cfi.cpp
14.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
//===-------- cfi.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the runtime support for the cross-DSO CFI.
//
//===----------------------------------------------------------------------===//
#include <assert.h>
#include <elf.h>
#include "sanitizer_common/sanitizer_common.h"
#if SANITIZER_FREEBSD
#include <sys/link_elf.h>
#endif
#include <link.h>
#include <string.h>
#include <stdlib.h>
#include <sys/mman.h>
#if SANITIZER_LINUX
typedef ElfW(Phdr) Elf_Phdr;
typedef ElfW(Ehdr) Elf_Ehdr;
typedef ElfW(Addr) Elf_Addr;
typedef ElfW(Sym) Elf_Sym;
typedef ElfW(Dyn) Elf_Dyn;
#elif SANITIZER_FREEBSD
#if SANITIZER_WORDSIZE == 64
#define ElfW64_Dyn Elf_Dyn
#define ElfW64_Sym Elf_Sym
#else
#define ElfW32_Dyn Elf_Dyn
#define ElfW32_Sym Elf_Sym
#endif
#endif
#include "interception/interception.h"
#include "sanitizer_common/sanitizer_flag_parser.h"
#include "ubsan/ubsan_init.h"
#include "ubsan/ubsan_flags.h"
#ifdef CFI_ENABLE_DIAG
#include "ubsan/ubsan_handlers.h"
#endif
using namespace __sanitizer;
namespace __cfi {
#define kCfiShadowLimitsStorageSize 4096 // 1 page
// Lets hope that the data segment is mapped with 4K pages.
// The pointer to the cfi shadow region is stored at the start of this page.
// The rest of the page is unused and re-mapped read-only.
static union {
char space[kCfiShadowLimitsStorageSize];
struct {
uptr start;
uptr size;
} limits;
} cfi_shadow_limits_storage
__attribute__((aligned(kCfiShadowLimitsStorageSize)));
static constexpr uptr kShadowGranularity = 12;
static constexpr uptr kShadowAlign = 1UL << kShadowGranularity; // 4096
static constexpr uint16_t kInvalidShadow = 0;
static constexpr uint16_t kUncheckedShadow = 0xFFFFU;
// Get the start address of the CFI shadow region.
uptr GetShadow() {
return cfi_shadow_limits_storage.limits.start;
}
uptr GetShadowSize() {
return cfi_shadow_limits_storage.limits.size;
}
// This will only work while the shadow is not allocated.
void SetShadowSize(uptr size) {
cfi_shadow_limits_storage.limits.size = size;
}
uptr MemToShadowOffset(uptr x) {
return (x >> kShadowGranularity) << 1;
}
uint16_t *MemToShadow(uptr x, uptr shadow_base) {
return (uint16_t *)(shadow_base + MemToShadowOffset(x));
}
typedef int (*CFICheckFn)(u64, void *, void *);
// This class reads and decodes the shadow contents.
class ShadowValue {
uptr addr;
uint16_t v;
explicit ShadowValue(uptr addr, uint16_t v) : addr(addr), v(v) {}
public:
bool is_invalid() const { return v == kInvalidShadow; }
bool is_unchecked() const { return v == kUncheckedShadow; }
CFICheckFn get_cfi_check() const {
assert(!is_invalid() && !is_unchecked());
uptr aligned_addr = addr & ~(kShadowAlign - 1);
uptr p = aligned_addr - (((uptr)v - 1) << kShadowGranularity);
return reinterpret_cast<CFICheckFn>(p);
}
// Load a shadow value for the given application memory address.
static const ShadowValue load(uptr addr) {
uptr shadow_base = GetShadow();
uptr shadow_offset = MemToShadowOffset(addr);
if (shadow_offset > GetShadowSize())
return ShadowValue(addr, kInvalidShadow);
else
return ShadowValue(
addr, *reinterpret_cast<uint16_t *>(shadow_base + shadow_offset));
}
};
class ShadowBuilder {
uptr shadow_;
public:
// Allocate a new empty shadow (for the entire address space) on the side.
void Start();
// Mark the given address range as unchecked.
// This is used for uninstrumented libraries like libc.
