FuzzerMutate.cpp 20.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
//===- FuzzerMutate.cpp - Mutate a test input -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Mutate a test input.
//===----------------------------------------------------------------------===//

#include "FuzzerDefs.h"
#include "FuzzerExtFunctions.h"
#include "FuzzerIO.h"
#include "FuzzerMutate.h"
#include "FuzzerOptions.h"
#include "FuzzerTracePC.h"

namespace fuzzer {

const size_t Dictionary::kMaxDictSize;
static const size_t kMaxMutationsToPrint = 10;

static void PrintASCII(const Word &W, const char *PrintAfter) {
  PrintASCII(W.data(), W.size(), PrintAfter);
}

MutationDispatcher::MutationDispatcher(Random &Rand,
                                       const FuzzingOptions &Options)
    : Rand(Rand), Options(Options) {
  DefaultMutators.insert(
      DefaultMutators.begin(),
      {
          {&MutationDispatcher::Mutate_EraseBytes, "EraseBytes"},
          {&MutationDispatcher::Mutate_InsertByte, "InsertByte"},
          {&MutationDispatcher::Mutate_InsertRepeatedBytes,
           "InsertRepeatedBytes"},
          {&MutationDispatcher::Mutate_ChangeByte, "ChangeByte"},
          {&MutationDispatcher::Mutate_ChangeBit, "ChangeBit"},
          {&MutationDispatcher::Mutate_ShuffleBytes, "ShuffleBytes"},
          {&MutationDispatcher::Mutate_ChangeASCIIInteger, "ChangeASCIIInt"},
          {&MutationDispatcher::Mutate_ChangeBinaryInteger, "ChangeBinInt"},
          {&MutationDispatcher::Mutate_CopyPart, "CopyPart"},
          {&MutationDispatcher::Mutate_CrossOver, "CrossOver"},
          {&MutationDispatcher::Mutate_AddWordFromManualDictionary,
           "ManualDict"},
          {&MutationDispatcher::Mutate_AddWordFromPersistentAutoDictionary,
           "PersAutoDict"},
      });
  if(Options.UseCmp)
    DefaultMutators.push_back(
        {&MutationDispatcher::Mutate_AddWordFromTORC, "CMP"});

  if (EF->LLVMFuzzerCustomMutator)
    Mutators.push_back({&MutationDispatcher::Mutate_Custom, "Custom"});
  else
    Mutators = DefaultMutators;

  if (EF->LLVMFuzzerCustomCrossOver)
    Mutators.push_back(
        {&MutationDispatcher::Mutate_CustomCrossOver, "CustomCrossOver"});
}

static char RandCh(Random &Rand) {
  if (Rand.RandBool()) return Rand(256);
  const char Special[] = "!*'();:@&=+$,/?%#[]012Az-`~.\xff\x00";
  return Special[Rand(sizeof(Special) - 1)];
}

size_t MutationDispatcher::Mutate_Custom(uint8_t *Data, size_t Size,
                                         size_t MaxSize) {
  return EF->LLVMFuzzerCustomMutator(Data, Size, MaxSize, Rand.Rand());
}

size_t MutationDispatcher::Mutate_CustomCrossOver(uint8_t *Data, size_t Size,
                                                  size_t MaxSize) {
  if (Size == 0)
    return 0;
  if (!CrossOverWith) return 0;
  const Unit &Other = *CrossOverWith;
  if (Other.empty())
    return 0;
  CustomCrossOverInPlaceHere.resize(MaxSize);
  auto &U = CustomCrossOverInPlaceHere;
  size_t NewSize = EF->LLVMFuzzerCustomCrossOver(
      Data, Size, Other.data(), Other.size(), U.data(), U.size(), Rand.Rand());
  if (!NewSize)
    return 0;
  assert(NewSize <= MaxSize && "CustomCrossOver returned overisized unit");
  memcpy(Data, U.data(), NewSize);
  return NewSize;
}

size_t MutationDispatcher::Mutate_ShuffleBytes(uint8_t *Data, size_t Size,
                                               size_t MaxSize) {
  if (Size > MaxSize || Size == 0) return 0;
  size_t ShuffleAmount =
      Rand(std::min(Size, (size_t)8)) + 1; // [1,8] and <= Size.
  size_t ShuffleStart = Rand(Size - ShuffleAmount);
  assert(ShuffleStart + ShuffleAmount <= Size);
  std::shuffle(Data + ShuffleStart, Data + ShuffleStart + ShuffleAmount, Rand);
  return Size;
}

