fp_div_impl.inc 18.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
//===-- fp_div_impl.inc - Floating point division -----------------*- C -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements soft-float division with the IEEE-754 default
// rounding (to nearest, ties to even).
//
//===----------------------------------------------------------------------===//

#include "fp_lib.h"

// The __divXf3__ function implements Newton-Raphson floating point division.
// It uses 3 iterations for float32, 4 for float64 and 5 for float128,
// respectively. Due to number of significant bits being roughly doubled
// every iteration, the two modes are supported: N full-width iterations (as
// it is done for float32 by default) and (N-1) half-width iteration plus one
// final full-width iteration. It is expected that half-width integer
// operations (w.r.t rep_t size) can be performed faster for some hardware but
// they require error estimations to be computed separately due to larger
// computational errors caused by truncating intermediate results.

// Half the bit-size of rep_t
#define HW (typeWidth / 2)
// rep_t-sized bitmask with lower half of bits set to ones
#define loMask (REP_C(-1) >> HW)

#if NUMBER_OF_FULL_ITERATIONS < 1
#error At least one full iteration is required
#endif

static __inline fp_t __divXf3__(fp_t a, fp_t b) {

  const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
  const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
  const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;

  rep_t aSignificand = toRep(a) & significandMask;
  rep_t bSignificand = toRep(b) & significandMask;
  int scale = 0;

  // Detect if a or b is zero, denormal, infinity, or NaN.
  if (aExponent - 1U >= maxExponent - 1U ||
      bExponent - 1U >= maxExponent - 1U) {

    const rep_t aAbs = toRep(a) & absMask;
    const rep_t bAbs = toRep(b) & absMask;

    // NaN / anything = qNaN
    if (aAbs > infRep)
      return fromRep(toRep(a) | quietBit);
    // anything / NaN = qNaN
    if (bAbs > infRep)
      return fromRep(toRep(b) | quietBit);

    if (aAbs == infRep) {
      // infinity / infinity = NaN
      if (bAbs == infRep)
        return fromRep(qnanRep);
      // infinity / anything else = +/- infinity
      else
        return fromRep(aAbs | quotientSign);
    }

    // anything else / infinity = +/- 0
    if (bAbs == infRep)
      return fromRep(quotientSign);

    if (!aAbs) {
      // zero / zero = NaN
      if (!bAbs)
        return fromRep(qnanRep);
      // zero / anything else = +/- zero
      else
        return fromRep(quotientSign);
    }
    // anything else / zero = +/- infinity
    if (!bAbs)
      return fromRep(infRep | quotientSign);

    // One or both of a or b is denormal.  The other (if applicable) is a
    // normal number.  Renormalize one or both of a and b, and set scale to
    // include the necessary exponent adjustment.
    if (aAbs < implicitBit)
      scale += normalize(&aSignificand);
    if (bAbs < implicitBit)
      scale -= normalize(&bSignificand);
  }

  // Set the implicit significand bit.  If we fell through from the
  // denormal path it was already set by normalize( ), but setting it twice
  // won't hurt anything.
  aSignificand |= implicitBit;
  bSignificand |= implicitBit;

  int writtenExponent = (aExponent - bExponent + scale) + exponentBias;

  const rep_t b_UQ1 = bSignificand << (typeWidth - significandBits - 1);

  // Align the significand of b as a UQ1.(n-1) fixed-point number in the range
  // [1.0, 2.0) and get a UQ0.n approximate reciprocal using a small minimax
  // polynomial approximation: x0 = 3/4 + 1/sqrt(2) - b/2.
  // The max error for this approximation is achieved at endpoints, so
  //   abs(x0(b) - 1/b) <= abs(x0(1) - 1/1) = 3/4 - 1/sqrt(2) = 0.04289...,
  // which is about 4.5 bits.
  // The initial approximation is between x0(1.0) = 0.9571... and x0(2.0) = 0.4571...

