MveEmitter.cpp 83.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
//===- MveEmitter.cpp - Generate arm_mve.h for use with clang -*- C++ -*-=====//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This set of linked tablegen backends is responsible for emitting the bits
// and pieces that implement <arm_mve.h>, which is defined by the ACLE standard
// and provides a set of types and functions for (more or less) direct access
// to the MVE instruction set, including the scalar shifts as well as the
// vector instructions.
//
// MVE's standard intrinsic functions are unusual in that they have a system of
// polymorphism. For example, the function vaddq() can behave like vaddq_u16(),
// vaddq_f32(), vaddq_s8(), etc., depending on the types of the vector
// arguments you give it.
//
// This constrains the implementation strategies. The usual approach to making
// the user-facing functions polymorphic would be to either use
// __attribute__((overloadable)) to make a set of vaddq() functions that are
// all inline wrappers on the underlying clang builtins, or to define a single
// vaddq() macro which expands to an instance of _Generic.
//
// The inline-wrappers approach would work fine for most intrinsics, except for
// the ones that take an argument required to be a compile-time constant,
// because if you wrap an inline function around a call to a builtin, the
// constant nature of the argument is not passed through.
//
// The _Generic approach can be made to work with enough effort, but it takes a
// lot of machinery, because of the design feature of _Generic that even the
// untaken branches are required to pass all front-end validity checks such as
// type-correctness. You can work around that by nesting further _Generics all
// over the place to coerce things to the right type in untaken branches, but
// what you get out is complicated, hard to guarantee its correctness, and
// worst of all, gives _completely unreadable_ error messages if the user gets
// the types wrong for an intrinsic call.
//
// Therefore, my strategy is to introduce a new __attribute__ that allows a
// function to be mapped to a clang builtin even though it doesn't have the
// same name, and then declare all the user-facing MVE function names with that
// attribute, mapping each one directly to the clang builtin. And the
// polymorphic ones have __attribute__((overloadable)) as well. So once the
// compiler has resolved the overload, it knows the internal builtin ID of the
// selected function, and can check the immediate arguments against that; and
// if the user gets the types wrong in a call to a polymorphic intrinsic, they
// get a completely clear error message showing all the declarations of that
// function in the header file and explaining why each one doesn't fit their
// call.
//
// The downside of this is that if every clang builtin has to correspond
// exactly to a user-facing ACLE intrinsic, then you can't save work in the
// frontend by doing it in the header file: CGBuiltin.cpp has to do the entire
// job of converting an ACLE intrinsic call into LLVM IR. So the Tablegen
// description for an MVE intrinsic has to contain a full description of the
// sequence of IRBuilder calls that clang will need to make.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/APInt.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/StringToOffsetTable.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <list>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <vector>

using namespace llvm;

namespace {

class EmitterBase;
class Result;

// -----------------------------------------------------------------------------
// A system of classes to represent all the types we'll need to deal with in
// the prototypes of intrinsics.
//
// Query methods include finding out the C name of a type; the "LLVM name" in
// the sense of a C++ code snippet that can be used in the codegen function;
// the suffix that represents the type in the ACLE intrinsic naming scheme
// (e.g. 's32' represents int32_t in intrinsics such as vaddq_s32); whether the
// type is floating-point related (hence should be under #ifdef in the MVE
// header so that it isn't included in integer-only MVE mode); and the type's
// size in bits. Not all subtypes support all these queries.

class Type {
public:
  enum class TypeKind {
    // Void appears as a return type (for store intrinsics, which are pure
    // side-effect). It's also used as the parameter type in the Tablegen
    // when an intrinsic doesn't need to come in various suffixed forms like
    // vfooq_s8,vfooq_u16,vfooq_f32.
    Void,

    // Scalar is used for ordinary int and float types of all sizes.
    Scalar,

    // Vector is used for anything that occupies exactly one MVE vector
    // register, i.e. {uint,int,float}NxM_t.
    Vector,

    // MultiVector is used for the {uint,int,float}NxMxK_t types used by the
    // interleaving load/store intrinsics v{ld,st}{2,4}q.
    MultiVector,

    // Predicate is used by all the predicated intrinsics. Its C
    // representation is mve_pred16_t (which is just an alias for uint16_t).
    // But we give more detail here, by indicating that a given predicate
    // instruction is logically regarded as a vector of i1 containing the
    // same number of lanes as the input vector type. So our Predicate type
    // comes with a lane count, which we use to decide which kind of <n x i1>
    // we'll invoke the pred_i2v IR intrinsic to translate it into.
    Predicate,

    // Pointer is used for pointer types (obviously), and comes with a flag
    // indicating whether it's a pointer to a const or mutable instance of
    // the pointee type.
    Pointer,
  };

private:
  const TypeKind TKind;

protected:
  Type(TypeKind K) : TKind(K) {}

public:
  TypeKind typeKind() const { return TKind; }
  virtual ~Type() = default;
  virtual bool requiresFloat() const = 0;
  virtual bool requiresMVE() const = 0;
  virtual unsigned sizeInBits() const = 0;
  virtual std::string cName() const = 0;
  virtual std::string llvmName() const {
    PrintFatalError("no LLVM type name available for type " + cName());
  }
  virtual std::string acleSuffix(std::string) const {
    PrintFatalError("no ACLE suffix available for this type");
  }
};

enum class ScalarTypeKind { SignedInt, UnsignedInt, Float };
inline std::string toLetter(ScalarTypeKind kind) {
  switch (kind) {
  case ScalarTypeKind::SignedInt:
    return "s";
  case ScalarTypeKind::UnsignedInt:
    return "u";
  case ScalarTypeKind::Float:
    return "f";
  }
  llvm_unreachable("Unhandled ScalarTypeKind enum");
}
inline std::string toCPrefix(ScalarTypeKind kind) {
  switch (kind) {
  case ScalarTypeKind::SignedInt:
    return "int";
  case ScalarTypeKind::UnsignedInt:
    return "uint";
  case ScalarTypeKind::Float:
    return "float";
  }
  llvm_unreachable("Unhandled ScalarTypeKind enum");
}