size_t MutationDispatcher::Mutate_EraseBytes(uint8_t *Data, size_t Size,
                                             size_t MaxSize) {
  if (Size <= 1) return 0;
  size_t N = Rand(Size / 2) + 1;
  assert(N < Size);
  size_t Idx = Rand(Size - N + 1);
  // Erase Data[Idx:Idx+N].
  memmove(Data + Idx, Data + Idx + N, Size - Idx - N);
  // Printf("Erase: %zd %zd => %zd; Idx %zd\n", N, Size, Size - N, Idx);
  return Size - N;
}

size_t MutationDispatcher::Mutate_InsertByte(uint8_t *Data, size_t Size,
                                             size_t MaxSize) {
  if (Size >= MaxSize) return 0;
  size_t Idx = Rand(Size + 1);
  // Insert new value at Data[Idx].
  memmove(Data + Idx + 1, Data + Idx, Size - Idx);
  Data[Idx] = RandCh(Rand);
  return Size + 1;
}

size_t MutationDispatcher::Mutate_InsertRepeatedBytes(uint8_t *Data,
                                                      size_t Size,
                                                      size_t MaxSize) {
  const size_t kMinBytesToInsert = 3;
  if (Size + kMinBytesToInsert >= MaxSize) return 0;
  size_t MaxBytesToInsert = std::min(MaxSize - Size, (size_t)128);
  size_t N = Rand(MaxBytesToInsert - kMinBytesToInsert + 1) + kMinBytesToInsert;
  assert(Size + N <= MaxSize && N);
  size_t Idx = Rand(Size + 1);
  // Insert new values at Data[Idx].
  memmove(Data + Idx + N, Data + Idx, Size - Idx);
  // Give preference to 0x00 and 0xff.
  uint8_t Byte = Rand.RandBool() ? Rand(256) : (Rand.RandBool() ? 0 : 255);
  for (size_t i = 0; i < N; i++)
    Data[Idx + i] = Byte;
  return Size + N;
}

size_t MutationDispatcher::Mutate_ChangeByte(uint8_t *Data, size_t Size,
                                             size_t MaxSize) {
  if (Size > MaxSize) return 0;
  size_t Idx = Rand(Size);
  Data[Idx] = RandCh(Rand);
  return Size;
}

size_t MutationDispatcher::Mutate_ChangeBit(uint8_t *Data, size_t Size,
                                            size_t MaxSize) {
  if (Size > MaxSize) return 0;
  size_t Idx = Rand(Size);
  Data[Idx] ^= 1 << Rand(8);
  return Size;
}

size_t MutationDispatcher::Mutate_AddWordFromManualDictionary(uint8_t *Data,
                                                              size_t Size,
                                                              size_t MaxSize) {
  return AddWordFromDictionary(ManualDictionary, Data, Size, MaxSize);
}

size_t MutationDispatcher::ApplyDictionaryEntry(uint8_t *Data, size_t Size,
                                                size_t MaxSize,
                                                DictionaryEntry &DE) {
  const Word &W = DE.GetW();
  bool UsePositionHint = DE.HasPositionHint() &&
                         DE.GetPositionHint() + W.size() < Size &&
                         Rand.RandBool();
  if (Rand.RandBool()) {  // Insert W.
    if (Size + W.size() > MaxSize) return 0;
    size_t Idx = UsePositionHint ? DE.GetPositionHint() : Rand(Size + 1);
    memmove(Data + Idx + W.size(), Data + Idx, Size - Idx);
    memcpy(Data + Idx, W.data(), W.size());
    Size += W.size();
  } else {  // Overwrite some bytes with W.
    if (W.size() > Size) return 0;
    size_t Idx = UsePositionHint ? DE.GetPositionHint() : Rand(Size - W.size());
    memcpy(Data + Idx, W.data(), W.size());
  }
  return Size;
}

