cfi.cpp 14.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
//===-------- cfi.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the runtime support for the cross-DSO CFI.
//
//===----------------------------------------------------------------------===//

#include <assert.h>
#include <elf.h>

#include "sanitizer_common/sanitizer_common.h"
#if SANITIZER_FREEBSD
#include <sys/link_elf.h>
#endif
#include <link.h>
#include <string.h>
#include <stdlib.h>
#include <sys/mman.h>

#if SANITIZER_LINUX
typedef ElfW(Phdr) Elf_Phdr;
typedef ElfW(Ehdr) Elf_Ehdr;
typedef ElfW(Addr) Elf_Addr;
typedef ElfW(Sym) Elf_Sym;
typedef ElfW(Dyn) Elf_Dyn;
#elif SANITIZER_FREEBSD
#if SANITIZER_WORDSIZE == 64
#define ElfW64_Dyn Elf_Dyn
#define ElfW64_Sym Elf_Sym
#else
#define ElfW32_Dyn Elf_Dyn
#define ElfW32_Sym Elf_Sym
#endif
#endif

#include "interception/interception.h"
#include "sanitizer_common/sanitizer_flag_parser.h"
#include "ubsan/ubsan_init.h"
#include "ubsan/ubsan_flags.h"

#ifdef CFI_ENABLE_DIAG
#include "ubsan/ubsan_handlers.h"
#endif

using namespace __sanitizer;

namespace __cfi {

#define kCfiShadowLimitsStorageSize 4096 // 1 page
// Lets hope that the data segment is mapped with 4K pages.
// The pointer to the cfi shadow region is stored at the start of this page.
// The rest of the page is unused and re-mapped read-only.
static union {
  char space[kCfiShadowLimitsStorageSize];
  struct {
    uptr start;
    uptr size;
  } limits;
} cfi_shadow_limits_storage
    __attribute__((aligned(kCfiShadowLimitsStorageSize)));
static constexpr uptr kShadowGranularity = 12;
static constexpr uptr kShadowAlign = 1UL << kShadowGranularity; // 4096

static constexpr uint16_t kInvalidShadow = 0;
static constexpr uint16_t kUncheckedShadow = 0xFFFFU;

// Get the start address of the CFI shadow region.
uptr GetShadow() {
  return cfi_shadow_limits_storage.limits.start;
}

uptr GetShadowSize() {
  return cfi_shadow_limits_storage.limits.size;
}

// This will only work while the shadow is not allocated.
void SetShadowSize(uptr size) {
  cfi_shadow_limits_storage.limits.size = size;
}

uptr MemToShadowOffset(uptr x) {
  return (x >> kShadowGranularity) << 1;
}

uint16_t *MemToShadow(uptr x, uptr shadow_base) {
  return (uint16_t *)(shadow_base + MemToShadowOffset(x));
}

typedef int (*CFICheckFn)(u64, void *, void *);

// This class reads and decodes the shadow contents.
class ShadowValue {
  uptr addr;
  uint16_t v;
  explicit ShadowValue(uptr addr, uint16_t v) : addr(addr), v(v) {}

public:
  bool is_invalid() const { return v == kInvalidShadow; }

  bool is_unchecked() const { return v == kUncheckedShadow; }

  CFICheckFn get_cfi_check() const {
    assert(!is_invalid() && !is_unchecked());
    uptr aligned_addr = addr & ~(kShadowAlign - 1);
    uptr p = aligned_addr - (((uptr)v - 1) << kShadowGranularity);
    return reinterpret_cast<CFICheckFn>(p);
  }

  // Load a shadow value for the given application memory address.
  static const ShadowValue load(uptr addr) {
    uptr shadow_base = GetShadow();
    uptr shadow_offset = MemToShadowOffset(addr);
    if (shadow_offset > GetShadowSize())
      return ShadowValue(addr, kInvalidShadow);
    else
      return ShadowValue(
          addr, *reinterpret_cast<uint16_t *>(shadow_base + shadow_offset));
  }
};

class ShadowBuilder {
  uptr shadow_;

public:
  // Allocate a new empty shadow (for the entire address space) on the side.
  void Start();
  // Mark the given address range as unchecked.
  // This is used for uninstrumented libraries like libc.
  // Any CFI check with a target in that range will pass.
  void AddUnchecked(uptr begin, uptr end);
  // Mark the given address range as belonging to a library with the given
  // cfi_check function.
  void Add(uptr begin, uptr end, uptr cfi_check);
  // Finish shadow construction. Atomically switch the current active shadow
  // region with the newly constructed one and deallocate the former.
  void Install();
};