class VoidType : public Type {
public:
  VoidType() : Type(TypeKind::Void) {}
  unsigned sizeInBits() const override { return 0; }
  bool requiresFloat() const override { return false; }
  bool requiresMVE() const override { return false; }
  std::string cName() const override { return "void"; }

  static bool classof(const Type *T) { return T->typeKind() == TypeKind::Void; }
  std::string acleSuffix(std::string) const override { return ""; }
};

class PointerType : public Type {
  const Type *Pointee;
  bool Const;

public:
  PointerType(const Type *Pointee, bool Const)
      : Type(TypeKind::Pointer), Pointee(Pointee), Const(Const) {}
  unsigned sizeInBits() const override { return 32; }
  bool requiresFloat() const override { return Pointee->requiresFloat(); }
  bool requiresMVE() const override { return Pointee->requiresMVE(); }
  std::string cName() const override {
    std::string Name = Pointee->cName();

    // The syntax for a pointer in C is different when the pointee is
    // itself a pointer. The MVE intrinsics don't contain any double
    // pointers, so we don't need to worry about that wrinkle.
    assert(!isa<PointerType>(Pointee) && "Pointer to pointer not supported");

    if (Const)
      Name = "const " + Name;
    return Name + " *";
  }
  std::string llvmName() const override {
    return "llvm::PointerType::getUnqual(" + Pointee->llvmName() + ")";
  }

  static bool classof(const Type *T) {
    return T->typeKind() == TypeKind::Pointer;
  }
};

// Base class for all the types that have a name of the form
// [prefix][numbers]_t, like int32_t, uint16x8_t, float32x4x2_t.
//
// For this sub-hierarchy we invent a cNameBase() method which returns the
// whole name except for the trailing "_t", so that Vector and MultiVector can
// append an extra "x2" or whatever to their element type's cNameBase(). Then
// the main cName() query method puts "_t" on the end for the final type name.

class CRegularNamedType : public Type {
  using Type::Type;
  virtual std::string cNameBase() const = 0;

public:
  std::string cName() const override { return cNameBase() + "_t"; }
};

class ScalarType : public CRegularNamedType {
  ScalarTypeKind Kind;
  unsigned Bits;
  std::string NameOverride;

public:
  ScalarType(const Record *Record) : CRegularNamedType(TypeKind::Scalar) {
    Kind = StringSwitch<ScalarTypeKind>(Record->getValueAsString("kind"))
               .Case("s", ScalarTypeKind::SignedInt)
               .Case("u", ScalarTypeKind::UnsignedInt)
               .Case("f", ScalarTypeKind::Float);
    Bits = Record->getValueAsInt("size");
    NameOverride = std::string(Record->getValueAsString("nameOverride"));
  }
  unsigned sizeInBits() const override { return Bits; }
  ScalarTypeKind kind() const { return Kind; }
  std::string suffix() const { return toLetter(Kind) + utostr(Bits); }
  std::string cNameBase() const override {
    return toCPrefix(Kind) + utostr(Bits);
  }
  std::string cName() const override {
    if (NameOverride.empty())
      return CRegularNamedType::cName();
    return NameOverride;
  }
  std::string llvmName() const override {
    if (Kind == ScalarTypeKind::Float) {
      if (Bits == 16)
        return "HalfTy";
      if (Bits == 32)
        return "FloatTy";
      if (Bits == 64)
        return "DoubleTy";
      PrintFatalError("bad size for floating type");
    }
    return "Int" + utostr(Bits) + "Ty";
  }
  std::string acleSuffix(std::string overrideLetter) const override {
    return "_" + (overrideLetter.size() ? overrideLetter : toLetter(Kind))
               + utostr(Bits);
  }
  bool isInteger() const { return Kind != ScalarTypeKind::Float; }
  bool requiresFloat() const override { return !isInteger(); }
  bool requiresMVE() const override { return false; }
  bool hasNonstandardName() const { return !NameOverride.empty(); }

  static bool classof(const Type *T) {
    return T->typeKind() == TypeKind::Scalar;
  }
};

class VectorType : public CRegularNamedType {
  const ScalarType *Element;
  unsigned Lanes;

public:
  VectorType(const ScalarType *Element, unsigned Lanes)
      : CRegularNamedType(TypeKind::Vector), Element(Element), Lanes(Lanes) {}
  unsigned sizeInBits() const override { return Lanes * Element->sizeInBits(); }
  unsigned lanes() const { return Lanes; }
  bool requiresFloat() const override { return Element->requiresFloat(); }
  bool requiresMVE() const override { return true; }
  std::string cNameBase() const override {
    return Element->cNameBase() + "x" + utostr(Lanes);
  }
  std::string llvmName() const override {
    return "llvm::FixedVectorType::get(" + Element->llvmName() + ", " +
           utostr(Lanes) + ")";
  }

  static bool classof(const Type *T) {
    return T->typeKind() == TypeKind::Vector;
  }
};

class MultiVectorType : public CRegularNamedType {
  const VectorType *Element;
  unsigned Registers;

public:
  MultiVectorType(unsigned Registers, const VectorType *Element)
      : CRegularNamedType(TypeKind::MultiVector), Element(Element),
        Registers(Registers) {}
  unsigned sizeInBits() const override {
    return Registers * Element->sizeInBits();
  }
  unsigned registers() const { return Registers; }
  bool requiresFloat() const override { return Element->requiresFloat(); }
  bool requiresMVE() const override { return true; }
  std::string cNameBase() const override {
    return Element->cNameBase() + "x" + utostr(Registers);
  }