// Somewhere in the past we have observed a comparison instructions
// with arguments Arg1 Arg2. This function tries to guess a dictionary
// entry that will satisfy that comparison.
// It first tries to find one of the arguments (possibly swapped) in the
// input and if it succeeds it creates a DE with a position hint.
// Otherwise it creates a DE with one of the arguments w/o a position hint.
DictionaryEntry MutationDispatcher::MakeDictionaryEntryFromCMP(
    const void *Arg1, const void *Arg2,
    const void *Arg1Mutation, const void *Arg2Mutation,
    size_t ArgSize, const uint8_t *Data,
    size_t Size) {
  bool HandleFirst = Rand.RandBool();
  const void *ExistingBytes, *DesiredBytes;
  Word W;
  const uint8_t *End = Data + Size;
  for (int Arg = 0; Arg < 2; Arg++) {
    ExistingBytes = HandleFirst ? Arg1 : Arg2;
    DesiredBytes = HandleFirst ? Arg2Mutation : Arg1Mutation;
    HandleFirst = !HandleFirst;
    W.Set(reinterpret_cast<const uint8_t*>(DesiredBytes), ArgSize);
    const size_t kMaxNumPositions = 8;
    size_t Positions[kMaxNumPositions];
    size_t NumPositions = 0;
    for (const uint8_t *Cur = Data;
         Cur < End && NumPositions < kMaxNumPositions; Cur++) {
      Cur =
          (const uint8_t *)SearchMemory(Cur, End - Cur, ExistingBytes, ArgSize);
      if (!Cur) break;
      Positions[NumPositions++] = Cur - Data;
    }
    if (!NumPositions) continue;
    return DictionaryEntry(W, Positions[Rand(NumPositions)]);
  }
  DictionaryEntry DE(W);
  return DE;
}


template <class T>
DictionaryEntry MutationDispatcher::MakeDictionaryEntryFromCMP(
    T Arg1, T Arg2, const uint8_t *Data, size_t Size) {
  if (Rand.RandBool()) Arg1 = Bswap(Arg1);
  if (Rand.RandBool()) Arg2 = Bswap(Arg2);
  T Arg1Mutation = Arg1 + Rand(-1, 1);
  T Arg2Mutation = Arg2 + Rand(-1, 1);
  return MakeDictionaryEntryFromCMP(&Arg1, &Arg2, &Arg1Mutation, &Arg2Mutation,
                                    sizeof(Arg1), Data, Size);
}

DictionaryEntry MutationDispatcher::MakeDictionaryEntryFromCMP(
    const Word &Arg1, const Word &Arg2, const uint8_t *Data, size_t Size) {
  return MakeDictionaryEntryFromCMP(Arg1.data(), Arg2.data(), Arg1.data(),
                                    Arg2.data(), Arg1.size(), Data, Size);
}

size_t MutationDispatcher::Mutate_AddWordFromTORC(
    uint8_t *Data, size_t Size, size_t MaxSize) {
  Word W;
  DictionaryEntry DE;
  switch (Rand(4)) {
  case 0: {
    auto X = TPC.TORC8.Get(Rand.Rand());
    DE = MakeDictionaryEntryFromCMP(X.A, X.B, Data, Size);
  } break;
  case 1: {
    auto X = TPC.TORC4.Get(Rand.Rand());
    if ((X.A >> 16) == 0 && (X.B >> 16) == 0 && Rand.RandBool())
      DE = MakeDictionaryEntryFromCMP((uint16_t)X.A, (uint16_t)X.B, Data, Size);
    else
      DE = MakeDictionaryEntryFromCMP(X.A, X.B, Data, Size);
  } break;
  case 2: {
    auto X = TPC.TORCW.Get(Rand.Rand());
    DE = MakeDictionaryEntryFromCMP(X.A, X.B, Data, Size);
  } break;
  case 3: if (Options.UseMemmem) {
    auto X = TPC.MMT.Get(Rand.Rand());
    DE = DictionaryEntry(X);
  } break;
  default:
    assert(0);
  }
  if (!DE.GetW().size()) return 0;
  Size = ApplyDictionaryEntry(Data, Size, MaxSize, DE);
  if (!Size) return 0;
  DictionaryEntry &DERef =
      CmpDictionaryEntriesDeque[CmpDictionaryEntriesDequeIdx++ %
                                kCmpDictionaryEntriesDequeSize];
  DERef = DE;
  CurrentDictionaryEntrySequence.push_back(&DERef);
  return Size;
}