void ShadowBuilder::Start() {
  shadow_ = (uptr)MmapNoReserveOrDie(GetShadowSize(), "CFI shadow");
  VReport(1, "CFI: shadow at %zx .. %zx\n", shadow_, shadow_ + GetShadowSize());
}

void ShadowBuilder::AddUnchecked(uptr begin, uptr end) {
  uint16_t *shadow_begin = MemToShadow(begin, shadow_);
  uint16_t *shadow_end = MemToShadow(end - 1, shadow_) + 1;
  // memset takes a byte, so our unchecked shadow value requires both bytes to
  // be the same. Make sure we're ok during compilation.
  static_assert((kUncheckedShadow & 0xff) == ((kUncheckedShadow >> 8) & 0xff),
                "Both bytes of the 16-bit value must be the same!");
  memset(shadow_begin, kUncheckedShadow & 0xff,
         (shadow_end - shadow_begin) * sizeof(*shadow_begin));
}

void ShadowBuilder::Add(uptr begin, uptr end, uptr cfi_check) {
  assert((cfi_check & (kShadowAlign - 1)) == 0);

  // Don't fill anything below cfi_check. We can not represent those addresses
  // in the shadow, and must make sure at codegen to place all valid call
  // targets above cfi_check.
  begin = Max(begin, cfi_check);
  uint16_t *s = MemToShadow(begin, shadow_);
  uint16_t *s_end = MemToShadow(end - 1, shadow_) + 1;
  uint16_t sv = ((begin - cfi_check) >> kShadowGranularity) + 1;
  for (; s < s_end; s++, sv++)
    *s = sv;
}

#if SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_NETBSD
void ShadowBuilder::Install() {
  MprotectReadOnly(shadow_, GetShadowSize());
  uptr main_shadow = GetShadow();
  if (main_shadow) {
    // Update.
#if SANITIZER_LINUX
    void *res = mremap((void *)shadow_, GetShadowSize(), GetShadowSize(),
                       MREMAP_MAYMOVE | MREMAP_FIXED, (void *)main_shadow);
    CHECK(res != MAP_FAILED);
#elif SANITIZER_NETBSD
    void *res = mremap((void *)shadow_, GetShadowSize(), (void *)main_shadow,
                       GetShadowSize(), MAP_FIXED);
    CHECK(res != MAP_FAILED);
#else
    void *res = MmapFixedOrDie(shadow_, GetShadowSize(), "cfi shadow");
    CHECK(res != MAP_FAILED);
    ::memcpy(&shadow_, &main_shadow, GetShadowSize());
#endif
  } else {
    // Initial setup.
    CHECK_EQ(kCfiShadowLimitsStorageSize, GetPageSizeCached());
    CHECK_EQ(0, GetShadow());
    cfi_shadow_limits_storage.limits.start = shadow_;
    MprotectReadOnly((uptr)&cfi_shadow_limits_storage,
                     sizeof(cfi_shadow_limits_storage));
    CHECK_EQ(shadow_, GetShadow());
  }
}
#else
#error not implemented
#endif

// This is a workaround for a glibc bug:
// https://sourceware.org/bugzilla/show_bug.cgi?id=15199
// Other platforms can, hopefully, just do
//    dlopen(RTLD_NOLOAD | RTLD_LAZY)
//    dlsym("__cfi_check").
uptr find_cfi_check_in_dso(dl_phdr_info *info) {
  const Elf_Dyn *dynamic = nullptr;
  for (int i = 0; i < info->dlpi_phnum; ++i) {
    if (info->dlpi_phdr[i].p_type == PT_DYNAMIC) {
      dynamic =
          (const Elf_Dyn *)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
      break;
    }
  }
  if (!dynamic) return 0;
  uptr strtab = 0, symtab = 0, strsz = 0;
  for (const Elf_Dyn *p = dynamic; p->d_tag != PT_NULL; ++p) {
    if (p->d_tag == DT_SYMTAB)
      symtab = p->d_un.d_ptr;
    else if (p->d_tag == DT_STRTAB)
      strtab = p->d_un.d_ptr;
    else if (p->d_tag == DT_STRSZ)
      strsz = p->d_un.d_ptr;
  }

  if (symtab > strtab) {
    VReport(1, "Can not handle: symtab > strtab (%p > %zx)\n", symtab, strtab);
    return 0;
  }

