dfsan.cpp 16 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
//===-- dfsan.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of DataFlowSanitizer.
//
// DataFlowSanitizer runtime.  This file defines the public interface to
// DataFlowSanitizer as well as the definition of certain runtime functions
// called automatically by the compiler (specifically the instrumentation pass
// in llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp).
//
// The public interface is defined in include/sanitizer/dfsan_interface.h whose
// functions are prefixed dfsan_ while the compiler interface functions are
// prefixed __dfsan_.
//===----------------------------------------------------------------------===//

#include "dfsan/dfsan.h"

#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_file.h"
#include "sanitizer_common/sanitizer_flag_parser.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_internal_defs.h"
#include "sanitizer_common/sanitizer_libc.h"

using namespace __dfsan;

typedef atomic_uint16_t atomic_dfsan_label;
static const dfsan_label kInitializingLabel = -1;

static const uptr kNumLabels = 1 << (sizeof(dfsan_label) * 8);

static atomic_dfsan_label __dfsan_last_label;
static dfsan_label_info __dfsan_label_info[kNumLabels];

Flags __dfsan::flags_data;

SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL dfsan_label __dfsan_retval_tls;
SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL dfsan_label __dfsan_arg_tls[64];

SANITIZER_INTERFACE_ATTRIBUTE uptr __dfsan_shadow_ptr_mask;

// On Linux/x86_64, memory is laid out as follows:
//
// +--------------------+ 0x800000000000 (top of memory)
// | application memory |
// +--------------------+ 0x700000008000 (kAppAddr)
// |                    |
// |       unused       |
// |                    |
// +--------------------+ 0x200200000000 (kUnusedAddr)
// |    union table     |
// +--------------------+ 0x200000000000 (kUnionTableAddr)
// |   shadow memory    |
// +--------------------+ 0x000000010000 (kShadowAddr)
// | reserved by kernel |
// +--------------------+ 0x000000000000
//
// To derive a shadow memory address from an application memory address,
// bits 44-46 are cleared to bring the address into the range
// [0x000000008000,0x100000000000).  Then the address is shifted left by 1 to
// account for the double byte representation of shadow labels and move the
// address into the shadow memory range.  See the function shadow_for below.

// On Linux/MIPS64, memory is laid out as follows:
//
// +--------------------+ 0x10000000000 (top of memory)
// | application memory |
// +--------------------+ 0xF000008000 (kAppAddr)
// |                    |
// |       unused       |
// |                    |
// +--------------------+ 0x2200000000 (kUnusedAddr)
// |    union table     |
// +--------------------+ 0x2000000000 (kUnionTableAddr)
// |   shadow memory    |
// +--------------------+ 0x0000010000 (kShadowAddr)
// | reserved by kernel |
// +--------------------+ 0x0000000000

// On Linux/AArch64 (39-bit VMA), memory is laid out as follow:
//
// +--------------------+ 0x8000000000 (top of memory)
// | application memory |
// +--------------------+ 0x7000008000 (kAppAddr)
// |                    |
// |       unused       |
// |                    |
// +--------------------+ 0x1200000000 (kUnusedAddr)
// |    union table     |
// +--------------------+ 0x1000000000 (kUnionTableAddr)
// |   shadow memory    |
// +--------------------+ 0x0000010000 (kShadowAddr)
// | reserved by kernel |
// +--------------------+ 0x0000000000

// On Linux/AArch64 (42-bit VMA), memory is laid out as follow:
//
// +--------------------+ 0x40000000000 (top of memory)
// | application memory |
// +--------------------+ 0x3ff00008000 (kAppAddr)
// |                    |
// |       unused       |
// |                    |
// +--------------------+ 0x1200000000 (kUnusedAddr)
// |    union table     |
// +--------------------+ 0x8000000000 (kUnionTableAddr)
// |   shadow memory    |
// +--------------------+ 0x0000010000 (kShadowAddr)
// | reserved by kernel |
// +--------------------+ 0x0000000000