  // Then, refine the reciprocal estimate using a quadratically converging
  // Newton-Raphson iteration:
  //     x_{n+1} = x_n * (2 - x_n * b)
  //
  // Let b be the original divisor considered "in infinite precision" and
  // obtained from IEEE754 representation of function argument (with the
  // implicit bit set). Corresponds to rep_t-sized b_UQ1 represented in
  // UQ1.(W-1).
  //
  // Let b_hw be an infinitely precise number obtained from the highest (HW-1)
  // bits of divisor significand (with the implicit bit set). Corresponds to
  // half_rep_t-sized b_UQ1_hw represented in UQ1.(HW-1) that is a **truncated**
  // version of b_UQ1.
  //
  // Let e_n := x_n - 1/b_hw
  //     E_n := x_n - 1/b
  // abs(E_n) <= abs(e_n) + (1/b_hw - 1/b)
  //           = abs(e_n) + (b - b_hw) / (b*b_hw)
  //          <= abs(e_n) + 2 * 2^-HW

  // rep_t-sized iterations may be slower than the corresponding half-width
  // variant depending on the handware and whether single/double/quad precision
  // is selected.
  // NB: Using half-width iterations increases computation errors due to
  // rounding, so error estimations have to be computed taking the selected
  // mode into account!
#if NUMBER_OF_HALF_ITERATIONS > 0
  // Starting with (n-1) half-width iterations
  const half_rep_t b_UQ1_hw = bSignificand >> (significandBits + 1 - HW);

  // C is (3/4 + 1/sqrt(2)) - 1 truncated to W0 fractional bits as UQ0.HW
  // with W0 being either 16 or 32 and W0 <= HW.
  // That is, C is the aforementioned 3/4 + 1/sqrt(2) constant (from which
  // b/2 is subtracted to obtain x0) wrapped to [0, 1) range.
#if defined(SINGLE_PRECISION)
  // Use 16-bit initial estimation in case we are using half-width iterations
  // for float32 division. This is expected to be useful for some 16-bit
  // targets. Not used by default as it requires performing more work during
  // rounding and would hardly help on regular 32- or 64-bit targets.
  const half_rep_t C_hw = HALF_REP_C(0x7504);
#else
  // HW is at least 32. Shifting into the highest bits if needed.
  const half_rep_t C_hw = HALF_REP_C(0x7504F333) << (HW - 32);
#endif

  // b >= 1, thus an upper bound for 3/4 + 1/sqrt(2) - b/2 is about 0.9572,
  // so x0 fits to UQ0.HW without wrapping.
  half_rep_t x_UQ0_hw = C_hw - (b_UQ1_hw /* exact b_hw/2 as UQ0.HW */);
  // An e_0 error is comprised of errors due to
  // * x0 being an inherently imprecise first approximation of 1/b_hw
  // * C_hw being some (irrational) number **truncated** to W0 bits
  // Please note that e_0 is calculated against the infinitely precise
  // reciprocal of b_hw (that is, **truncated** version of b).
  //
  // e_0 <= 3/4 - 1/sqrt(2) + 2^-W0

  // By construction, 1 <= b < 2
  // f(x)  = x * (2 - b*x) = 2*x - b*x^2
  // f'(x) = 2 * (1 - b*x)
  //
  // On the [0, 1] interval, f(0)   = 0,
  // then it increses until  f(1/b) = 1 / b, maximum on (0, 1),
  // then it decreses to     f(1)   = 2 - b
  //
  // Let g(x) = x - f(x) = b*x^2 - x.
  // On (0, 1/b), g(x) < 0 <=> f(x) > x
  // On (1/b, 1], g(x) > 0 <=> f(x) < x
  //
  // For half-width iterations, b_hw is used instead of b.
  REPEAT_N_TIMES(NUMBER_OF_HALF_ITERATIONS, {
    // corr_UQ1_hw can be **larger** than 2 - b_hw*x by at most 1*Ulp
    // of corr_UQ1_hw.
    // "0.0 - (...)" is equivalent to "2.0 - (...)" in UQ1.(HW-1).
    // On the other hand, corr_UQ1_hw should not overflow from 2.0 to 0.0 provided
    // no overflow occurred earlier: ((rep_t)x_UQ0_hw * b_UQ1_hw >> HW) is
    // expected to be strictly positive because b_UQ1_hw has its highest bit set
    // and x_UQ0_hw should be rather large (it converges to 1/2 < 1/b_hw <= 1).
    half_rep_t corr_UQ1_hw = 0 - ((rep_t)x_UQ0_hw * b_UQ1_hw >> HW);

