asan_poisoning.cpp 15.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
//===-- asan_poisoning.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// Shadow memory poisoning by ASan RTL and by user application.
//===----------------------------------------------------------------------===//

#include "asan_poisoning.h"
#include "asan_report.h"
#include "asan_stack.h"
#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_flags.h"

namespace __asan {

static atomic_uint8_t can_poison_memory;

void SetCanPoisonMemory(bool value) {
  atomic_store(&can_poison_memory, value, memory_order_release);
}

bool CanPoisonMemory() {
  return atomic_load(&can_poison_memory, memory_order_acquire);
}

void PoisonShadow(uptr addr, uptr size, u8 value) {
  if (value && !CanPoisonMemory()) return;
  CHECK(AddrIsAlignedByGranularity(addr));
  CHECK(AddrIsInMem(addr));
  CHECK(AddrIsAlignedByGranularity(addr + size));
  CHECK(AddrIsInMem(addr + size - SHADOW_GRANULARITY));
  CHECK(REAL(memset));
  FastPoisonShadow(addr, size, value);
}

void PoisonShadowPartialRightRedzone(uptr addr,
                                     uptr size,
                                     uptr redzone_size,
                                     u8 value) {
  if (!CanPoisonMemory()) return;
  CHECK(AddrIsAlignedByGranularity(addr));
  CHECK(AddrIsInMem(addr));
  FastPoisonShadowPartialRightRedzone(addr, size, redzone_size, value);
}

struct ShadowSegmentEndpoint {
  u8 *chunk;
  s8 offset;  // in [0, SHADOW_GRANULARITY)
  s8 value;  // = *chunk;

  explicit ShadowSegmentEndpoint(uptr address) {
    chunk = (u8*)MemToShadow(address);
    offset = address & (SHADOW_GRANULARITY - 1);
    value = *chunk;
  }
};

void AsanPoisonOrUnpoisonIntraObjectRedzone(uptr ptr, uptr size, bool poison) {
  uptr end = ptr + size;
  if (Verbosity()) {
    Printf("__asan_%spoison_intra_object_redzone [%p,%p) %zd\n",
           poison ? "" : "un", ptr, end, size);
    if (Verbosity() >= 2)
      PRINT_CURRENT_STACK();
  }
  CHECK(size);
  CHECK_LE(size, 4096);
  CHECK(IsAligned(end, SHADOW_GRANULARITY));
  if (!IsAligned(ptr, SHADOW_GRANULARITY)) {
    *(u8 *)MemToShadow(ptr) =
        poison ? static_cast<u8>(ptr % SHADOW_GRANULARITY) : 0;
    ptr |= SHADOW_GRANULARITY - 1;
    ptr++;
  }
  for (; ptr < end; ptr += SHADOW_GRANULARITY)
    *(u8*)MemToShadow(ptr) = poison ? kAsanIntraObjectRedzone : 0;
}

}  // namespace __asan

// ---------------------- Interface ---------------- {{{1
using namespace __asan;

// Current implementation of __asan_(un)poison_memory_region doesn't check
// that user program (un)poisons the memory it owns. It poisons memory
// conservatively, and unpoisons progressively to make sure asan shadow
// mapping invariant is preserved (see detailed mapping description here:
// https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm).
//
// * if user asks to poison region [left, right), the program poisons
// at least [left, AlignDown(right)).
// * if user asks to unpoison region [left, right), the program unpoisons
// at most [AlignDown(left), right).
void __asan_poison_memory_region(void const volatile *addr, uptr size) {
  if (!flags()->allow_user_poisoning || size == 0) return;
  uptr beg_addr = (uptr)addr;
  uptr end_addr = beg_addr + size;
  VPrintf(3, "Trying to poison memory region [%p, %p)\n", (void *)beg_addr,
          (void *)end_addr);
  ShadowSegmentEndpoint beg(beg_addr);
  ShadowSegmentEndpoint end(end_addr);
  if (beg.chunk == end.chunk) {
    CHECK_LT(beg.offset, end.offset);
    s8 value = beg.value;
    CHECK_EQ(value, end.value);
    // We can only poison memory if the byte in end.offset is unaddressable.
    // No need to re-poison memory if it is poisoned already.
    if (value > 0 && value <= end.offset) {
      if (beg.offset > 0) {
        *beg.chunk = Min(value, beg.offset);
      } else {
        *beg.chunk = kAsanUserPoisonedMemoryMagic;
      }
    }
    return;
  }
  CHECK_LT(beg.chunk, end.chunk);
  if (beg.offset > 0) {
    // Mark bytes from beg.offset as unaddressable.
    if (beg.value == 0) {
      *beg.chunk = beg.offset;
    } else {
      *beg.chunk = Min(beg.value, beg.offset);
    }
    beg.chunk++;
  }
  REAL(memset)(beg.chunk, kAsanUserPoisonedMemoryMagic, end.chunk - beg.chunk);
  // Poison if byte in end.offset is unaddressable.
  if (end.value > 0 && end.value <= end.offset) {
    *end.chunk = kAsanUserPoisonedMemoryMagic;
  }
}