  // MultiVectorType doesn't override llvmName, because we don't expect to do
  // automatic code generation for the MVE intrinsics that use it: the {vld2,
  // vld4, vst2, vst4} family are the only ones that use these types, so it was
  // easier to hand-write the codegen for dealing with these structs than to
  // build in lots of extra automatic machinery that would only be used once.

  static bool classof(const Type *T) {
    return T->typeKind() == TypeKind::MultiVector;
  }
};

class PredicateType : public CRegularNamedType {
  unsigned Lanes;

public:
  PredicateType(unsigned Lanes)
      : CRegularNamedType(TypeKind::Predicate), Lanes(Lanes) {}
  unsigned sizeInBits() const override { return 16; }
  std::string cNameBase() const override { return "mve_pred16"; }
  bool requiresFloat() const override { return false; };
  bool requiresMVE() const override { return true; }
  std::string llvmName() const override {
    // Use <4 x i1> instead of <2 x i1> for two-lane vector types. See
    // the comment in llvm/lib/Target/ARM/ARMInstrMVE.td for further
    // explanation.
    unsigned ModifiedLanes = (Lanes == 2 ? 4 : Lanes);

    return "llvm::FixedVectorType::get(Builder.getInt1Ty(), " +
           utostr(ModifiedLanes) + ")";
  }

  static bool classof(const Type *T) {
    return T->typeKind() == TypeKind::Predicate;
  }
};

// -----------------------------------------------------------------------------
// Class to facilitate merging together the code generation for many intrinsics
// by means of varying a few constant or type parameters.
//
// Most obviously, the intrinsics in a single parametrised family will have
// code generation sequences that only differ in a type or two, e.g. vaddq_s8
// and vaddq_u16 will look the same apart from putting a different vector type
// in the call to CGM.getIntrinsic(). But also, completely different intrinsics
// will often code-generate in the same way, with only a different choice of
// _which_ IR intrinsic they lower to (e.g. vaddq_m_s8 and vmulq_m_s8), but
// marshalling the arguments and return values of the IR intrinsic in exactly
// the same way. And others might differ only in some other kind of constant,
// such as a lane index.
//
// So, when we generate the IR-building code for all these intrinsics, we keep
// track of every value that could possibly be pulled out of the code and
// stored ahead of time in a local variable. Then we group together intrinsics
// by textual equivalence of the code that would result if _all_ those
// parameters were stored in local variables. That gives us maximal sets that
// can be implemented by a single piece of IR-building code by changing
// parameter values ahead of time.
//
// After we've done that, we do a second pass in which we only allocate _some_
// of the parameters into local variables, by tracking which ones have the same
// values as each other (so that a single variable can be reused) and which
// ones are the same across the whole set (so that no variable is needed at
// all).
//
// Hence the class below. Its allocParam method is invoked during code
// generation by every method of a Result subclass (see below) that wants to
// give it the opportunity to pull something out into a switchable parameter.
// It returns a variable name for the parameter, or (if it's being used in the
// second pass once we've decided that some parameters don't need to be stored
// in variables after all) it might just return the input expression unchanged.

struct CodeGenParamAllocator {
  // Accumulated during code generation
  std::vector<std::string> *ParamTypes = nullptr;
  std::vector<std::string> *ParamValues = nullptr;

  // Provided ahead of time in pass 2, to indicate which parameters are being
  // assigned to what. This vector contains an entry for each call to
  // allocParam expected during code gen (which we counted up in pass 1), and
  // indicates the number of the parameter variable that should be returned, or
  // -1 if this call shouldn't allocate a parameter variable at all.
  //
  // We rely on the recursive code generation working identically in passes 1
  // and 2, so that the same list of calls to allocParam happen in the same
  // order. That guarantees that the parameter numbers recorded in pass 1 will
  // match the entries in this vector that store what EmitterBase::EmitBuiltinCG
  // decided to do about each one in pass 2.
  std::vector<int> *ParamNumberMap = nullptr;

  // Internally track how many things we've allocated
  unsigned nparams = 0;

  std::string allocParam(StringRef Type, StringRef Value) {
    unsigned ParamNumber;

    if (!ParamNumberMap) {
      // In pass 1, unconditionally assign a new parameter variable to every
      // value we're asked to process.
      ParamNumber = nparams++;
    } else {
      // In pass 2, consult the map provided by the caller to find out which
      // variable we should be keeping things in.
      int MapValue = (*ParamNumberMap)[nparams++];
      if (MapValue < 0)
        return std::string(Value);
      ParamNumber = MapValue;
    }

    // If we've allocated a new parameter variable for the first time, store
    // its type and value to be retrieved after codegen.
    if (ParamTypes && ParamTypes->size() == ParamNumber)
      ParamTypes->push_back(std::string(Type));
    if (ParamValues && ParamValues->size() == ParamNumber)
      ParamValues->push_back(std::string(Value));

    // Unimaginative naming scheme for parameter variables.
    return "Param" + utostr(ParamNumber);
  }
};

// -----------------------------------------------------------------------------
// System of classes that represent all the intermediate values used during
// code-generation for an intrinsic.
//
// The base class 'Result' can represent a value of the LLVM type 'Value', or
// sometimes 'Address' (for loads/stores, including an alignment requirement).
//
// In the case where the Tablegen provides a value in the codegen dag as a
// plain integer literal, the Result object we construct here will be one that
// returns true from hasIntegerConstantValue(). This allows the generated C++
// code to use the constant directly in contexts which can take a literal
// integer, such as Builder.CreateExtractValue(thing, 1), without going to the
// effort of calling llvm::ConstantInt::get() and then pulling the constant
// back out of the resulting llvm:Value later.