    // Now, we should multiply UQ0.HW and UQ1.(HW-1) numbers, naturally
    // obtaining an UQ1.(HW-1) number and proving its highest bit could be
    // considered to be 0 to be able to represent it in UQ0.HW.
    // From the above analysis of f(x), if corr_UQ1_hw would be represented
    // without any intermediate loss of precision (that is, in twice_rep_t)
    // x_UQ0_hw could be at most [1.]000... if b_hw is exactly 1.0 and strictly
    // less otherwise. On the other hand, to obtain [1.]000..., one have to pass
    // 1/b_hw == 1.0 to f(x), so this cannot occur at all without overflow (due
    // to 1.0 being not representable as UQ0.HW).
    // The fact corr_UQ1_hw was virtually round up (due to result of
    // multiplication being **first** truncated, then negated - to improve
    // error estimations) can increase x_UQ0_hw by up to 2*Ulp of x_UQ0_hw.
    x_UQ0_hw = (rep_t)x_UQ0_hw * corr_UQ1_hw >> (HW - 1);
    // Now, either no overflow occurred or x_UQ0_hw is 0 or 1 in its half_rep_t
    // representation. In the latter case, x_UQ0_hw will be either 0 or 1 after
    // any number of iterations, so just subtract 2 from the reciprocal
    // approximation after last iteration.

    // In infinite precision, with 0 <= eps1, eps2 <= U = 2^-HW:
    // corr_UQ1_hw = 2 - (1/b_hw + e_n) * b_hw + 2*eps1
    //             = 1 - e_n * b_hw + 2*eps1
    // x_UQ0_hw = (1/b_hw + e_n) * (1 - e_n*b_hw + 2*eps1) - eps2
    //          = 1/b_hw - e_n + 2*eps1/b_hw + e_n - e_n^2*b_hw + 2*e_n*eps1 - eps2
    //          = 1/b_hw + 2*eps1/b_hw - e_n^2*b_hw + 2*e_n*eps1 - eps2
    // e_{n+1} = -e_n^2*b_hw + 2*eps1/b_hw + 2*e_n*eps1 - eps2
    //         = 2*e_n*eps1 - (e_n^2*b_hw + eps2) + 2*eps1/b_hw
    //                        \------ >0 -------/   \-- >0 ---/
    // abs(e_{n+1}) <= 2*abs(e_n)*U + max(2*e_n^2 + U, 2 * U)
  })
  // For initial half-width iterations, U = 2^-HW
  // Let  abs(e_n)     <= u_n * U,
  // then abs(e_{n+1}) <= 2 * u_n * U^2 + max(2 * u_n^2 * U^2 + U, 2 * U)
  // u_{n+1} <= 2 * u_n * U + max(2 * u_n^2 * U + 1, 2)

  // Account for possible overflow (see above). For an overflow to occur for the
  // first time, for "ideal" corr_UQ1_hw (that is, without intermediate
  // truncation), the result of x_UQ0_hw * corr_UQ1_hw should be either maximum
  // value representable in UQ0.HW or less by 1. This means that 1/b_hw have to
  // be not below that value (see g(x) above), so it is safe to decrement just
  // once after the final iteration. On the other hand, an effective value of
  // divisor changes after this point (from b_hw to b), so adjust here.
  x_UQ0_hw -= 1U;
  rep_t x_UQ0 = (rep_t)x_UQ0_hw << HW;
  x_UQ0 -= 1U;

#else
  // C is (3/4 + 1/sqrt(2)) - 1 truncated to 32 fractional bits as UQ0.n
  const rep_t C = REP_C(0x7504F333) << (typeWidth - 32);
  rep_t x_UQ0 = C - b_UQ1;
  // E_0 <= 3/4 - 1/sqrt(2) + 2 * 2^-32
#endif

  // Error estimations for full-precision iterations are calculated just
  // as above, but with U := 2^-W and taking extra decrementing into account.
  // We need at least one such iteration.