void __asan_unpoison_memory_region(void const volatile *addr, uptr size) {
  if (!flags()->allow_user_poisoning || size == 0) return;
  uptr beg_addr = (uptr)addr;
  uptr end_addr = beg_addr + size;
  VPrintf(3, "Trying to unpoison memory region [%p, %p)\n", (void *)beg_addr,
          (void *)end_addr);
  ShadowSegmentEndpoint beg(beg_addr);
  ShadowSegmentEndpoint end(end_addr);
  if (beg.chunk == end.chunk) {
    CHECK_LT(beg.offset, end.offset);
    s8 value = beg.value;
    CHECK_EQ(value, end.value);
    // We unpoison memory bytes up to enbytes up to end.offset if it is not
    // unpoisoned already.
    if (value != 0) {
      *beg.chunk = Max(value, end.offset);
    }
    return;
  }
  CHECK_LT(beg.chunk, end.chunk);
  if (beg.offset > 0) {
    *beg.chunk = 0;
    beg.chunk++;
  }
  REAL(memset)(beg.chunk, 0, end.chunk - beg.chunk);
  if (end.offset > 0 && end.value != 0) {
    *end.chunk = Max(end.value, end.offset);
  }
}

int __asan_address_is_poisoned(void const volatile *addr) {
  return __asan::AddressIsPoisoned((uptr)addr);
}

uptr __asan_region_is_poisoned(uptr beg, uptr size) {
  if (!size) return 0;
  uptr end = beg + size;
  if (SANITIZER_MYRIAD2) {
    // On Myriad, address not in DRAM range need to be treated as
    // unpoisoned.
    if (!AddrIsInMem(beg) && !AddrIsInShadow(beg)) return 0;
    if (!AddrIsInMem(end) && !AddrIsInShadow(end)) return 0;
  } else {
    if (!AddrIsInMem(beg)) return beg;
    if (!AddrIsInMem(end)) return end;
  }
  CHECK_LT(beg, end);
  uptr aligned_b = RoundUpTo(beg, SHADOW_GRANULARITY);
  uptr aligned_e = RoundDownTo(end, SHADOW_GRANULARITY);
  uptr shadow_beg = MemToShadow(aligned_b);
  uptr shadow_end = MemToShadow(aligned_e);
  // First check the first and the last application bytes,
  // then check the SHADOW_GRANULARITY-aligned region by calling
  // mem_is_zero on the corresponding shadow.
  if (!__asan::AddressIsPoisoned(beg) &&
      !__asan::AddressIsPoisoned(end - 1) &&
      (shadow_end <= shadow_beg ||
       __sanitizer::mem_is_zero((const char *)shadow_beg,
                                shadow_end - shadow_beg)))
    return 0;
  // The fast check failed, so we have a poisoned byte somewhere.
  // Find it slowly.
  for (; beg < end; beg++)
    if (__asan::AddressIsPoisoned(beg))
      return beg;
  UNREACHABLE("mem_is_zero returned false, but poisoned byte was not found");
  return 0;
}

#define CHECK_SMALL_REGION(p, size, isWrite)                  \
  do {                                                        \
    uptr __p = reinterpret_cast<uptr>(p);                     \
    uptr __size = size;                                       \
    if (UNLIKELY(__asan::AddressIsPoisoned(__p) ||            \
        __asan::AddressIsPoisoned(__p + __size - 1))) {       \
      GET_CURRENT_PC_BP_SP;                                   \
      uptr __bad = __asan_region_is_poisoned(__p, __size);    \
      __asan_report_error(pc, bp, sp, __bad, isWrite, __size, 0);\
    }                                                         \
  } while (false)