  // Verify that strtab and symtab are inside of the same LOAD segment.
  // This excludes VDSO, which has (very high) bogus strtab and symtab pointers.
  int phdr_idx;
  for (phdr_idx = 0; phdr_idx < info->dlpi_phnum; phdr_idx++) {
    const Elf_Phdr *phdr = &info->dlpi_phdr[phdr_idx];
    if (phdr->p_type == PT_LOAD) {
      uptr beg = info->dlpi_addr + phdr->p_vaddr;
      uptr end = beg + phdr->p_memsz;
      if (strtab >= beg && strtab + strsz < end && symtab >= beg &&
          symtab < end)
        break;
    }
  }
  if (phdr_idx == info->dlpi_phnum) {
    // Nope, either different segments or just bogus pointers.
    // Can not handle this.
    VReport(1, "Can not handle: symtab %p, strtab %zx\n", symtab, strtab);
    return 0;
  }

  for (const Elf_Sym *p = (const Elf_Sym *)symtab; (Elf_Addr)p < strtab;
       ++p) {
    // There is no reliable way to find the end of the symbol table. In
    // lld-produces files, there are other sections between symtab and strtab.
    // Stop looking when the symbol name is not inside strtab.
    if (p->st_name >= strsz) break;
    char *name = (char*)(strtab + p->st_name);
    if (strcmp(name, "__cfi_check") == 0) {
      assert(p->st_info == ELF32_ST_INFO(STB_GLOBAL, STT_FUNC) ||
             p->st_info == ELF32_ST_INFO(STB_WEAK, STT_FUNC));
      uptr addr = info->dlpi_addr + p->st_value;
      return addr;
    }
  }
  return 0;
}

int dl_iterate_phdr_cb(dl_phdr_info *info, size_t size, void *data) {
  uptr cfi_check = find_cfi_check_in_dso(info);
  if (cfi_check)
    VReport(1, "Module '%s' __cfi_check %zx\n", info->dlpi_name, cfi_check);

  ShadowBuilder *b = reinterpret_cast<ShadowBuilder *>(data);

  for (int i = 0; i < info->dlpi_phnum; i++) {
    const Elf_Phdr *phdr = &info->dlpi_phdr[i];
    if (phdr->p_type == PT_LOAD) {
      // Jump tables are in the executable segment.
      // VTables are in the non-executable one.
      // Need to fill shadow for both.
      // FIXME: reject writable if vtables are in the r/o segment. Depend on
      // PT_RELRO?
      uptr cur_beg = info->dlpi_addr + phdr->p_vaddr;
      uptr cur_end = cur_beg + phdr->p_memsz;
      if (cfi_check) {
        VReport(1, "   %zx .. %zx\n", cur_beg, cur_end);
        b->Add(cur_beg, cur_end, cfi_check);
      } else {
        b->AddUnchecked(cur_beg, cur_end);
      }
    }
  }
  return 0;
}

// Init or update shadow for the current set of loaded libraries.
void UpdateShadow() {
  ShadowBuilder b;
  b.Start();
  dl_iterate_phdr(dl_iterate_phdr_cb, &b);
  b.Install();
}

void InitShadow() {
  CHECK_EQ(0, GetShadow());
  CHECK_EQ(0, GetShadowSize());

  uptr vma = GetMaxUserVirtualAddress();
  // Shadow is 2 -> 2**kShadowGranularity.
  SetShadowSize((vma >> (kShadowGranularity - 1)) + 1);
  VReport(1, "CFI: VMA size %zx, shadow size %zx\n", vma, GetShadowSize());

  UpdateShadow();
}

THREADLOCAL int in_loader;
BlockingMutex shadow_update_lock(LINKER_INITIALIZED);

void EnterLoader() {
  if (in_loader == 0) {
    shadow_update_lock.Lock();
  }
  ++in_loader;
}

void ExitLoader() {
  CHECK(in_loader > 0);
  --in_loader;
  UpdateShadow();
  if (in_loader == 0) {
    shadow_update_lock.Unlock();
  }
}