// On Linux/AArch64 (48-bit VMA), memory is laid out as follow:
//
// +--------------------+ 0x1000000000000 (top of memory)
// | application memory |
// +--------------------+ 0xffff00008000 (kAppAddr)
// |       unused       |
// +--------------------+ 0xaaaab0000000 (top of PIE address)
// | application PIE    |
// +--------------------+ 0xaaaaa0000000 (top of PIE address)
// |                    |
// |       unused       |
// |                    |
// +--------------------+ 0x1200000000 (kUnusedAddr)
// |    union table     |
// +--------------------+ 0x8000000000 (kUnionTableAddr)
// |   shadow memory    |
// +--------------------+ 0x0000010000 (kShadowAddr)
// | reserved by kernel |
// +--------------------+ 0x0000000000

typedef atomic_dfsan_label dfsan_union_table_t[kNumLabels][kNumLabels];

#ifdef DFSAN_RUNTIME_VMA
// Runtime detected VMA size.
int __dfsan::vmaSize;
#endif

static uptr UnusedAddr() {
  return MappingArchImpl<MAPPING_UNION_TABLE_ADDR>()
         + sizeof(dfsan_union_table_t);
}

static atomic_dfsan_label *union_table(dfsan_label l1, dfsan_label l2) {
  return &(*(dfsan_union_table_t *) UnionTableAddr())[l1][l2];
}

// Checks we do not run out of labels.
static void dfsan_check_label(dfsan_label label) {
  if (label == kInitializingLabel) {
    Report("FATAL: DataFlowSanitizer: out of labels\n");
    Die();
  }
}

// Resolves the union of two unequal labels.  Nonequality is a precondition for
// this function (the instrumentation pass inlines the equality test).
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
dfsan_label __dfsan_union(dfsan_label l1, dfsan_label l2) {
  DCHECK_NE(l1, l2);

  if (l1 == 0)
    return l2;
  if (l2 == 0)
    return l1;

  // If no labels have been created, yet l1 and l2 are non-zero, we are using
  // fast16labels mode.
  if (atomic_load(&__dfsan_last_label, memory_order_relaxed) == 0)
    return l1 | l2;

  if (l1 > l2)
    Swap(l1, l2);

  atomic_dfsan_label *table_ent = union_table(l1, l2);
  // We need to deal with the case where two threads concurrently request
  // a union of the same pair of labels.  If the table entry is uninitialized,
  // (i.e. 0) use a compare-exchange to set the entry to kInitializingLabel
  // (i.e. -1) to mark that we are initializing it.
  dfsan_label label = 0;
  if (atomic_compare_exchange_strong(table_ent, &label, kInitializingLabel,
                                     memory_order_acquire)) {
    // Check whether l2 subsumes l1.  We don't need to check whether l1
    // subsumes l2 because we are guaranteed here that l1 < l2, and (at least
    // in the cases we are interested in) a label may only subsume labels
    // created earlier (i.e. with a lower numerical value).
    if (__dfsan_label_info[l2].l1 == l1 ||
        __dfsan_label_info[l2].l2 == l1) {
      label = l2;
    } else {
      label =
        atomic_fetch_add(&__dfsan_last_label, 1, memory_order_relaxed) + 1;
      dfsan_check_label(label);
      __dfsan_label_info[label].l1 = l1;
      __dfsan_label_info[label].l2 = l2;
    }
    atomic_store(table_ent, label, memory_order_release);
  } else if (label == kInitializingLabel) {
    // Another thread is initializing the entry.  Wait until it is finished.
    do {
      internal_sched_yield();
      label = atomic_load(table_ent, memory_order_acquire);
    } while (label == kInitializingLabel);
  }
  return label;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
dfsan_label __dfsan_union_load(const dfsan_label *ls, uptr n) {
  dfsan_label label = ls[0];
  for (uptr i = 1; i != n; ++i) {
    dfsan_label next_label = ls[i];
    if (label != next_label)
      label = __dfsan_union(label, next_label);
  }
  return label;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
dfsan_label __dfsan_union_load_fast16labels(const dfsan_label *ls, uptr n) {
  dfsan_label label = ls[0];
  for (uptr i = 1; i != n; ++i)
    label |= ls[i];
  return label;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
void __dfsan_unimplemented(char *fname) {
  if (flags().warn_unimplemented)
    Report("WARNING: DataFlowSanitizer: call to uninstrumented function %s\n",
           fname);
}

