WW : test ecx, WWZZYYXX
    case 0x25FF:  // FF 25 XX YY ZZ WW : jmp dword ptr ds:[WWZZYYXX]
      return 6;
    case 0x3D83:  // 83 3D XX YY ZZ WW TT : cmp TT, WWZZYYXX
      return 7;
    case 0x7D83:  // 83 7D XX YY : cmp dword ptr [ebp + XX], YY
      return 4;
  }

  switch (0x00FFFFFF & *(u32*)address) {
    case 0x24448A:  // 8A 44 24 XX : mov eal, dword ptr [esp + XX]
    case 0x24448B:  // 8B 44 24 XX : mov eax, dword ptr [esp + XX]
    case 0x244C8B:  // 8B 4C 24 XX : mov ecx, dword ptr [esp + XX]
    case 0x24548B:  // 8B 54 24 XX : mov edx, dword ptr [esp + XX]
    case 0x24748B:  // 8B 74 24 XX : mov esi, dword ptr [esp + XX]
    case 0x247C8B:  // 8B 7C 24 XX : mov edi, dword ptr [esp + XX]
      return 4;
  }

  switch (*(u32*)address) {
    case 0x2444B60F:  // 0F B6 44 24 XX : movzx eax, byte ptr [esp + XX]
      return 5;
  }
#endif

  // Unknown instruction!
  // FIXME: Unknown instruction failures might happen when we add a new
  // interceptor or a new compiler version. In either case, they should result
  // in visible and readable error messages. However, merely calling abort()
  // leads to an infinite recursion in CheckFailed.
  InterceptionFailed();
  return 0;
}

// Returns 0 on error.
static size_t RoundUpToInstrBoundary(size_t size, uptr address) {
  size_t cursor = 0;
  while (cursor < size) {
    size_t instruction_size = GetInstructionSize(address + cursor);
    if (!instruction_size)
      return 0;
    cursor += instruction_size;
  }
  return cursor;
}

static bool CopyInstructions(uptr to, uptr from, size_t size) {
  size_t cursor = 0;
  while (cursor != size) {
    size_t rel_offset = 0;
    size_t instruction_size = GetInstructionSize(from + cursor, &rel_offset);
    _memcpy((void*)(to + cursor), (void*)(from + cursor),
            (size_t)instruction_size);
    if (rel_offset) {
      uptr delta = to - from;
      uptr relocated_offset = *(u32*)(to + cursor + rel_offset) - delta;
#if SANITIZER_WINDOWS64
      if (relocated_offset + 0x80000000U >= 0xFFFFFFFFU)
        return false;
#endif
      *(u32*)(to + cursor + rel_offset) = relocated_offset;
    }
    cursor += instruction_size;
  }
  return true;
}


#if !SANITIZER_WINDOWS64
bool OverrideFunctionWithDetour(
    uptr old_func, uptr new_func, uptr *orig_old_func) {
  const int kDetourHeaderLen = 5;
  const u16 kDetourInstruction = 0xFF8B;

  uptr header = (uptr)old_func - kDetourHeaderLen;
  uptr patch_length = kDetourHeaderLen + kShortJumpInstructionLength;

  // Validate that the function is hookable.
  if (*(u16*)old_func != kDetourInstruction ||
      !IsMemoryPadding(header, kDetourHeaderLen))
    return false;

  // Change memory protection to writable.
  DWORD protection = 0;
  if (!ChangeMemoryProtection(header, patch_length, &protection))
    return false;

  // Write a relative jump to the redirected function.
  WriteJumpInstruction(header, new_func);

  // Write the short jump to the function prefix.
  WriteShortJumpInstruction(old_func, header);

  // Restore previous memory protection.
  if (!RestoreMemoryProtection(header, patch_length, protection))
    return false;

  if (orig_old_func)
    *orig_old_func = old_func + kShortJumpInstructionLength;

  return true;
}
#endif

bool OverrideFunctionWithRedirectJump(
    uptr old_func, uptr new_func, uptr *orig_old_func) {
  // Check whether the first instruction is a relative jump.
  if (*(u8*)old_func != 0xE9)
    return false;

  if (orig_old_func) {
    uptr relative_offset = *(u32*)(old_func + 1);
    uptr absolute_target = old_func + relative_offset + kJumpInstructionLength;
    *orig_old_func = absolute_target;
  }