extern "C" SANITIZER_INTERFACE_ATTRIBUTE
u16 __sanitizer_unaligned_load16(const uu16 *p) {
  CHECK_SMALL_REGION(p, sizeof(*p), false);
  return *p;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
u32 __sanitizer_unaligned_load32(const uu32 *p) {
  CHECK_SMALL_REGION(p, sizeof(*p), false);
  return *p;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
u64 __sanitizer_unaligned_load64(const uu64 *p) {
  CHECK_SMALL_REGION(p, sizeof(*p), false);
  return *p;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
void __sanitizer_unaligned_store16(uu16 *p, u16 x) {
  CHECK_SMALL_REGION(p, sizeof(*p), true);
  *p = x;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
void __sanitizer_unaligned_store32(uu32 *p, u32 x) {
  CHECK_SMALL_REGION(p, sizeof(*p), true);
  *p = x;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
void __sanitizer_unaligned_store64(uu64 *p, u64 x) {
  CHECK_SMALL_REGION(p, sizeof(*p), true);
  *p = x;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
void __asan_poison_cxx_array_cookie(uptr p) {
  if (SANITIZER_WORDSIZE != 64) return;
  if (!flags()->poison_array_cookie) return;
  uptr s = MEM_TO_SHADOW(p);
  *reinterpret_cast<u8*>(s) = kAsanArrayCookieMagic;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
uptr __asan_load_cxx_array_cookie(uptr *p) {
  if (SANITIZER_WORDSIZE != 64) return *p;
  if (!flags()->poison_array_cookie) return *p;
  uptr s = MEM_TO_SHADOW(reinterpret_cast<uptr>(p));
  u8 sval = *reinterpret_cast<u8*>(s);
  if (sval == kAsanArrayCookieMagic) return *p;
  // If sval is not kAsanArrayCookieMagic it can only be freed memory,
  // which means that we are going to get double-free. So, return 0 to avoid
  // infinite loop of destructors. We don't want to report a double-free here
  // though, so print a warning just in case.
  // CHECK_EQ(sval, kAsanHeapFreeMagic);
  if (sval == kAsanHeapFreeMagic) {
    Report("AddressSanitizer: loaded array cookie from free-d memory; "
           "expect a double-free report\n");
    return 0;
  }
  // The cookie may remain unpoisoned if e.g. it comes from a custom
  // operator new defined inside a class.
  return *p;
}

// This is a simplified version of __asan_(un)poison_memory_region, which
// assumes that left border of region to be poisoned is properly aligned.
static void PoisonAlignedStackMemory(uptr addr, uptr size, bool do_poison) {
  if (size == 0) return;
  uptr aligned_size = size & ~(SHADOW_GRANULARITY - 1);
  PoisonShadow(addr, aligned_size,
               do_poison ? kAsanStackUseAfterScopeMagic : 0);
  if (size == aligned_size)
    return;
  s8 end_offset = (s8)(size - aligned_size);
  s8* shadow_end = (s8*)MemToShadow(addr + aligned_size);
  s8 end_value = *shadow_end;
  if (do_poison) {
    // If possible, mark all the bytes mapping to last shadow byte as
    // unaddressable.
    if (end_value > 0 && end_value <= end_offset)
      *shadow_end = (s8)kAsanStackUseAfterScopeMagic;
  } else {
    // If necessary, mark few first bytes mapping to last shadow byte
    // as addressable
    if (end_value != 0)
      *shadow_end = Max(end_value, end_offset);
  }
}

void __asan_set_shadow_00(uptr addr, uptr size) {
  REAL(memset)((void *)addr, 0, size);
}

void __asan_set_shadow_f1(uptr addr, uptr size) {
  REAL(memset)((void *)addr, 0xf1, size);
}

void __asan_set_shadow_f2(uptr addr, uptr size) {
  REAL(memset)((void *)addr, 0xf2, size);
}

void __asan_set_shadow_f3(uptr addr, uptr size) {
  REAL(memset)((void *)addr, 0xf3, size);
}

void __asan_set_shadow_f5(uptr addr, uptr size) {
  REAL(memset)((void *)addr, 0xf5, size);
}

void __asan_set_shadow_f8(uptr addr, uptr size) {
  REAL(memset)((void *)addr, 0xf8, size);
}

void __asan_poison_stack_memory(uptr addr, uptr size) {
  VReport(1, "poisoning: %p %zx\n", (void *)addr, size);
  PoisonAlignedStackMemory(addr, size, true);
}

void __asan_unpoison_stack_memory(uptr addr, uptr size) {
  VReport(1, "unpoisoning: %p %zx\n", (void *)addr, size);
  PoisonAlignedStackMemory(addr, size, false);
}

void __sanitizer_annotate_contiguous_container(const void *beg_p,
                                               const void *end_p,
                                               const void *old_mid_p,
                                               const void *new_mid_p) {
  if (!flags()->detect_container_overflow) return;
  VPrintf(2, "contiguous_container: %p %p %p %p\n", beg_p, end_p, old_mid_p,
          new_mid_p);
  uptr beg = reinterpret_cast<uptr>(beg_p);
  uptr end = reinterpret_cast<uptr>(end_p);
  uptr old_mid = reinterpret_cast<uptr>(old_mid_p);
  uptr new_mid = reinterpret_cast<uptr>(new_mid_p);
  uptr granularity = SHADOW_GRANULARITY;
  if (!(beg <= old_mid && beg <= new_mid && old_mid <= end && new_mid <= end &&
        IsAligned(beg, granularity))) {
    GET_STACK_TRACE_FATAL_HERE;
    ReportBadParamsToAnnotateContiguousContainer(beg, end, old_mid, new_mid,
                                                 &stack);
  }
  CHECK_LE(end - beg,
           FIRST_32_SECOND_64(1UL << 30, 1ULL << 34)); // Sanity check.