// Use '-mllvm -dfsan-debug-nonzero-labels' and break on this function
// to try to figure out where labels are being introduced in a nominally
// label-free program.
extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_nonzero_label() {
  if (flags().warn_nonzero_labels)
    Report("WARNING: DataFlowSanitizer: saw nonzero label\n");
}

// Indirect call to an uninstrumented vararg function. We don't have a way of
// handling these at the moment.
extern "C" SANITIZER_INTERFACE_ATTRIBUTE void
__dfsan_vararg_wrapper(const char *fname) {
  Report("FATAL: DataFlowSanitizer: unsupported indirect call to vararg "
         "function %s\n", fname);
  Die();
}

// Like __dfsan_union, but for use from the client or custom functions.  Hence
// the equality comparison is done here before calling __dfsan_union.
SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
dfsan_union(dfsan_label l1, dfsan_label l2) {
  if (l1 == l2)
    return l1;
  return __dfsan_union(l1, l2);
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
dfsan_label dfsan_create_label(const char *desc, void *userdata) {
  dfsan_label label =
      atomic_fetch_add(&__dfsan_last_label, 1, memory_order_relaxed) + 1;
  dfsan_check_label(label);
  __dfsan_label_info[label].l1 = __dfsan_label_info[label].l2 = 0;
  __dfsan_label_info[label].desc = desc;
  __dfsan_label_info[label].userdata = userdata;
  return label;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
void __dfsan_set_label(dfsan_label label, void *addr, uptr size) {
  for (dfsan_label *labelp = shadow_for(addr); size != 0; --size, ++labelp) {
    // Don't write the label if it is already the value we need it to be.
    // In a program where most addresses are not labeled, it is common that
    // a page of shadow memory is entirely zeroed.  The Linux copy-on-write
    // implementation will share all of the zeroed pages, making a copy of a
    // page when any value is written.  The un-sharing will happen even if
    // the value written does not change the value in memory.  Avoiding the
    // write when both |label| and |*labelp| are zero dramatically reduces
    // the amount of real memory used by large programs.
    if (label == *labelp)
      continue;

    *labelp = label;
  }
}

SANITIZER_INTERFACE_ATTRIBUTE
void dfsan_set_label(dfsan_label label, void *addr, uptr size) {
  __dfsan_set_label(label, addr, size);
}

SANITIZER_INTERFACE_ATTRIBUTE
void dfsan_add_label(dfsan_label label, void *addr, uptr size) {
  for (dfsan_label *labelp = shadow_for(addr); size != 0; --size, ++labelp)
    if (*labelp != label)
      *labelp = __dfsan_union(*labelp, label);
}

// Unlike the other dfsan interface functions the behavior of this function
// depends on the label of one of its arguments.  Hence it is implemented as a
// custom function.
extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
__dfsw_dfsan_get_label(long data, dfsan_label data_label,
                       dfsan_label *ret_label) {
  *ret_label = 0;
  return data_label;
}

SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
dfsan_read_label(const void *addr, uptr size) {
  if (size == 0)
    return 0;
  return __dfsan_union_load(shadow_for(addr), size);
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
const struct dfsan_label_info *dfsan_get_label_info(dfsan_label label) {
  return &__dfsan_label_info[label];
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE int
dfsan_has_label(dfsan_label label, dfsan_label elem) {
  if (label == elem)
    return true;
  const dfsan_label_info *info = dfsan_get_label_info(label);
  if (info->l1 != 0) {
    return dfsan_has_label(info->l1, elem) || dfsan_has_label(info->l2, elem);
  } else {
    return false;
  }
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
dfsan_has_label_with_desc(dfsan_label label, const char *desc) {
  const dfsan_label_info *info = dfsan_get_label_info(label);
  if (info->l1 != 0) {
    return dfsan_has_label_with_desc(info->l1, desc) ||
           dfsan_has_label_with_desc(info->l2, desc);
  } else {
    return internal_strcmp(desc, info->desc) == 0;
  }
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE uptr
dfsan_get_label_count(void) {
  dfsan_label max_label_allocated =
      atomic_load(&__dfsan_last_label, memory_order_relaxed);