#if SANITIZER_WINDOWS64
  // If needed, get memory space for a trampoline jump.
  uptr trampoline = AllocateMemoryForTrampoline(old_func, kDirectBranchLength);
  if (!trampoline)
    return false;
  WriteDirectBranch(trampoline, new_func);
#endif

  // Change memory protection to writable.
  DWORD protection = 0;
  if (!ChangeMemoryProtection(old_func, kJumpInstructionLength, &protection))
    return false;

  // Write a relative jump to the redirected function.
  WriteJumpInstruction(old_func, FIRST_32_SECOND_64(new_func, trampoline));

  // Restore previous memory protection.
  if (!RestoreMemoryProtection(old_func, kJumpInstructionLength, protection))
    return false;

  return true;
}

bool OverrideFunctionWithHotPatch(
    uptr old_func, uptr new_func, uptr *orig_old_func) {
  const int kHotPatchHeaderLen = kBranchLength;

  uptr header = (uptr)old_func - kHotPatchHeaderLen;
  uptr patch_length = kHotPatchHeaderLen + kShortJumpInstructionLength;

  // Validate that the function is hot patchable.
  size_t instruction_size = GetInstructionSize(old_func);
  if (instruction_size < kShortJumpInstructionLength ||
      !FunctionHasPadding(old_func, kHotPatchHeaderLen))
    return false;

  if (orig_old_func) {
    // Put the needed instructions into the trampoline bytes.
    uptr trampoline_length = instruction_size + kDirectBranchLength;
    uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length);
    if (!trampoline)
      return false;
    if (!CopyInstructions(trampoline, old_func, instruction_size))
      return false;
    WriteDirectBranch(trampoline + instruction_size,
                      old_func + instruction_size);
    *orig_old_func = trampoline;
  }

  // If needed, get memory space for indirect address.
  uptr indirect_address = 0;
#if SANITIZER_WINDOWS64
  indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength);
  if (!indirect_address)
    return false;
#endif

  // Change memory protection to writable.
  DWORD protection = 0;
  if (!ChangeMemoryProtection(header, patch_length, &protection))
    return false;

  // Write jumps to the redirected function.
  WriteBranch(header, indirect_address, new_func);
  WriteShortJumpInstruction(old_func, header);

  // Restore previous memory protection.
  if (!RestoreMemoryProtection(header, patch_length, protection))
    return false;

  return true;
}

bool OverrideFunctionWithTrampoline(
    uptr old_func, uptr new_func, uptr *orig_old_func) {

  size_t instructions_length = kBranchLength;
  size_t padding_length = 0;
  uptr indirect_address = 0;

  if (orig_old_func) {
    // Find out the number of bytes of the instructions we need to copy
    // to the trampoline.
    instructions_length = RoundUpToInstrBoundary(kBranchLength, old_func);
    if (!instructions_length)
      return false;

    // Put the needed instructions into the trampoline bytes.
    uptr trampoline_length = instructions_length + kDirectBranchLength;
    uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length);
    if (!trampoline)
      return false;
    if (!CopyInstructions(trampoline, old_func, instructions_length))
      return false;
    WriteDirectBranch(trampoline + instructions_length,
                      old_func + instructions_length);
    *orig_old_func = trampoline;
  }

#if SANITIZER_WINDOWS64
  // Check if the targeted address can be encoded in the function padding.
  // Otherwise, allocate it in the trampoline region.
  if (IsMemoryPadding(old_func - kAddressLength, kAddressLength)) {
    indirect_address = old_func - kAddressLength;
    padding_length = kAddressLength;
  } else {
    indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength);
    if (!indirect_address)
      return false;
  }
#endif

