DataFlow.cpp
7.15 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
/*===- DataFlow.cpp - a standalone DataFlow tracer -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// An experimental data-flow tracer for fuzz targets.
// It is based on DFSan and SanitizerCoverage.
// https://clang.llvm.org/docs/DataFlowSanitizer.html
// https://clang.llvm.org/docs/SanitizerCoverage.html#tracing-data-flow
//
// It executes the fuzz target on the given input while monitoring the
// data flow for every instrumented comparison instruction.
//
// The output shows which functions depend on which bytes of the input,
// and also provides basic-block coverage for every input.
//
// Build:
// 1. Compile this file (DataFlow.cpp) with -fsanitize=dataflow -mllvm
// -dfsan-fast-16-labels and -O2.
// 2. Compile DataFlowCallbacks.cpp with -O2 -fPIC.
// 3. Build the fuzz target with -g -fsanitize=dataflow
// -mllvm -dfsan-fast-16-labels
// -fsanitize-coverage=trace-pc-guard,pc-table,bb,trace-cmp
// 4. Link those together with -fsanitize=dataflow
//
// -fsanitize-coverage=trace-cmp inserts callbacks around every comparison
// instruction, DFSan modifies the calls to pass the data flow labels.
// The callbacks update the data flow label for the current function.
// See e.g. __dfsw___sanitizer_cov_trace_cmp1 below.
//
// -fsanitize-coverage=trace-pc-guard,pc-table,bb instruments function
// entries so that the comparison callback knows that current function.
// -fsanitize-coverage=...,bb also allows to collect basic block coverage.
//
//
// Run:
// # Collect data flow and coverage for INPUT_FILE
// # write to OUTPUT_FILE (default: stdout)
// export DFSAN_OPTIONS=warn_unimplemented=0
// ./a.out INPUT_FILE [OUTPUT_FILE]
//
// # Print all instrumented functions. llvm-symbolizer must be present in PATH
// ./a.out
//
// Example output:
// ===============
// F0 11111111111111
// F1 10000000000000
// C0 1 2 3 4 5
// C1 8
// ===============
// "FN xxxxxxxxxx": tells what bytes of the input does the function N depend on.
// "CN X Y Z T": tells that a function N has basic blocks X, Y, and Z covered
// in addition to the function's entry block, out of T total instrumented
// blocks.
//
//===----------------------------------------------------------------------===*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <execinfo.h> // backtrace_symbols_fd
#include "DataFlow.h"
extern "C" {
extern int LLVMFuzzerTestOneInput(const unsigned char *Data, size_t Size);
__attribute__((weak)) extern int LLVMFuzzerInitialize(int *argc, char ***argv);
} // extern "C"
CallbackData __dft;
static size_t InputLen;
static size_t NumIterations;
static dfsan_label **FuncLabelsPerIter; // NumIterations x NumFuncs;
static inline bool BlockIsEntry(size_t BlockIdx) {
return __dft.PCsBeg[BlockIdx * 2 + 1] & PCFLAG_FUNC_ENTRY;
}
const int kNumLabels = 16;
// Prints all instrumented functions.
static int PrintFunctions() {
// We don't have the symbolizer integrated with dfsan yet.
// So use backtrace_symbols_fd and pipe it through llvm-symbolizer.
// TODO(kcc): this is pretty ugly and may break in lots of ways.
// We'll need to make a proper in-process symbolizer work with DFSan.