ALWAYS_INLINE void CfiSlowPathCommon(u64 CallSiteTypeId, void *Ptr,
                                     void *DiagData) {
  uptr Addr = (uptr)Ptr;
  VReport(3, "__cfi_slowpath: %llx, %p\n", CallSiteTypeId, Ptr);
  ShadowValue sv = ShadowValue::load(Addr);
  if (sv.is_invalid()) {
    VReport(1, "CFI: invalid memory region for a check target: %p\n", Ptr);
#ifdef CFI_ENABLE_DIAG
    if (DiagData) {
      __ubsan_handle_cfi_check_fail(
          reinterpret_cast<__ubsan::CFICheckFailData *>(DiagData), Addr, false);
      return;
    }
#endif
    Trap();
  }
  if (sv.is_unchecked()) {
    VReport(2, "CFI: unchecked call (shadow=FFFF): %p\n", Ptr);
    return;
  }
  CFICheckFn cfi_check = sv.get_cfi_check();
  VReport(2, "__cfi_check at %p\n", cfi_check);
  cfi_check(CallSiteTypeId, Ptr, DiagData);
}

void InitializeFlags() {
  SetCommonFlagsDefaults();
#ifdef CFI_ENABLE_DIAG
  __ubsan::Flags *uf = __ubsan::flags();
  uf->SetDefaults();
#endif

  FlagParser cfi_parser;
  RegisterCommonFlags(&cfi_parser);
  cfi_parser.ParseStringFromEnv("CFI_OPTIONS");

#ifdef CFI_ENABLE_DIAG
  FlagParser ubsan_parser;
  __ubsan::RegisterUbsanFlags(&ubsan_parser, uf);
  RegisterCommonFlags(&ubsan_parser);

  const char *ubsan_default_options = __ubsan_default_options();
  ubsan_parser.ParseString(ubsan_default_options);
  ubsan_parser.ParseStringFromEnv("UBSAN_OPTIONS");
#endif

  InitializeCommonFlags();

  if (Verbosity())
    ReportUnrecognizedFlags();

  if (common_flags()->help) {
    cfi_parser.PrintFlagDescriptions();
  }
}

} // namespace __cfi

using namespace __cfi;

extern "C" SANITIZER_INTERFACE_ATTRIBUTE void
__cfi_slowpath(u64 CallSiteTypeId, void *Ptr) {
  CfiSlowPathCommon(CallSiteTypeId, Ptr, nullptr);
}

#ifdef CFI_ENABLE_DIAG
extern "C" SANITIZER_INTERFACE_ATTRIBUTE void
__cfi_slowpath_diag(u64 CallSiteTypeId, void *Ptr, void *DiagData) {
  CfiSlowPathCommon(CallSiteTypeId, Ptr, DiagData);
}
#endif

static void EnsureInterceptorsInitialized();

// Setup shadow for dlopen()ed libraries.
// The actual shadow setup happens after dlopen() returns, which means that
// a library can not be a target of any CFI checks while its constructors are
// running. It's unclear how to fix this without some extra help from libc.
// In glibc, mmap inside dlopen is not interceptable.
// Maybe a seccomp-bpf filter?
// We could insert a high-priority constructor into the library, but that would
// not help with the uninstrumented libraries.
INTERCEPTOR(void*, dlopen, const char *filename, int flag) {
  EnsureInterceptorsInitialized();
  EnterLoader();
  void *handle = REAL(dlopen)(filename, flag);
  ExitLoader();
  return handle;
}

INTERCEPTOR(int, dlclose, void *handle) {
  EnsureInterceptorsInitialized();
  EnterLoader();
  int res = REAL(dlclose)(handle);
  ExitLoader();
  return res;
}

static BlockingMutex interceptor_init_lock(LINKER_INITIALIZED);
static bool interceptors_inited = false;

static void EnsureInterceptorsInitialized() {
  BlockingMutexLock lock(&interceptor_init_lock);
  if (interceptors_inited)
    return;

  INTERCEPT_FUNCTION(dlopen);
  INTERCEPT_FUNCTION(dlclose);

  interceptors_inited = true;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
#if !SANITIZER_CAN_USE_PREINIT_ARRAY
// On ELF platforms, the constructor is invoked using .preinit_array (see below)
__attribute__((constructor(0)))
#endif
void __cfi_init() {
  SanitizerToolName = "CFI";
  InitializeFlags();
  InitShadow();

#ifdef CFI_ENABLE_DIAG
  __ubsan::InitAsPlugin();
#endif
}

#if SANITIZER_CAN_USE_PREINIT_ARRAY
// On ELF platforms, run cfi initialization before any other constructors.
// On other platforms we use the constructor attribute to arrange to run our
// initialization early.
extern "C" {
__attribute__((section(".preinit_array"),
               used)) void (*__cfi_preinit)(void) = __cfi_init;
}
#endif