class Result {
public:
  // Convenient shorthand for the pointer type we'll be using everywhere.
  using Ptr = std::shared_ptr<Result>;

private:
  Ptr Predecessor;
  std::string VarName;
  bool VarNameUsed = false;
  unsigned Visited = 0;

public:
  virtual ~Result() = default;
  using Scope = std::map<std::string, Ptr>;
  virtual void genCode(raw_ostream &OS, CodeGenParamAllocator &) const = 0;
  virtual bool hasIntegerConstantValue() const { return false; }
  virtual uint32_t integerConstantValue() const { return 0; }
  virtual bool hasIntegerValue() const { return false; }
  virtual std::string getIntegerValue(const std::string &) {
    llvm_unreachable("non-working Result::getIntegerValue called");
  }
  virtual std::string typeName() const { return "Value *"; }

  // Mostly, when a code-generation operation has a dependency on prior
  // operations, it's because it uses the output values of those operations as
  // inputs. But there's one exception, which is the use of 'seq' in Tablegen
  // to indicate that operations have to be performed in sequence regardless of
  // whether they use each others' output values.
  //
  // So, the actual generation of code is done by depth-first search, using the
  // prerequisites() method to get a list of all the other Results that have to
  // be computed before this one. That method divides into the 'predecessor',
  // set by setPredecessor() while processing a 'seq' dag node, and the list
  // returned by 'morePrerequisites', which each subclass implements to return
  // a list of the Results it uses as input to whatever its own computation is
  // doing.

  virtual void morePrerequisites(std::vector<Ptr> &output) const {}
  std::vector<Ptr> prerequisites() const {
    std::vector<Ptr> ToRet;
    if (Predecessor)
      ToRet.push_back(Predecessor);
    morePrerequisites(ToRet);
    return ToRet;
  }

  void setPredecessor(Ptr p) {
    // If the user has nested one 'seq' node inside another, and this
    // method is called on the return value of the inner 'seq' (i.e.
    // the final item inside it), then we can't link _this_ node to p,
    // because it already has a predecessor. Instead, walk the chain
    // until we find the first item in the inner seq, and link that to
    // p, so that nesting seqs has the obvious effect of linking
    // everything together into one long sequential chain.
    Result *r = this;
    while (r->Predecessor)
      r = r->Predecessor.get();
    r->Predecessor = p;
  }

  // Each Result will be assigned a variable name in the output code, but not
  // all those variable names will actually be used (e.g. the return value of
  // Builder.CreateStore has void type, so nobody will want to refer to it). To
  // prevent annoying compiler warnings, we track whether each Result's
  // variable name was ever actually mentioned in subsequent statements, so
  // that it can be left out of the final generated code.
  std::string varname() {
    VarNameUsed = true;
    return VarName;
  }
  void setVarname(const StringRef s) { VarName = std::string(s); }
  bool varnameUsed() const { return VarNameUsed; }

  // Emit code to generate this result as a Value *.
  virtual std::string asValue() {
    return varname();
  }

  // Code generation happens in multiple passes. This method tracks whether a
  // Result has yet been visited in a given pass, without the need for a
  // tedious loop in between passes that goes through and resets a 'visited'
  // flag back to false: you just set Pass=1 the first time round, and Pass=2
  // the second time.
  bool needsVisiting(unsigned Pass) {
    bool ToRet = Visited < Pass;
    Visited = Pass;
    return ToRet;
  }
};

// Result subclass that retrieves one of the arguments to the clang builtin
// function. In cases where the argument has pointer type, we call
// EmitPointerWithAlignment and store the result in a variable of type Address,
// so that load and store IR nodes can know the right alignment. Otherwise, we
// call EmitScalarExpr.
//
// There are aggregate parameters in the MVE intrinsics API, but we don't deal
// with them in this Tablegen back end: they only arise in the vld2q/vld4q and
// vst2q/vst4q family, which is few enough that we just write the code by hand
// for those in CGBuiltin.cpp.
class BuiltinArgResult : public Result {
public:
  unsigned ArgNum;
  bool AddressType;
  bool Immediate;
  BuiltinArgResult(unsigned ArgNum, bool AddressType, bool Immediate)
      : ArgNum(ArgNum), AddressType(AddressType), Immediate(Immediate) {}
  void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
    OS << (AddressType ? "EmitPointerWithAlignment" : "EmitScalarExpr")
       << "(E->getArg(" << ArgNum << "))";
  }
  std::string typeName() const override {
    return AddressType ? "Address" : Result::typeName();
  }
  // Emit code to generate this result as a Value *.
  std::string asValue() override {
    if (AddressType)
      return "(" + varname() + ".getPointer())";
    return Result::asValue();
  }
  bool hasIntegerValue() const override { return Immediate; }
  std::string getIntegerValue(const std::string &IntType) override {
    return "GetIntegerConstantValue<" + IntType + ">(E->getArg(" +
           utostr(ArgNum) + "), getContext())";
  }
};

// Result subclass for an integer literal appearing in Tablegen. This may need
// to be turned into an llvm::Result by means of llvm::ConstantInt::get(), or
// it may be used directly as an integer, depending on which IRBuilder method
// it's being passed to.
class IntLiteralResult : public Result {
public:
  const ScalarType *IntegerType;
  uint32_t IntegerValue;
  IntLiteralResult(const ScalarType *IntegerType, uint32_t IntegerValue)
      : IntegerType(IntegerType), IntegerValue(IntegerValue) {}
  void genCode(raw_ostream &OS,
               CodeGenParamAllocator &ParamAlloc) const override {
    OS << "llvm::ConstantInt::get("
       << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName())
       << ", ";
    OS << ParamAlloc.allocParam(IntegerType->cName(), utostr(IntegerValue))
       << ")";
  }
  bool hasIntegerConstantValue() const override { return true; }
  uint32_t integerConstantValue() const override { return IntegerValue; }
};