FILE *Pipe = popen("sed 's/(+/ /g; s/).*//g' "
"| llvm-symbolizer "
"| grep 'dfs\\$' "
"| sed 's/dfs\\$//g' "
"| c++filt",
"w");
for (size_t I = 0; I < __dft.NumGuards; I++) {
uintptr_t PC = __dft.PCsBeg[I * 2];
if (!BlockIsEntry(I)) continue;
void *const Buf[1] = {(void*)PC};
backtrace_symbols_fd(Buf, 1, fileno(Pipe));
}
pclose(Pipe);
return 0;
}
static void PrintBinary(FILE *Out, dfsan_label L, size_t Len) {
char buf[kNumLabels + 1];
assert(Len <= kNumLabels);
for (int i = 0; i < kNumLabels; i++)
buf[i] = (L & (1 << i)) ? '1' : '0';
buf[Len] = 0;
fprintf(Out, "%s", buf);
}
static void PrintDataFlow(FILE *Out) {
for (size_t Func = 0; Func < __dft.NumFuncs; Func++) {
bool HasAny = false;
for (size_t Iter = 0; Iter < NumIterations; Iter++)
if (FuncLabelsPerIter[Iter][Func])
HasAny = true;
if (!HasAny)
continue;
fprintf(Out, "F%zd ", Func);
size_t LenOfLastIteration = kNumLabels;
if (auto Tail = InputLen % kNumLabels)
LenOfLastIteration = Tail;
for (size_t Iter = 0; Iter < NumIterations; Iter++)
PrintBinary(Out, FuncLabelsPerIter[Iter][Func],
Iter == NumIterations - 1 ? LenOfLastIteration : kNumLabels);
fprintf(Out, "\n");
}
}
static void PrintCoverage(FILE *Out) {
ssize_t CurrentFuncGuard = -1;
ssize_t CurrentFuncNum = -1;
ssize_t NumBlocksInCurrentFunc = -1;
for (size_t FuncBeg = 0; FuncBeg < __dft.NumGuards;) {
CurrentFuncNum++;
assert(BlockIsEntry(FuncBeg));
size_t FuncEnd = FuncBeg + 1;
for (; FuncEnd < __dft.NumGuards && !BlockIsEntry(FuncEnd); FuncEnd++)
;
if (__dft.BBExecuted[FuncBeg]) {
fprintf(Out, "C%zd", CurrentFuncNum);
for (size_t I = FuncBeg + 1; I < FuncEnd; I++)
if (__dft.BBExecuted[I])
fprintf(Out, " %zd", I - FuncBeg);
fprintf(Out, " %zd\n", FuncEnd - FuncBeg);
}
FuncBeg = FuncEnd;
}
}
int main(int argc, char **argv) {
if (LLVMFuzzerInitialize)
LLVMFuzzerInitialize(&argc, &argv);
if (argc == 1)
return PrintFunctions();
assert(argc == 2 || argc == 3);
const char *Input = argv[1];
fprintf(stderr, "INFO: reading '%s'\n", Input);
FILE *In = fopen(Input, "r");
assert(In);
fseek(In, 0, SEEK_END);
InputLen = ftell(In);
fseek(In, 0, SEEK_SET);
unsigned char *Buf = (unsigned char*)malloc(InputLen);
size_t NumBytesRead = fread(Buf, 1, InputLen, In);
assert(NumBytesRead == InputLen);
fclose(In);
NumIterations = (NumBytesRead + kNumLabels - 1) / kNumLabels;
FuncLabelsPerIter =
(dfsan_label **)calloc(NumIterations, sizeof(dfsan_label *));
for (size_t Iter = 0; Iter < NumIterations; Iter++)
FuncLabelsPerIter[Iter] =
(dfsan_label *)calloc(__dft.NumFuncs, sizeof(dfsan_label));
for (size_t Iter = 0; Iter < NumIterations; Iter++) {
fprintf(stderr, "INFO: running '%s' %zd/%zd\n", Input, Iter, NumIterations);
dfsan_flush();
dfsan_set_label(0, Buf, InputLen);
__dft.FuncLabels = FuncLabelsPerIter[Iter];
size_t BaseIdx = Iter * kNumLabels;
size_t LastIdx = BaseIdx + kNumLabels < NumBytesRead ? BaseIdx + kNumLabels
: NumBytesRead;
assert(BaseIdx < LastIdx);
for (size_t Idx = BaseIdx; Idx < LastIdx; Idx++)
dfsan_set_label(1 << (Idx - BaseIdx), Buf + Idx, 1);
LLVMFuzzerTestOneInput(Buf, InputLen);
}
free(Buf);
bool OutIsStdout = argc == 2;
fprintf(stderr, "INFO: writing dataflow to %s\n",
OutIsStdout ? "<stdout>" : argv[2]);
FILE *Out = OutIsStdout ? stdout : fopen(argv[2], "w");
PrintDataFlow(Out);
PrintCoverage(Out);
if (!OutIsStdout) fclose(Out);
}