size_t MutationDispatcher::Mutate_AddWordFromPersistentAutoDictionary(
    uint8_t *Data, size_t Size, size_t MaxSize) {
  return AddWordFromDictionary(PersistentAutoDictionary, Data, Size, MaxSize);
}

size_t MutationDispatcher::AddWordFromDictionary(Dictionary &D, uint8_t *Data,
                                                 size_t Size, size_t MaxSize) {
  if (Size > MaxSize) return 0;
  if (D.empty()) return 0;
  DictionaryEntry &DE = D[Rand(D.size())];
  Size = ApplyDictionaryEntry(Data, Size, MaxSize, DE);
  if (!Size) return 0;
  DE.IncUseCount();
  CurrentDictionaryEntrySequence.push_back(&DE);
  return Size;
}

// Overwrites part of To[0,ToSize) with a part of From[0,FromSize).
// Returns ToSize.
size_t MutationDispatcher::CopyPartOf(const uint8_t *From, size_t FromSize,
                                      uint8_t *To, size_t ToSize) {
  // Copy From[FromBeg, FromBeg + CopySize) into To[ToBeg, ToBeg + CopySize).
  size_t ToBeg = Rand(ToSize);
  size_t CopySize = Rand(ToSize - ToBeg) + 1;
  assert(ToBeg + CopySize <= ToSize);
  CopySize = std::min(CopySize, FromSize);
  size_t FromBeg = Rand(FromSize - CopySize + 1);
  assert(FromBeg + CopySize <= FromSize);
  memmove(To + ToBeg, From + FromBeg, CopySize);
  return ToSize;
}

// Inserts part of From[0,ToSize) into To.
// Returns new size of To on success or 0 on failure.
size_t MutationDispatcher::InsertPartOf(const uint8_t *From, size_t FromSize,
                                        uint8_t *To, size_t ToSize,
                                        size_t MaxToSize) {
  if (ToSize >= MaxToSize) return 0;
  size_t AvailableSpace = MaxToSize - ToSize;
  size_t MaxCopySize = std::min(AvailableSpace, FromSize);
  size_t CopySize = Rand(MaxCopySize) + 1;
  size_t FromBeg = Rand(FromSize - CopySize + 1);
  assert(FromBeg + CopySize <= FromSize);
  size_t ToInsertPos = Rand(ToSize + 1);
  assert(ToInsertPos + CopySize <= MaxToSize);
  size_t TailSize = ToSize - ToInsertPos;
  if (To == From) {
    MutateInPlaceHere.resize(MaxToSize);
    memcpy(MutateInPlaceHere.data(), From + FromBeg, CopySize);
    memmove(To + ToInsertPos + CopySize, To + ToInsertPos, TailSize);
    memmove(To + ToInsertPos, MutateInPlaceHere.data(), CopySize);
  } else {
    memmove(To + ToInsertPos + CopySize, To + ToInsertPos, TailSize);
    memmove(To + ToInsertPos, From + FromBeg, CopySize);
  }
  return ToSize + CopySize;
}

size_t MutationDispatcher::Mutate_CopyPart(uint8_t *Data, size_t Size,
                                           size_t MaxSize) {
  if (Size > MaxSize || Size == 0) return 0;
  // If Size == MaxSize, `InsertPartOf(...)` will
  // fail so there's no point using it in this case.
  if (Size == MaxSize || Rand.RandBool())
    return CopyPartOf(Data, Size, Data, Size);
  else
    return InsertPartOf(Data, Size, Data, Size, MaxSize);
}

size_t MutationDispatcher::Mutate_ChangeASCIIInteger(uint8_t *Data, size_t Size,
                                                     size_t MaxSize) {
  if (Size > MaxSize) return 0;
  size_t B = Rand(Size);
  while (B < Size && !isdigit(Data[B])) B++;
  if (B == Size) return 0;
  size_t E = B;
  while (E < Size && isdigit(Data[E])) E++;
  assert(B < E);
  // now we have digits in [B, E).
  // strtol and friends don't accept non-zero-teminated data, parse it manually.
  uint64_t Val = Data[B] - '0';
  for (size_t i = B + 1; i < E; i++)
    Val = Val * 10 + Data[i] - '0';