// Result subclass representing a cast between different integer types. We use
// our own ScalarType abstraction as the representation of the target type,
// which gives both size and signedness.
class IntCastResult : public Result {
public:
  const ScalarType *IntegerType;
  Ptr V;
  IntCastResult(const ScalarType *IntegerType, Ptr V)
      : IntegerType(IntegerType), V(V) {}
  void genCode(raw_ostream &OS,
               CodeGenParamAllocator &ParamAlloc) const override {
    OS << "Builder.CreateIntCast(" << V->varname() << ", "
       << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName()) << ", "
       << ParamAlloc.allocParam("bool",
                                IntegerType->kind() == ScalarTypeKind::SignedInt
                                    ? "true"
                                    : "false")
       << ")";
  }
  void morePrerequisites(std::vector<Ptr> &output) const override {
    output.push_back(V);
  }
};

// Result subclass representing a cast between different pointer types.
class PointerCastResult : public Result {
public:
  const PointerType *PtrType;
  Ptr V;
  PointerCastResult(const PointerType *PtrType, Ptr V)
      : PtrType(PtrType), V(V) {}
  void genCode(raw_ostream &OS,
               CodeGenParamAllocator &ParamAlloc) const override {
    OS << "Builder.CreatePointerCast(" << V->asValue() << ", "
       << ParamAlloc.allocParam("llvm::Type *", PtrType->llvmName()) << ")";
  }
  void morePrerequisites(std::vector<Ptr> &output) const override {
    output.push_back(V);
  }
};

// Result subclass representing a call to an IRBuilder method. Each IRBuilder
// method we want to use will have a Tablegen record giving the method name and
// describing any important details of how to call it, such as whether a
// particular argument should be an integer constant instead of an llvm::Value.
class IRBuilderResult : public Result {
public:
  StringRef CallPrefix;
  std::vector<Ptr> Args;
  std::set<unsigned> AddressArgs;
  std::map<unsigned, std::string> IntegerArgs;
  IRBuilderResult(StringRef CallPrefix, std::vector<Ptr> Args,
                  std::set<unsigned> AddressArgs,
                  std::map<unsigned, std::string> IntegerArgs)
      : CallPrefix(CallPrefix), Args(Args), AddressArgs(AddressArgs),
        IntegerArgs(IntegerArgs) {}
  void genCode(raw_ostream &OS,
               CodeGenParamAllocator &ParamAlloc) const override {
    OS << CallPrefix;
    const char *Sep = "";
    for (unsigned i = 0, e = Args.size(); i < e; ++i) {
      Ptr Arg = Args[i];
      auto it = IntegerArgs.find(i);

      OS << Sep;
      Sep = ", ";

      if (it != IntegerArgs.end()) {
        if (Arg->hasIntegerConstantValue())
          OS << "static_cast<" << it->second << ">("
             << ParamAlloc.allocParam(it->second,
                                      utostr(Arg->integerConstantValue()))
             << ")";
        else if (Arg->hasIntegerValue())
          OS << ParamAlloc.allocParam(it->second,
                                      Arg->getIntegerValue(it->second));
      } else {
        OS << Arg->varname();
      }
    }
    OS << ")";
  }
  void morePrerequisites(std::vector<Ptr> &output) const override {
    for (unsigned i = 0, e = Args.size(); i < e; ++i) {
      Ptr Arg = Args[i];
      if (IntegerArgs.find(i) != IntegerArgs.end())
        continue;
      output.push_back(Arg);
    }
  }
};

// Result subclass representing making an Address out of a Value.
class AddressResult : public Result {
public:
  Ptr Arg;
  unsigned Align;
  AddressResult(Ptr Arg, unsigned Align) : Arg(Arg), Align(Align) {}
  void genCode(raw_ostream &OS,
               CodeGenParamAllocator &ParamAlloc) const override {
    OS << "Address(" << Arg->varname() << ", CharUnits::fromQuantity("
       << Align << "))";
  }
  std::string typeName() const override {
    return "Address";
  }
  void morePrerequisites(std::vector<Ptr> &output) const override {
    output.push_back(Arg);
  }
};

// Result subclass representing a call to an IR intrinsic, which we first have
// to look up using an Intrinsic::ID constant and an array of types.
class IRIntrinsicResult : public Result {
public:
  std::string IntrinsicID;
  std::vector<const Type *> ParamTypes;
  std::vector<Ptr> Args;
  IRIntrinsicResult(StringRef IntrinsicID, std::vector<const Type *> ParamTypes,
                    std::vector<Ptr> Args)
      : IntrinsicID(std::string(IntrinsicID)), ParamTypes(ParamTypes),
        Args(Args) {}
  void genCode(raw_ostream &OS,
               CodeGenParamAllocator &ParamAlloc) const override {
    std::string IntNo = ParamAlloc.allocParam(
        "Intrinsic::ID", "Intrinsic::" + IntrinsicID);
    OS << "Builder.CreateCall(CGM.getIntrinsic(" << IntNo;
    if (!ParamTypes.empty()) {
      OS << ", {";
      const char *Sep = "";
      for (auto T : ParamTypes) {
        OS << Sep << ParamAlloc.allocParam("llvm::Type *", T->llvmName());
        Sep = ", ";
      }
      OS << "}";
    }
    OS << "), {";
    const char *Sep = "";
    for (auto Arg : Args) {
      OS << Sep << Arg->asValue();
      Sep = ", ";
    }
    OS << "})";
  }
  void morePrerequisites(std::vector<Ptr> &output) const override {
    output.insert(output.end(), Args.begin(), Args.end());
  }
};