#ifdef USE_NATIVE_FULL_ITERATIONS
  REPEAT_N_TIMES(NUMBER_OF_FULL_ITERATIONS, {
    rep_t corr_UQ1 = 0 - ((twice_rep_t)x_UQ0 * b_UQ1 >> typeWidth);
    x_UQ0 = (twice_rep_t)x_UQ0 * corr_UQ1 >> (typeWidth - 1);
  })
#else
#if NUMBER_OF_FULL_ITERATIONS != 1
#error Only a single emulated full iteration is supported
#endif
#if !(NUMBER_OF_HALF_ITERATIONS > 0)
  // Cannot normally reach here: only one full-width iteration is requested and
  // the total number of iterations should be at least 3 even for float32.
#error Check NUMBER_OF_HALF_ITERATIONS, NUMBER_OF_FULL_ITERATIONS and USE_NATIVE_FULL_ITERATIONS.
#endif
  // Simulating operations on a twice_rep_t to perform a single final full-width
  // iteration. Using ad-hoc multiplication implementations to take advantage
  // of particular structure of operands.
  rep_t blo = b_UQ1 & loMask;
  // x_UQ0 = x_UQ0_hw * 2^HW - 1
  // x_UQ0 * b_UQ1 = (x_UQ0_hw * 2^HW) * (b_UQ1_hw * 2^HW + blo) - b_UQ1
  //
  //   <--- higher half ---><--- lower half --->
  //   [x_UQ0_hw * b_UQ1_hw]
  // +            [  x_UQ0_hw *  blo  ]
  // -                      [      b_UQ1       ]
  // = [      result       ][.... discarded ...]
  rep_t corr_UQ1 = 0U - (   (rep_t)x_UQ0_hw * b_UQ1_hw
                         + ((rep_t)x_UQ0_hw * blo >> HW)
                         - REP_C(1)); // account for *possible* carry
  rep_t lo_corr = corr_UQ1 & loMask;
  rep_t hi_corr = corr_UQ1 >> HW;
  // x_UQ0 * corr_UQ1 = (x_UQ0_hw * 2^HW) * (hi_corr * 2^HW + lo_corr) - corr_UQ1
  x_UQ0 =   ((rep_t)x_UQ0_hw * hi_corr << 1)
          + ((rep_t)x_UQ0_hw * lo_corr >> (HW - 1))
          - REP_C(2); // 1 to account for the highest bit of corr_UQ1 can be 1
                      // 1 to account for possible carry
  // Just like the case of half-width iterations but with possibility
  // of overflowing by one extra Ulp of x_UQ0.
  x_UQ0 -= 1U;
  // ... and then traditional fixup by 2 should work

  // On error estimation:
  // abs(E_{N-1}) <=   (u_{N-1} + 2 /* due to conversion e_n -> E_n */) * 2^-HW
  //                 + (2^-HW + 2^-W))
  // abs(E_{N-1}) <= (u_{N-1} + 3.01) * 2^-HW

  // Then like for the half-width iterations:
  // With 0 <= eps1, eps2 < 2^-W
  // E_N  = 4 * E_{N-1} * eps1 - (E_{N-1}^2 * b + 4 * eps2) + 4 * eps1 / b
  // abs(E_N) <= 2^-W * [ 4 * abs(E_{N-1}) + max(2 * abs(E_{N-1})^2 * 2^W + 4, 8)) ]
  // abs(E_N) <= 2^-W * [ 4 * (u_{N-1} + 3.01) * 2^-HW + max(4 + 2 * (u_{N-1} + 3.01)^2, 8) ]
#endif

  // Finally, account for possible overflow, as explained above.
  x_UQ0 -= 2U;

  // u_n for different precisions (with N-1 half-width iterations):
  // W0 is the precision of C
  //   u_0 = (3/4 - 1/sqrt(2) + 2^-W0) * 2^HW

  // Estimated with bc:
  //   define half1(un) { return 2.0 * (un + un^2) / 2.0^hw + 1.0; }
  //   define half2(un) { return 2.0 * un / 2.0^hw + 2.0; }
  //   define full1(un) { return 4.0 * (un + 3.01) / 2.0^hw + 2.0 * (un + 3.01)^2 + 4.0; }
  //   define full2(un) { return 4.0 * (un + 3.01) / 2.0^hw + 8.0; }

  //             | f32 (0 + 3) | f32 (2 + 1)  | f64 (3 + 1)  | f128 (4 + 1)
  // u_0         | < 184224974 | < 2812.1     | < 184224974  | < 791240234244348797
  // u_1         | < 15804007  | < 242.7      | < 15804007   | < 67877681371350440
  // u_2         | < 116308    | < 2.81       | < 116308     | < 499533100252317
  // u_3         | < 7.31      |              | < 7.31       | < 27054456580
  // u_4         |             |              |              | < 80.4
  // Final (U_N) | same as u_3 | < 72         | < 218        | < 13920

  // Add 2 to U_N due to final decrement.

#if defined(SINGLE_PRECISION) && NUMBER_OF_HALF_ITERATIONS == 2 && NUMBER_OF_FULL_ITERATIONS == 1
#define RECIPROCAL_PRECISION REP_C(74)
#elif defined(SINGLE_PRECISION) && NUMBER_OF_HALF_ITERATIONS == 0 && NUMBER_OF_FULL_ITERATIONS == 3
#define RECIPROCAL_PRECISION REP_C(10)
#elif defined(DOUBLE_PRECISION) && NUMBER_OF_HALF_ITERATIONS == 3 && NUMBER_OF_FULL_ITERATIONS == 1
#define RECIPROCAL_PRECISION REP_C(220)
#elif defined(QUAD_PRECISION) && NUMBER_OF_HALF_ITERATIONS == 4 && NUMBER_OF_FULL_ITERATIONS == 1
#define RECIPROCAL_PRECISION REP_C(13922)
#else
#error Invalid number of iterations
#endif