  // Mutate the integer value.
  switch(Rand(5)) {
    case 0: Val++; break;
    case 1: Val--; break;
    case 2: Val /= 2; break;
    case 3: Val *= 2; break;
    case 4: Val = Rand(Val * Val); break;
    default: assert(0);
  }
  // Just replace the bytes with the new ones, don't bother moving bytes.
  for (size_t i = B; i < E; i++) {
    size_t Idx = E + B - i - 1;
    assert(Idx >= B && Idx < E);
    Data[Idx] = (Val % 10) + '0';
    Val /= 10;
  }
  return Size;
}

template<class T>
size_t ChangeBinaryInteger(uint8_t *Data, size_t Size, Random &Rand) {
  if (Size < sizeof(T)) return 0;
  size_t Off = Rand(Size - sizeof(T) + 1);
  assert(Off + sizeof(T) <= Size);
  T Val;
  if (Off < 64 && !Rand(4)) {
    Val = Size;
    if (Rand.RandBool())
      Val = Bswap(Val);
  } else {
    memcpy(&Val, Data + Off, sizeof(Val));
    T Add = Rand(21);
    Add -= 10;
    if (Rand.RandBool())
      Val = Bswap(T(Bswap(Val) + Add)); // Add assuming different endiannes.
    else
      Val = Val + Add;               // Add assuming current endiannes.
    if (Add == 0 || Rand.RandBool()) // Maybe negate.
      Val = -Val;
  }
  memcpy(Data + Off, &Val, sizeof(Val));
  return Size;
}

size_t MutationDispatcher::Mutate_ChangeBinaryInteger(uint8_t *Data,
                                                      size_t Size,
                                                      size_t MaxSize) {
  if (Size > MaxSize) return 0;
  switch (Rand(4)) {
    case 3: return ChangeBinaryInteger<uint64_t>(Data, Size, Rand);
    case 2: return ChangeBinaryInteger<uint32_t>(Data, Size, Rand);
    case 1: return ChangeBinaryInteger<uint16_t>(Data, Size, Rand);
    case 0: return ChangeBinaryInteger<uint8_t>(Data, Size, Rand);
    default: assert(0);
  }
  return 0;
}

size_t MutationDispatcher::Mutate_CrossOver(uint8_t *Data, size_t Size,
                                            size_t MaxSize) {
  if (Size > MaxSize) return 0;
  if (Size == 0) return 0;
  if (!CrossOverWith) return 0;
  const Unit &O = *CrossOverWith;
  if (O.empty()) return 0;
  size_t NewSize = 0;
  switch(Rand(3)) {
    case 0:
      MutateInPlaceHere.resize(MaxSize);
      NewSize = CrossOver(Data, Size, O.data(), O.size(),
                          MutateInPlaceHere.data(), MaxSize);
      memcpy(Data, MutateInPlaceHere.data(), NewSize);
      break;
    case 1:
      NewSize = InsertPartOf(O.data(), O.size(), Data, Size, MaxSize);
      if (!NewSize)
        NewSize = CopyPartOf(O.data(), O.size(), Data, Size);
      break;
    case 2:
      NewSize = CopyPartOf(O.data(), O.size(), Data, Size);
      break;
    default: assert(0);
  }
  assert(NewSize > 0 && "CrossOver returned empty unit");
  assert(NewSize <= MaxSize && "CrossOver returned overisized unit");
  return NewSize;
}

void MutationDispatcher::StartMutationSequence() {
  CurrentMutatorSequence.clear();
  CurrentDictionaryEntrySequence.clear();
}

// Copy successful dictionary entries to PersistentAutoDictionary.
void MutationDispatcher::RecordSuccessfulMutationSequence() {
  for (auto DE : CurrentDictionaryEntrySequence) {
    // PersistentAutoDictionary.AddWithSuccessCountOne(DE);
    DE->IncSuccessCount();
    assert(DE->GetW().size());
    // Linear search is fine here as this happens seldom.
    if (!PersistentAutoDictionary.ContainsWord(DE->GetW()))
      PersistentAutoDictionary.push_back({DE->GetW(), 1});
  }
}