  // Change memory protection to writable.
  uptr patch_address = old_func - padding_length;
  uptr patch_length = instructions_length + padding_length;
  DWORD protection = 0;
  if (!ChangeMemoryProtection(patch_address, patch_length, &protection))
    return false;

  // Patch the original function.
  WriteBranch(old_func, indirect_address, new_func);

  // Restore previous memory protection.
  if (!RestoreMemoryProtection(patch_address, patch_length, protection))
    return false;

  return true;
}

bool OverrideFunction(
    uptr old_func, uptr new_func, uptr *orig_old_func) {
#if !SANITIZER_WINDOWS64
  if (OverrideFunctionWithDetour(old_func, new_func, orig_old_func))
    return true;
#endif
  if (OverrideFunctionWithRedirectJump(old_func, new_func, orig_old_func))
    return true;
  if (OverrideFunctionWithHotPatch(old_func, new_func, orig_old_func))
    return true;
  if (OverrideFunctionWithTrampoline(old_func, new_func, orig_old_func))
    return true;
  return false;
}

static void **InterestingDLLsAvailable() {
  static const char *InterestingDLLs[] = {
      "kernel32.dll",
      "msvcr100.dll",      // VS2010
      "msvcr110.dll",      // VS2012
      "msvcr120.dll",      // VS2013
      "vcruntime140.dll",  // VS2015
      "ucrtbase.dll",      // Universal CRT
      // NTDLL should go last as it exports some functions that we should
      // override in the CRT [presumably only used internally].
      "ntdll.dll", NULL};
  static void *result[ARRAY_SIZE(InterestingDLLs)] = { 0 };
  if (!result[0]) {
    for (size_t i = 0, j = 0; InterestingDLLs[i]; ++i) {
      if (HMODULE h = GetModuleHandleA(InterestingDLLs[i]))
        result[j++] = (void *)h;
    }
  }
  return &result[0];
}

namespace {
// Utility for reading loaded PE images.
template <typename T> class RVAPtr {
 public:
  RVAPtr(void *module, uptr rva)
      : ptr_(reinterpret_cast<T *>(reinterpret_cast<char *>(module) + rva)) {}
  operator T *() { return ptr_; }
  T *operator->() { return ptr_; }
  T *operator++() { return ++ptr_; }

 private:
  T *ptr_;
};
} // namespace

// Internal implementation of GetProcAddress. At least since Windows 8,
// GetProcAddress appears to initialize DLLs before returning function pointers
// into them. This is problematic for the sanitizers, because they typically
// want to intercept malloc *before* MSVCRT initializes. Our internal
// implementation walks the export list manually without doing initialization.
uptr InternalGetProcAddress(void *module, const char *func_name) {
  // Check that the module header is full and present.
  RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0);
  RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew);
  if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE ||  // "MZ"
      headers->Signature != IMAGE_NT_SIGNATURE ||             // "PE\0\0"
      headers->FileHeader.SizeOfOptionalHeader <
          sizeof(IMAGE_OPTIONAL_HEADER)) {
    return 0;
  }

  IMAGE_DATA_DIRECTORY *export_directory =
      &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT];
  if (export_directory->Size == 0)
    return 0;
  RVAPtr<IMAGE_EXPORT_DIRECTORY> exports(module,
                                         export_directory->VirtualAddress);
  RVAPtr<DWORD> functions(module, exports->AddressOfFunctions);
  RVAPtr<DWORD> names(module, exports->AddressOfNames);
  RVAPtr<WORD> ordinals(module, exports->AddressOfNameOrdinals);

  for (DWORD i = 0; i < exports->NumberOfNames; i++) {
    RVAPtr<char> name(module, names[i]);
    if (!strcmp(func_name, name)) {
      DWORD index = ordinals[i];
      RVAPtr<char> func(module, functions[index]);