  uptr a = RoundDownTo(Min(old_mid, new_mid), granularity);
  uptr c = RoundUpTo(Max(old_mid, new_mid), granularity);
  uptr d1 = RoundDownTo(old_mid, granularity);
  // uptr d2 = RoundUpTo(old_mid, granularity);
  // Currently we should be in this state:
  // [a, d1) is good, [d2, c) is bad, [d1, d2) is partially good.
  // Make a quick sanity check that we are indeed in this state.
  //
  // FIXME: Two of these three checks are disabled until we fix
  // https://github.com/google/sanitizers/issues/258.
  // if (d1 != d2)
  //  CHECK_EQ(*(u8*)MemToShadow(d1), old_mid - d1);
  if (a + granularity <= d1)
    CHECK_EQ(*(u8*)MemToShadow(a), 0);
  // if (d2 + granularity <= c && c <= end)
  //   CHECK_EQ(*(u8 *)MemToShadow(c - granularity),
  //            kAsanContiguousContainerOOBMagic);

  uptr b1 = RoundDownTo(new_mid, granularity);
  uptr b2 = RoundUpTo(new_mid, granularity);
  // New state:
  // [a, b1) is good, [b2, c) is bad, [b1, b2) is partially good.
  PoisonShadow(a, b1 - a, 0);
  PoisonShadow(b2, c - b2, kAsanContiguousContainerOOBMagic);
  if (b1 != b2) {
    CHECK_EQ(b2 - b1, granularity);
    *(u8*)MemToShadow(b1) = static_cast<u8>(new_mid - b1);
  }
}

const void *__sanitizer_contiguous_container_find_bad_address(
    const void *beg_p, const void *mid_p, const void *end_p) {
  if (!flags()->detect_container_overflow)
    return nullptr;
  uptr beg = reinterpret_cast<uptr>(beg_p);
  uptr end = reinterpret_cast<uptr>(end_p);
  uptr mid = reinterpret_cast<uptr>(mid_p);
  CHECK_LE(beg, mid);
  CHECK_LE(mid, end);
  // Check some bytes starting from beg, some bytes around mid, and some bytes
  // ending with end.
  uptr kMaxRangeToCheck = 32;
  uptr r1_beg = beg;
  uptr r1_end = Min(beg + kMaxRangeToCheck, mid);
  uptr r2_beg = Max(beg, mid - kMaxRangeToCheck);
  uptr r2_end = Min(end, mid + kMaxRangeToCheck);
  uptr r3_beg = Max(end - kMaxRangeToCheck, mid);
  uptr r3_end = end;
  for (uptr i = r1_beg; i < r1_end; i++)
    if (AddressIsPoisoned(i))
      return reinterpret_cast<const void *>(i);
  for (uptr i = r2_beg; i < mid; i++)
    if (AddressIsPoisoned(i))
      return reinterpret_cast<const void *>(i);
  for (uptr i = mid; i < r2_end; i++)
    if (!AddressIsPoisoned(i))
      return reinterpret_cast<const void *>(i);
  for (uptr i = r3_beg; i < r3_end; i++)
    if (!AddressIsPoisoned(i))
      return reinterpret_cast<const void *>(i);
  return nullptr;
}

int __sanitizer_verify_contiguous_container(const void *beg_p,
                                            const void *mid_p,
                                            const void *end_p) {
  return __sanitizer_contiguous_container_find_bad_address(beg_p, mid_p,
                                                           end_p) == nullptr;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
void __asan_poison_intra_object_redzone(uptr ptr, uptr size) {
  AsanPoisonOrUnpoisonIntraObjectRedzone(ptr, size, true);
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
void __asan_unpoison_intra_object_redzone(uptr ptr, uptr size) {
  AsanPoisonOrUnpoisonIntraObjectRedzone(ptr, size, false);
}

// --- Implementation of LSan-specific functions --- {{{1
namespace __lsan {
bool WordIsPoisoned(uptr addr) {
  return (__asan_region_is_poisoned(addr, sizeof(uptr)) != 0);
}
}