  return static_cast<uptr>(max_label_allocated);
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE void
dfsan_dump_labels(int fd) {
  dfsan_label last_label =
      atomic_load(&__dfsan_last_label, memory_order_relaxed);
  for (uptr l = 1; l <= last_label; ++l) {
    char buf[64];
    internal_snprintf(buf, sizeof(buf), "%u %u %u ", l,
                      __dfsan_label_info[l].l1, __dfsan_label_info[l].l2);
    WriteToFile(fd, buf, internal_strlen(buf));
    if (__dfsan_label_info[l].l1 == 0 && __dfsan_label_info[l].desc) {
      WriteToFile(fd, __dfsan_label_info[l].desc,
                  internal_strlen(__dfsan_label_info[l].desc));
    }
    WriteToFile(fd, "\n", 1);
  }
}

void Flags::SetDefaults() {
#define DFSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
#include "dfsan_flags.inc"
#undef DFSAN_FLAG
}

static void RegisterDfsanFlags(FlagParser *parser, Flags *f) {
#define DFSAN_FLAG(Type, Name, DefaultValue, Description) \
  RegisterFlag(parser, #Name, Description, &f->Name);
#include "dfsan_flags.inc"
#undef DFSAN_FLAG
}

static void InitializeFlags() {
  SetCommonFlagsDefaults();
  flags().SetDefaults();

  FlagParser parser;
  RegisterCommonFlags(&parser);
  RegisterDfsanFlags(&parser, &flags());
  parser.ParseStringFromEnv("DFSAN_OPTIONS");
  InitializeCommonFlags();
  if (Verbosity()) ReportUnrecognizedFlags();
  if (common_flags()->help) parser.PrintFlagDescriptions();
}

static void InitializePlatformEarly() {
  AvoidCVE_2016_2143();
#ifdef DFSAN_RUNTIME_VMA
  __dfsan::vmaSize =
    (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
  if (__dfsan::vmaSize == 39 || __dfsan::vmaSize == 42 ||
      __dfsan::vmaSize == 48) {
    __dfsan_shadow_ptr_mask = ShadowMask();
  } else {
    Printf("FATAL: DataFlowSanitizer: unsupported VMA range\n");
    Printf("FATAL: Found %d - Supported 39, 42, and 48\n", __dfsan::vmaSize);
    Die();
  }
#endif
}

static void dfsan_fini() {
  if (internal_strcmp(flags().dump_labels_at_exit, "") != 0) {
    fd_t fd = OpenFile(flags().dump_labels_at_exit, WrOnly);
    if (fd == kInvalidFd) {
      Report("WARNING: DataFlowSanitizer: unable to open output file %s\n",
             flags().dump_labels_at_exit);
      return;
    }

    Report("INFO: DataFlowSanitizer: dumping labels to %s\n",
           flags().dump_labels_at_exit);
    dfsan_dump_labels(fd);
    CloseFile(fd);
  }
}

extern "C" void dfsan_flush() {
  if (!MmapFixedNoReserve(ShadowAddr(), UnusedAddr() - ShadowAddr()))
    Die();
}

static void dfsan_init(int argc, char **argv, char **envp) {
  InitializeFlags();

  ::InitializePlatformEarly();

  if (!MmapFixedNoReserve(ShadowAddr(), UnusedAddr() - ShadowAddr()))
    Die();

  // Protect the region of memory we don't use, to preserve the one-to-one
  // mapping from application to shadow memory. But if ASLR is disabled, Linux
  // will load our executable in the middle of our unused region. This mostly
  // works so long as the program doesn't use too much memory. We support this
  // case by disabling memory protection when ASLR is disabled.
  uptr init_addr = (uptr)&dfsan_init;
  if (!(init_addr >= UnusedAddr() && init_addr < AppAddr()))
    MmapFixedNoAccess(UnusedAddr(), AppAddr() - UnusedAddr());

  InitializeInterceptors();

  // Register the fini callback to run when the program terminates successfully
  // or it is killed by the runtime.
  Atexit(dfsan_fini);
  AddDieCallback(dfsan_fini);

  __dfsan_label_info[kInitializingLabel].desc = "<init label>";
}

#if SANITIZER_CAN_USE_PREINIT_ARRAY
__attribute__((section(".preinit_array"), used))
static void (*dfsan_init_ptr)(int, char **, char **) = dfsan_init;
#endif