// Result subclass that specifies a type, for use in IRBuilder operations such
// as CreateBitCast that take a type argument.
class TypeResult : public Result {
public:
  const Type *T;
  TypeResult(const Type *T) : T(T) {}
  void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
    OS << T->llvmName();
  }
  std::string typeName() const override {
    return "llvm::Type *";
  }
};

// -----------------------------------------------------------------------------
// Class that describes a single ACLE intrinsic.
//
// A Tablegen record will typically describe more than one ACLE intrinsic, by
// means of setting the 'list<Type> Params' field to a list of multiple
// parameter types, so as to define vaddq_{s8,u8,...,f16,f32} all in one go.
// We'll end up with one instance of ACLEIntrinsic for *each* parameter type,
// rather than a single one for all of them. Hence, the constructor takes both
// a Tablegen record and the current value of the parameter type.

class ACLEIntrinsic {
  // Structure documenting that one of the intrinsic's arguments is required to
  // be a compile-time constant integer, and what constraints there are on its
  // value. Used when generating Sema checking code.
  struct ImmediateArg {
    enum class BoundsType { ExplicitRange, UInt };
    BoundsType boundsType;
    int64_t i1, i2;
    StringRef ExtraCheckType, ExtraCheckArgs;
    const Type *ArgType;
  };

  // For polymorphic intrinsics, FullName is the explicit name that uniquely
  // identifies this variant of the intrinsic, and ShortName is the name it
  // shares with at least one other intrinsic.
  std::string ShortName, FullName;

  // Name of the architecture extension, used in the Clang builtin name
  StringRef BuiltinExtension;

  // A very small number of intrinsics _only_ have a polymorphic
  // variant (vuninitializedq taking an unevaluated argument).
  bool PolymorphicOnly;

  // Another rarely-used flag indicating that the builtin doesn't
  // evaluate its argument(s) at all.
  bool NonEvaluating;

  // True if the intrinsic needs only the C header part (no codegen, semantic
  // checks, etc). Used for redeclaring MVE intrinsics in the arm_cde.h header.
  bool HeaderOnly;

  const Type *ReturnType;
  std::vector<const Type *> ArgTypes;
  std::map<unsigned, ImmediateArg> ImmediateArgs;
  Result::Ptr Code;

  std::map<std::string, std::string> CustomCodeGenArgs;

  // Recursive function that does the internals of code generation.
  void genCodeDfs(Result::Ptr V, std::list<Result::Ptr> &Used,
                  unsigned Pass) const {
    if (!V->needsVisiting(Pass))
      return;

    for (Result::Ptr W : V->prerequisites())
      genCodeDfs(W, Used, Pass);

    Used.push_back(V);
  }

public:
  const std::string &shortName() const { return ShortName; }
  const std::string &fullName() const { return FullName; }
  StringRef builtinExtension() const { return BuiltinExtension; }
  const Type *returnType() const { return ReturnType; }
  const std::vector<const Type *> &argTypes() const { return ArgTypes; }
  bool requiresFloat() const {
    if (ReturnType->requiresFloat())
      return true;
    for (const Type *T : ArgTypes)
      if (T->requiresFloat())
        return true;
    return false;
  }
  bool requiresMVE() const {
    return ReturnType->requiresMVE() ||
           any_of(ArgTypes, [](const Type *T) { return T->requiresMVE(); });
  }
  bool polymorphic() const { return ShortName != FullName; }
  bool polymorphicOnly() const { return PolymorphicOnly; }
  bool nonEvaluating() const { return NonEvaluating; }
  bool headerOnly() const { return HeaderOnly; }

  // External entry point for code generation, called from EmitterBase.
  void genCode(raw_ostream &OS, CodeGenParamAllocator &ParamAlloc,
               unsigned Pass) const {
    assert(!headerOnly() && "Called genCode for header-only intrinsic");
    if (!hasCode()) {
      for (auto kv : CustomCodeGenArgs)
        OS << "  " << kv.first << " = " << kv.second << ";\n";
      OS << "  break; // custom code gen\n";
      return;
    }
    std::list<Result::Ptr> Used;
    genCodeDfs(Code, Used, Pass);

    unsigned varindex = 0;
    for (Result::Ptr V : Used)
      if (V->varnameUsed())
        V->setVarname("Val" + utostr(varindex++));

    for (Result::Ptr V : Used) {
      OS << "  ";
      if (V == Used.back()) {
        assert(!V->varnameUsed());
        OS << "return "; // FIXME: what if the top-level thing is void?
      } else if (V->varnameUsed()) {
        std::string Type = V->typeName();
        OS << V->typeName();
        if (!StringRef(Type).endswith("*"))
          OS << " ";
        OS << V->varname() << " = ";
      }
      V->genCode(OS, ParamAlloc);
      OS << ";\n";
    }
  }
  bool hasCode() const { return Code != nullptr; }

  static std::string signedHexLiteral(const llvm::APInt &iOrig) {
    llvm::APInt i = iOrig.trunc(64);
    SmallString<40> s;
    i.toString(s, 16, true, true);
    return std::string(s.str());
  }

  std::string genSema() const {
    assert(!headerOnly() && "Called genSema for header-only intrinsic");
    std::vector<std::string> SemaChecks;

    for (const auto &kv : ImmediateArgs) {
      const ImmediateArg &IA = kv.second;

      llvm::APInt lo(128, 0), hi(128, 0);
      switch (IA.boundsType) {
      case ImmediateArg::BoundsType::ExplicitRange:
        lo = IA.i1;
        hi = IA.i2;
        break;
      case ImmediateArg::BoundsType::UInt:
        lo = 0;
        hi = llvm::APInt::getMaxValue(IA.i1).zext(128);
        break;
      }

      std::string Index = utostr(kv.first);