void MutationDispatcher::PrintRecommendedDictionary() {
  Vector<DictionaryEntry> V;
  for (auto &DE : PersistentAutoDictionary)
    if (!ManualDictionary.ContainsWord(DE.GetW()))
      V.push_back(DE);
  if (V.empty()) return;
  Printf("###### Recommended dictionary. ######\n");
  for (auto &DE: V) {
    assert(DE.GetW().size());
    Printf("\"");
    PrintASCII(DE.GetW(), "\"");
    Printf(" # Uses: %zd\n", DE.GetUseCount());
  }
  Printf("###### End of recommended dictionary. ######\n");
}

void MutationDispatcher::PrintMutationSequence(bool Verbose) {
  Printf("MS: %zd ", CurrentMutatorSequence.size());
  size_t EntriesToPrint =
      Verbose ? CurrentMutatorSequence.size()
              : std::min(kMaxMutationsToPrint, CurrentMutatorSequence.size());
  for (size_t i = 0; i < EntriesToPrint; i++)
    Printf("%s-", CurrentMutatorSequence[i].Name);
  if (!CurrentDictionaryEntrySequence.empty()) {
    Printf(" DE: ");
    EntriesToPrint = Verbose ? CurrentDictionaryEntrySequence.size()
                             : std::min(kMaxMutationsToPrint,
                                        CurrentDictionaryEntrySequence.size());
    for (size_t i = 0; i < EntriesToPrint; i++) {
      Printf("\"");
      PrintASCII(CurrentDictionaryEntrySequence[i]->GetW(), "\"-");
    }
  }
}

std::string MutationDispatcher::MutationSequence() {
  std::string MS;
  for (auto M : CurrentMutatorSequence) {
    MS += M.Name;
    MS += "-";
  }
  return MS;
}

size_t MutationDispatcher::Mutate(uint8_t *Data, size_t Size, size_t MaxSize) {
  return MutateImpl(Data, Size, MaxSize, Mutators);
}

size_t MutationDispatcher::DefaultMutate(uint8_t *Data, size_t Size,
                                         size_t MaxSize) {
  return MutateImpl(Data, Size, MaxSize, DefaultMutators);
}

// Mutates Data in place, returns new size.
size_t MutationDispatcher::MutateImpl(uint8_t *Data, size_t Size,
                                      size_t MaxSize,
                                      Vector<Mutator> &Mutators) {
  assert(MaxSize > 0);
  // Some mutations may fail (e.g. can't insert more bytes if Size == MaxSize),
  // in which case they will return 0.
  // Try several times before returning un-mutated data.
  for (int Iter = 0; Iter < 100; Iter++) {
    auto M = Mutators[Rand(Mutators.size())];
    size_t NewSize = (this->*(M.Fn))(Data, Size, MaxSize);
    if (NewSize && NewSize <= MaxSize) {
      if (Options.OnlyASCII)
        ToASCII(Data, NewSize);
      CurrentMutatorSequence.push_back(M);
      return NewSize;
    }
  }
  *Data = ' ';
  return 1;   // Fallback, should not happen frequently.
}

// Mask represents the set of Data bytes that are worth mutating.
size_t MutationDispatcher::MutateWithMask(uint8_t *Data, size_t Size,
                                          size_t MaxSize,
                                          const Vector<uint8_t> &Mask) {
  size_t MaskedSize = std::min(Size, Mask.size());
  // * Copy the worthy bytes into a temporary array T
  // * Mutate T
  // * Copy T back.
  // This is totally unoptimized.
  auto &T = MutateWithMaskTemp;
  if (T.size() < Size)
    T.resize(Size);
  size_t OneBits = 0;
  for (size_t I = 0; I < MaskedSize; I++)
    if (Mask[I])
      T[OneBits++] = Data[I];

  if (!OneBits) return 0;
  assert(!T.empty());
  size_t NewSize = Mutate(T.data(), OneBits, OneBits);
  assert(NewSize <= OneBits);
  (void)NewSize;
  // Even if NewSize < OneBits we still use all OneBits bytes.
  for (size_t I = 0, J = 0; I < MaskedSize; I++)
    if (Mask[I])
      Data[I] = T[J++];
  return Size;
}

void MutationDispatcher::AddWordToManualDictionary(const Word &W) {
  ManualDictionary.push_back(
      {W, std::numeric_limits<size_t>::max()});
}

}  // namespace fuzzer