// Any CFI check with a target in that range will pass.
void AddUnchecked(uptr begin, uptr end);
// Mark the given address range as belonging to a library with the given
// cfi_check function.
void Add(uptr begin, uptr end, uptr cfi_check);
// Finish shadow construction. Atomically switch the current active shadow
// region with the newly constructed one and deallocate the former.
void Install();
};
void ShadowBuilder::Start() {
shadow_ = (uptr)MmapNoReserveOrDie(GetShadowSize(), "CFI shadow");
VReport(1, "CFI: shadow at %zx .. %zx\n", shadow_, shadow_ + GetShadowSize());
}
void ShadowBuilder::AddUnchecked(uptr begin, uptr end) {
uint16_t *shadow_begin = MemToShadow(begin, shadow_);
uint16_t *shadow_end = MemToShadow(end - 1, shadow_) + 1;
// memset takes a byte, so our unchecked shadow value requires both bytes to
// be the same. Make sure we're ok during compilation.
static_assert((kUncheckedShadow & 0xff) == ((kUncheckedShadow >> 8) & 0xff),
"Both bytes of the 16-bit value must be the same!");
memset(shadow_begin, kUncheckedShadow & 0xff,
(shadow_end - shadow_begin) * sizeof(*shadow_begin));
}
void ShadowBuilder::Add(uptr begin, uptr end, uptr cfi_check) {
assert((cfi_check & (kShadowAlign - 1)) == 0);
// Don't fill anything below cfi_check. We can not represent those addresses
// in the shadow, and must make sure at codegen to place all valid call
// targets above cfi_check.
begin = Max(begin, cfi_check);
uint16_t *s = MemToShadow(begin, shadow_);
uint16_t *s_end = MemToShadow(end - 1, shadow_) + 1;
uint16_t sv = ((begin - cfi_check) >> kShadowGranularity) + 1;
for (; s < s_end; s++, sv++)
*s = sv;
}
#if SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_NETBSD
void ShadowBuilder::Install() {
MprotectReadOnly(shadow_, GetShadowSize());
uptr main_shadow = GetShadow();
if (main_shadow) {
// Update.
#if SANITIZER_LINUX
void *res = mremap((void *)shadow_, GetShadowSize(), GetShadowSize(),
MREMAP_MAYMOVE | MREMAP_FIXED, (void *)main_shadow);
CHECK(res != MAP_FAILED);
#elif SANITIZER_NETBSD
void *res = mremap((void *)shadow_, GetShadowSize(), (void *)main_shadow,
GetShadowSize(), MAP_FIXED);
CHECK(res != MAP_FAILED);
#else
void *res = MmapFixedOrDie(shadow_, GetShadowSize(), "cfi shadow");
CHECK(res != MAP_FAILED);
::memcpy(&shadow_, &main_shadow, GetShadowSize());
#endif
} else {
// Initial setup.
CHECK_EQ(kCfiShadowLimitsStorageSize, GetPageSizeCached());
CHECK_EQ(0, GetShadow());
cfi_shadow_limits_storage.limits.start = shadow_;
MprotectReadOnly((uptr)&cfi_shadow_limits_storage,
sizeof(cfi_shadow_limits_storage));
CHECK_EQ(shadow_, GetShadow());
}
}
#else
#error not implemented
#endif
// This is a workaround for a glibc bug:
// https://sourceware.org/bugzilla/show_bug.cgi?id=15199
// Other platforms can, hopefully, just do
// dlopen(RTLD_NOLOAD | RTLD_LAZY)
// dlsym("__cfi_check").
uptr find_cfi_check_in_dso(dl_phdr_info *info) {
const Elf_Dyn *dynamic = nullptr;
for (int i = 0; i < info->dlpi_phnum; ++i) {
if (info->dlpi_phdr[i].p_type == PT_DYNAMIC) {
dynamic =
(const Elf_Dyn *)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
break;
}
}
if (!dynamic) return 0;
uptr strtab = 0, symtab = 0, strsz = 0;
for (const Elf_Dyn *p = dynamic; p->d_tag != PT_NULL; ++p) {
if (p->d_tag == DT_SYMTAB)
symtab = p->d_un.d_ptr;
else if (p->d_tag == DT_STRTAB)
strtab = p->d_un.d_ptr;
else if (p->d_tag == DT_STRSZ)
strsz = p->d_un.d_ptr;
}
if (symtab > strtab) {
VReport(1, "Can not handle: symtab > strtab (%p > %zx)\n", symtab, strtab);
return 0;
}
// Verify that strtab and symtab are inside of the same LOAD segment.