      // Emit a range check if the legal range of values for the
      // immediate is smaller than the _possible_ range of values for
      // its type.
      unsigned ArgTypeBits = IA.ArgType->sizeInBits();
      llvm::APInt ArgTypeRange = llvm::APInt::getMaxValue(ArgTypeBits).zext(128);
      llvm::APInt ActualRange = (hi-lo).trunc(64).sext(128);
      if (ActualRange.ult(ArgTypeRange))
        SemaChecks.push_back("SemaBuiltinConstantArgRange(TheCall, " + Index +
                             ", " + signedHexLiteral(lo) + ", " +
                             signedHexLiteral(hi) + ")");

      if (!IA.ExtraCheckType.empty()) {
        std::string Suffix;
        if (!IA.ExtraCheckArgs.empty()) {
          std::string tmp;
          StringRef Arg = IA.ExtraCheckArgs;
          if (Arg == "!lanesize") {
            tmp = utostr(IA.ArgType->sizeInBits());
            Arg = tmp;
          }
          Suffix = (Twine(", ") + Arg).str();
        }
        SemaChecks.push_back((Twine("SemaBuiltinConstantArg") +
                              IA.ExtraCheckType + "(TheCall, " + Index +
                              Suffix + ")")
                                 .str());
      }

      assert(!SemaChecks.empty());
    }
    if (SemaChecks.empty())
      return "";
    return join(std::begin(SemaChecks), std::end(SemaChecks),
                " ||\n         ") +
           ";\n";
  }

  ACLEIntrinsic(EmitterBase &ME, Record *R, const Type *Param);
};

// -----------------------------------------------------------------------------
// The top-level class that holds all the state from analyzing the entire
// Tablegen input.

class EmitterBase {
protected:
  // EmitterBase holds a collection of all the types we've instantiated.
  VoidType Void;
  std::map<std::string, std::unique_ptr<ScalarType>> ScalarTypes;
  std::map<std::tuple<ScalarTypeKind, unsigned, unsigned>,
           std::unique_ptr<VectorType>>
      VectorTypes;
  std::map<std::pair<std::string, unsigned>, std::unique_ptr<MultiVectorType>>
      MultiVectorTypes;
  std::map<unsigned, std::unique_ptr<PredicateType>> PredicateTypes;
  std::map<std::string, std::unique_ptr<PointerType>> PointerTypes;

  // And all the ACLEIntrinsic instances we've created.
  std::map<std::string, std::unique_ptr<ACLEIntrinsic>> ACLEIntrinsics;

public:
  // Methods to create a Type object, or return the right existing one from the
  // maps stored in this object.
  const VoidType *getVoidType() { return &Void; }
  const ScalarType *getScalarType(StringRef Name) {
    return ScalarTypes[std::string(Name)].get();
  }
  const ScalarType *getScalarType(Record *R) {
    return getScalarType(R->getName());
  }
  const VectorType *getVectorType(const ScalarType *ST, unsigned Lanes) {
    std::tuple<ScalarTypeKind, unsigned, unsigned> key(ST->kind(),
                                                       ST->sizeInBits(), Lanes);
    if (VectorTypes.find(key) == VectorTypes.end())
      VectorTypes[key] = std::make_unique<VectorType>(ST, Lanes);
    return VectorTypes[key].get();
  }
  const VectorType *getVectorType(const ScalarType *ST) {
    return getVectorType(ST, 128 / ST->sizeInBits());
  }
  const MultiVectorType *getMultiVectorType(unsigned Registers,
                                            const VectorType *VT) {
    std::pair<std::string, unsigned> key(VT->cNameBase(), Registers);
    if (MultiVectorTypes.find(key) == MultiVectorTypes.end())
      MultiVectorTypes[key] = std::make_unique<MultiVectorType>(Registers, VT);
    return MultiVectorTypes[key].get();
  }
  const PredicateType *getPredicateType(unsigned Lanes) {
    unsigned key = Lanes;
    if (PredicateTypes.find(key) == PredicateTypes.end())
      PredicateTypes[key] = std::make_unique<PredicateType>(Lanes);
    return PredicateTypes[key].get();
  }
  const PointerType *getPointerType(const Type *T, bool Const) {
    PointerType PT(T, Const);
    std::string key = PT.cName();
    if (PointerTypes.find(key) == PointerTypes.end())
      PointerTypes[key] = std::make_unique<PointerType>(PT);
    return PointerTypes[key].get();
  }

  // Methods to construct a type from various pieces of Tablegen. These are
  // always called in the context of setting up a particular ACLEIntrinsic, so
  // there's always an ambient parameter type (because we're iterating through
  // the Params list in the Tablegen record for the intrinsic), which is used
  // to expand Tablegen classes like 'Vector' which mean something different in
  // each member of a parametric family.
  const Type *getType(Record *R, const Type *Param);
  const Type *getType(DagInit *D, const Type *Param);
  const Type *getType(Init *I, const Type *Param);

  // Functions that translate the Tablegen representation of an intrinsic's
  // code generation into a collection of Value objects (which will then be
  // reprocessed to read out the actual C++ code included by CGBuiltin.cpp).
  Result::Ptr getCodeForDag(DagInit *D, const Result::Scope &Scope,
                            const Type *Param);
  Result::Ptr getCodeForDagArg(DagInit *D, unsigned ArgNum,
                               const Result::Scope &Scope, const Type *Param);
  Result::Ptr getCodeForArg(unsigned ArgNum, const Type *ArgType, bool Promote,
                            bool Immediate);

  void GroupSemaChecks(std::map<std::string, std::set<std::string>> &Checks);

  // Constructor and top-level functions.