  // Suppose 1/b - P * 2^-W < x < 1/b + P * 2^-W
  x_UQ0 -= RECIPROCAL_PRECISION;
  // Now 1/b - (2*P) * 2^-W < x < 1/b
  // FIXME Is x_UQ0 still >= 0.5?

  rep_t quotient_UQ1, dummy;
  wideMultiply(x_UQ0, aSignificand << 1, &quotient_UQ1, &dummy);
  // Now, a/b - 4*P * 2^-W < q < a/b for q=<quotient_UQ1:dummy> in UQ1.(SB+1+W).

  // quotient_UQ1 is in [0.5, 2.0) as UQ1.(SB+1),
  // adjust it to be in [1.0, 2.0) as UQ1.SB.
  rep_t residualLo;
  if (quotient_UQ1 < (implicitBit << 1)) {
    // Highest bit is 0, so just reinterpret quotient_UQ1 as UQ1.SB,
    // effectively doubling its value as well as its error estimation.
    residualLo = (aSignificand << (significandBits + 1)) - quotient_UQ1 * bSignificand;
    writtenExponent -= 1;
    aSignificand <<= 1;
  } else {
    // Highest bit is 1 (the UQ1.(SB+1) value is in [1, 2)), convert it
    // to UQ1.SB by right shifting by 1. Least significant bit is omitted.
    quotient_UQ1 >>= 1;
    residualLo = (aSignificand << significandBits) - quotient_UQ1 * bSignificand;
  }
  // NB: residualLo is calculated above for the normal result case.
  //     It is re-computed on denormal path that is expected to be not so
  //     performance-sensitive.

  // Now, q cannot be greater than a/b and can differ by at most 8*P * 2^-W + 2^-SB
  // Each NextAfter() increments the floating point value by at least 2^-SB
  // (more, if exponent was incremented).
  // Different cases (<---> is of 2^-SB length, * = a/b that is shown as a midpoint):
  //   q
  //   |   | * |   |   |       |       |
  //       <--->      2^t
  //   |   |   |   |   |   *   |       |
  //               q
  // To require at most one NextAfter(), an error should be less than 1.5 * 2^-SB.
  //   (8*P) * 2^-W + 2^-SB < 1.5 * 2^-SB
  //   (8*P) * 2^-W         < 0.5 * 2^-SB
  //   P < 2^(W-4-SB)
  // Generally, for at most R NextAfter() to be enough,
  //   P < (2*R - 1) * 2^(W-4-SB)
  // For f32 (0+3): 10 < 32 (OK)
  // For f32 (2+1): 32 < 74 < 32 * 3, so two NextAfter() are required
  // For f64: 220 < 256 (OK)
  // For f128: 4096 * 3 < 13922 < 4096 * 5 (three NextAfter() are required)

  // If we have overflowed the exponent, return infinity
  if (writtenExponent >= maxExponent)
    return fromRep(infRep | quotientSign);

  // Now, quotient_UQ1_SB <= the correctly-rounded result
  // and may need taking NextAfter() up to 3 times (see error estimates above)
  // r = a - b * q
  rep_t absResult;
  if (writtenExponent > 0) {
    // Clear the implicit bit
    absResult = quotient_UQ1 & significandMask;
    // Insert the exponent
    absResult |= (rep_t)writtenExponent << significandBits;
    residualLo <<= 1;
  } else {
    // Prevent shift amount from being negative
    if (significandBits + writtenExponent < 0)
      return fromRep(quotientSign);

    absResult = quotient_UQ1 >> (-writtenExponent + 1);

    // multiplied by two to prevent shift amount to be negative
    residualLo = (aSignificand << (significandBits + writtenExponent)) - (absResult * bSignificand << 1);
  }

  // Round
  residualLo += absResult & 1; // tie to even
  // The above line conditionally turns the below LT comparison into LTE
  absResult += residualLo > bSignificand;
#if defined(QUAD_PRECISION) || (defined(SINGLE_PRECISION) && NUMBER_OF_HALF_ITERATIONS > 0)
  // Do not round Infinity to NaN
  absResult += absResult < infRep && residualLo > (2 + 1) * bSignificand;
#endif
#if defined(QUAD_PRECISION)
  absResult += absResult < infRep && residualLo > (4 + 1) * bSignificand;
#endif
  return fromRep(absResult | quotientSign);
}