      // Handle forwarded functions.
      DWORD offset = functions[index];
      if (offset >= export_directory->VirtualAddress &&
          offset < export_directory->VirtualAddress + export_directory->Size) {
        // An entry for a forwarded function is a string with the following
        // format: "<module> . <function_name>" that is stored into the
        // exported directory.
        char function_name[256];
        size_t funtion_name_length = _strlen(func);
        if (funtion_name_length >= sizeof(function_name) - 1)
          InterceptionFailed();

        _memcpy(function_name, func, funtion_name_length);
        function_name[funtion_name_length] = '\0';
        char* separator = _strchr(function_name, '.');
        if (!separator)
          InterceptionFailed();
        *separator = '\0';

        void* redirected_module = GetModuleHandleA(function_name);
        if (!redirected_module)
          InterceptionFailed();
        return InternalGetProcAddress(redirected_module, separator + 1);
      }

      return (uptr)(char *)func;
    }
  }

  return 0;
}

bool OverrideFunction(
    const char *func_name, uptr new_func, uptr *orig_old_func) {
  bool hooked = false;
  void **DLLs = InterestingDLLsAvailable();
  for (size_t i = 0; DLLs[i]; ++i) {
    uptr func_addr = InternalGetProcAddress(DLLs[i], func_name);
    if (func_addr &&
        OverrideFunction(func_addr, new_func, orig_old_func)) {
      hooked = true;
    }
  }
  return hooked;
}

bool OverrideImportedFunction(const char *module_to_patch,
                              const char *imported_module,
                              const char *function_name, uptr new_function,
                              uptr *orig_old_func) {
  HMODULE module = GetModuleHandleA(module_to_patch);
  if (!module)
    return false;

  // Check that the module header is full and present.
  RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0);
  RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew);
  if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE ||  // "MZ"
      headers->Signature != IMAGE_NT_SIGNATURE ||             // "PE\0\0"
      headers->FileHeader.SizeOfOptionalHeader <
          sizeof(IMAGE_OPTIONAL_HEADER)) {
    return false;
  }

  IMAGE_DATA_DIRECTORY *import_directory =
      &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT];

  // Iterate the list of imported DLLs. FirstThunk will be null for the last
  // entry.
  RVAPtr<IMAGE_IMPORT_DESCRIPTOR> imports(module,
                                          import_directory->VirtualAddress);
  for (; imports->FirstThunk != 0; ++imports) {
    RVAPtr<const char> modname(module, imports->Name);
    if (_stricmp(&*modname, imported_module) == 0)
      break;
  }
  if (imports->FirstThunk == 0)
    return false;

  // We have two parallel arrays: the import address table (IAT) and the table
  // of names. They start out containing the same data, but the loader rewrites
  // the IAT to hold imported addresses and leaves the name table in
  // OriginalFirstThunk alone.
  RVAPtr<IMAGE_THUNK_DATA> name_table(module, imports->OriginalFirstThunk);
  RVAPtr<IMAGE_THUNK_DATA> iat(module, imports->FirstThunk);
  for (; name_table->u1.Ordinal != 0; ++name_table, ++iat) {
    if (!IMAGE_SNAP_BY_ORDINAL(name_table->u1.Ordinal)) {
      RVAPtr<IMAGE_IMPORT_BY_NAME> import_by_name(
          module, name_table->u1.ForwarderString);
      const char *funcname = &import_by_name->Name[0];
      if (strcmp(funcname, function_name) == 0)
        break;
    }
  }
  if (name_table->u1.Ordinal == 0)
    return false;

  // Now we have the correct IAT entry. Do the swap. We have to make the page
  // read/write first.
  if (orig_old_func)
    *orig_old_func = iat->u1.AddressOfData;
  DWORD old_prot, unused_prot;
  if (!VirtualProtect(&iat->u1.AddressOfData, 4, PAGE_EXECUTE_READWRITE,
                      &old_prot))
    return false;
  iat->u1.AddressOfData = new_function;
  if (!VirtualProtect(&iat->u1.AddressOfData, 4, old_prot, &unused_prot))
    return false;  // Not clear if this failure bothers us.
  return true;
}

}  // namespace __interception

#endif  // SANITIZER_MAC