// This excludes VDSO, which has (very high) bogus strtab and symtab pointers.
int phdr_idx;
for (phdr_idx = 0; phdr_idx < info->dlpi_phnum; phdr_idx++) {
const Elf_Phdr *phdr = &info->dlpi_phdr[phdr_idx];
if (phdr->p_type == PT_LOAD) {
uptr beg = info->dlpi_addr + phdr->p_vaddr;
uptr end = beg + phdr->p_memsz;
if (strtab >= beg && strtab + strsz < end && symtab >= beg &&
symtab < end)
break;
}
}
if (phdr_idx == info->dlpi_phnum) {
// Nope, either different segments or just bogus pointers.
// Can not handle this.
VReport(1, "Can not handle: symtab %p, strtab %zx\n", symtab, strtab);
return 0;
}
for (const Elf_Sym *p = (const Elf_Sym *)symtab; (Elf_Addr)p < strtab;
++p) {
// There is no reliable way to find the end of the symbol table. In
// lld-produces files, there are other sections between symtab and strtab.
// Stop looking when the symbol name is not inside strtab.
if (p->st_name >= strsz) break;
char *name = (char*)(strtab + p->st_name);
if (strcmp(name, "__cfi_check") == 0) {
assert(p->st_info == ELF32_ST_INFO(STB_GLOBAL, STT_FUNC) ||
p->st_info == ELF32_ST_INFO(STB_WEAK, STT_FUNC));
uptr addr = info->dlpi_addr + p->st_value;
return addr;
}
}
return 0;
}
int dl_iterate_phdr_cb(dl_phdr_info *info, size_t size, void *data) {
uptr cfi_check = find_cfi_check_in_dso(info);
if (cfi_check)
VReport(1, "Module '%s' __cfi_check %zx\n", info->dlpi_name, cfi_check);
ShadowBuilder *b = reinterpret_cast<ShadowBuilder *>(data);
for (int i = 0; i < info->dlpi_phnum; i++) {
const Elf_Phdr *phdr = &info->dlpi_phdr[i];
if (phdr->p_type == PT_LOAD) {
// Jump tables are in the executable segment.
// VTables are in the non-executable one.
// Need to fill shadow for both.
// FIXME: reject writable if vtables are in the r/o segment. Depend on
// PT_RELRO?
uptr cur_beg = info->dlpi_addr + phdr->p_vaddr;
uptr cur_end = cur_beg + phdr->p_memsz;
if (cfi_check) {
VReport(1, " %zx .. %zx\n", cur_beg, cur_end);
b->Add(cur_beg, cur_end, cfi_check);
} else {
b->AddUnchecked(cur_beg, cur_end);
}
}
}
return 0;
}
// Init or update shadow for the current set of loaded libraries.
void UpdateShadow() {
ShadowBuilder b;
b.Start();
dl_iterate_phdr(dl_iterate_phdr_cb, &b);
b.Install();
}
void InitShadow() {
CHECK_EQ(0, GetShadow());
CHECK_EQ(0, GetShadowSize());
uptr vma = GetMaxUserVirtualAddress();
// Shadow is 2 -> 2**kShadowGranularity.
SetShadowSize((vma >> (kShadowGranularity - 1)) + 1);
VReport(1, "CFI: VMA size %zx, shadow size %zx\n", vma, GetShadowSize());
UpdateShadow();
}
THREADLOCAL int in_loader;
BlockingMutex shadow_update_lock(LINKER_INITIALIZED);
void EnterLoader() {
if (in_loader == 0) {
shadow_update_lock.Lock();
}
++in_loader;
}
void ExitLoader() {
CHECK(in_loader > 0);
--in_loader;
UpdateShadow();
if (in_loader == 0) {
shadow_update_lock.Unlock();
}
}
ALWAYS_INLINE void CfiSlowPathCommon(u64 CallSiteTypeId, void *Ptr,
void *DiagData) {
uptr Addr = (uptr)Ptr;
VReport(3, "__cfi_slowpath: %llx, %p\n", CallSiteTypeId, Ptr);
ShadowValue sv = ShadowValue::load(Addr);
if (sv.is_invalid()) {
VReport(1, "CFI: invalid memory region for a check target: %p\n", Ptr);
#ifdef CFI_ENABLE_DIAG
if (DiagData) {
__ubsan_handle_cfi_check_fail(
reinterpret_cast<__ubsan::CFICheckFailData *>(DiagData), Addr, false);
return;
}
#endif
Trap();
}
if (sv.is_unchecked()) {
VReport(2, "CFI: unchecked call (shadow=FFFF): %p\n", Ptr);
return;
}
CFICheckFn cfi_check = sv.get_cfi_check();
VReport(2, "__cfi_check at %p\n", cfi_check);
cfi_check(CallSiteTypeId, Ptr, DiagData);
}
void InitializeFlags() {
SetCommonFlagsDefaults();
#ifdef CFI_ENABLE_DIAG
__ubsan::Flags *uf = __ubsan::flags();
uf->SetDefaults();
#endif
FlagParser cfi_parser;
RegisterCommonFlags(&cfi_parser);
cfi_parser.ParseStringFromEnv("CFI_OPTIONS");
#ifdef CFI_ENABLE_DIAG
FlagParser ubsan_parser;
__ubsan::RegisterUbsanFlags(&ubsan_parser, uf);
RegisterCommonFlags(&ubsan_parser);
const char *ubsan_default_options = __ubsan_default_options();
ubsan_parser.ParseString(ubsan_default_options);
ubsan_parser.ParseStringFromEnv("UBSAN_OPTIONS");
#endif
InitializeCommonFlags();
if (Verbosity())
ReportUnrecognizedFlags();
if (common_flags()->help) {
cfi_parser.PrintFlagDescriptions();
}
}
} // namespace __cfi
using namespace __cfi;
extern "C" SANITIZER_INTERFACE_ATTRIBUTE void
__cfi_slowpath(u64 CallSiteTypeId, void *Ptr) {
CfiSlowPathCommon(CallSiteTypeId, Ptr, nullptr);
}
#ifdef CFI_ENABLE_DIAG
extern "C" SANITIZER_INTERFACE_ATTRIBUTE void
__cfi_slowpath_diag(u64 CallSiteTypeId, void *Ptr, void *DiagData) {
CfiSlowPathCommon(CallSiteTypeId, Ptr, DiagData);
}
#endif
static void EnsureInterceptorsInitialized();
// Setup shadow for dlopen()ed libraries.
// The actual shadow setup happens after dlopen() returns, which means that
// a library can not be a target of any CFI checks while its constructors are
// running. It's unclear how to fix this without some extra help from libc.
// In glibc, mmap inside dlopen is not interceptable.
// Maybe a seccomp-bpf filter?
// We could insert a high-priority constructor into the library, but that would
// not help with the uninstrumented libraries.
INTERCEPTOR(void*, dlopen, const char *filename, int flag) {
EnsureInterceptorsInitialized();
EnterLoader();
void *handle = REAL(dlopen)(filename, flag);
ExitLoader();
return handle;
}
INTERCEPTOR(int, dlclose, void *handle) {
EnsureInterceptorsInitialized();
EnterLoader();
int res = REAL(dlclose)(handle);
ExitLoader();
return res;
}
static BlockingMutex interceptor_init_lock(LINKER_INITIALIZED);
static bool interceptors_inited = false;
static void EnsureInterceptorsInitialized() {
BlockingMutexLock lock(&interceptor_init_lock);
if (interceptors_inited)
return;
INTERCEPT_FUNCTION(dlopen);
INTERCEPT_FUNCTION(dlclose);
interceptors_inited = true;
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
#if !SANITIZER_CAN_USE_PREINIT_ARRAY
// On ELF platforms, the constructor is invoked using .preinit_array (see below)
__attribute__((constructor(0)))
#endif
void __cfi_init() {
SanitizerToolName = "CFI";
InitializeFlags();
InitShadow();
#ifdef CFI_ENABLE_DIAG
__ubsan::InitAsPlugin();
#endif
}
#if SANITIZER_CAN_USE_PREINIT_ARRAY
// On ELF platforms, run cfi initialization before any other constructors.
// On other platforms we use the constructor attribute to arrange to run our
// initialization early.
extern "C" {
__attribute__((section(".preinit_array"),
used)) void (*__cfi_preinit)(void) = __cfi_init;
}
#endif