  EmitterBase(RecordKeeper &Records);
  virtual ~EmitterBase() = default;

  virtual void EmitHeader(raw_ostream &OS) = 0;
  virtual void EmitBuiltinDef(raw_ostream &OS) = 0;
  virtual void EmitBuiltinSema(raw_ostream &OS) = 0;
  void EmitBuiltinCG(raw_ostream &OS);
  void EmitBuiltinAliases(raw_ostream &OS);
};

const Type *EmitterBase::getType(Init *I, const Type *Param) {
  if (auto Dag = dyn_cast<DagInit>(I))
    return getType(Dag, Param);
  if (auto Def = dyn_cast<DefInit>(I))
    return getType(Def->getDef(), Param);

  PrintFatalError("Could not convert this value into a type");
}

const Type *EmitterBase::getType(Record *R, const Type *Param) {
  // Pass to a subfield of any wrapper records. We don't expect more than one
  // of these: immediate operands are used as plain numbers rather than as
  // llvm::Value, so it's meaningless to promote their type anyway.
  if (R->isSubClassOf("Immediate"))
    R = R->getValueAsDef("type");
  else if (R->isSubClassOf("unpromoted"))
    R = R->getValueAsDef("underlying_type");

  if (R->getName() == "Void")
    return getVoidType();
  if (R->isSubClassOf("PrimitiveType"))
    return getScalarType(R);
  if (R->isSubClassOf("ComplexType"))
    return getType(R->getValueAsDag("spec"), Param);

  PrintFatalError(R->getLoc(), "Could not convert this record into a type");
}

const Type *EmitterBase::getType(DagInit *D, const Type *Param) {
  // The meat of the getType system: types in the Tablegen are represented by a
  // dag whose operators select sub-cases of this function.

  Record *Op = cast<DefInit>(D->getOperator())->getDef();
  if (!Op->isSubClassOf("ComplexTypeOp"))
    PrintFatalError(
        "Expected ComplexTypeOp as dag operator in type expression");

  if (Op->getName() == "CTO_Parameter") {
    if (isa<VoidType>(Param))
      PrintFatalError("Parametric type in unparametrised context");
    return Param;
  }

  if (Op->getName() == "CTO_Vec") {
    const Type *Element = getType(D->getArg(0), Param);
    if (D->getNumArgs() == 1) {
      return getVectorType(cast<ScalarType>(Element));
    } else {
      const Type *ExistingVector = getType(D->getArg(1), Param);
      return getVectorType(cast<ScalarType>(Element),
                           cast<VectorType>(ExistingVector)->lanes());
    }
  }

  if (Op->getName() == "CTO_Pred") {
    const Type *Element = getType(D->getArg(0), Param);
    return getPredicateType(128 / Element->sizeInBits());
  }

  if (Op->isSubClassOf("CTO_Tuple")) {
    unsigned Registers = Op->getValueAsInt("n");
    const Type *Element = getType(D->getArg(0), Param);
    return getMultiVectorType(Registers, cast<VectorType>(Element));
  }

  if (Op->isSubClassOf("CTO_Pointer")) {
    const Type *Pointee = getType(D->getArg(0), Param);
    return getPointerType(Pointee, Op->getValueAsBit("const"));
  }

  if (Op->getName() == "CTO_CopyKind") {
    const ScalarType *STSize = cast<ScalarType>(getType(D->getArg(0), Param));
    const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(1), Param));
    for (const auto &kv : ScalarTypes) {
      const ScalarType *RT = kv.second.get();
      if (RT->kind() == STKind->kind() && RT->sizeInBits() == STSize->sizeInBits())
        return RT;
    }
    PrintFatalError("Cannot find a type to satisfy CopyKind");
  }

  if (Op->isSubClassOf("CTO_ScaleSize")) {
    const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(0), Param));
    int Num = Op->getValueAsInt("num"), Denom = Op->getValueAsInt("denom");
    unsigned DesiredSize = STKind->sizeInBits() * Num / Denom;
    for (const auto &kv : ScalarTypes) {
      const ScalarType *RT = kv.second.get();
      if (RT->kind() == STKind->kind() && RT->sizeInBits() == DesiredSize)
        return RT;
    }
    PrintFatalError("Cannot find a type to satisfy ScaleSize");
  }

  PrintFatalError("Bad operator in type dag expression");
}

Result::Ptr EmitterBase::getCodeForDag(DagInit *D, const Result::Scope &Scope,
                                       const Type *Param) {
  Record *Op = cast<DefInit>(D->getOperator())->getDef();

  if (Op->getName() == "seq") {
    Result::Scope SubScope = Scope;
    Result::Ptr PrevV = nullptr;
    for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i) {
      // We don't use getCodeForDagArg here, because the argument name
      // has different semantics in a seq
      Result::Ptr V =
          getCodeForDag(cast<DagInit>(D->getArg(i)), SubScope, Param);
      StringRef ArgName = D->getArgNameStr(i);
      if (!ArgName.empty())
        SubScope[std::string(ArgName)] = V;
      if (PrevV)
        V->setPredecessor(PrevV);
      PrevV = V;
    }
    return PrevV;
  } else if (Op->isSubClassOf("Type")) {
    if (D->getNumArgs() != 1)
      PrintFatalError("Type casts should have exactly one argument");
    const Type *CastType = getType(Op, Param);
    Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);
    if (const auto *ST = dyn_cast<ScalarType>(CastType)) {
      if (!ST->requiresFloat()) {
        if (Arg->hasIntegerConstantValue())
          return std::make_shared<IntLiteralResult>(
              ST, Arg->integerConstantValue());
        else
          return std::make_shared<IntCastResult>(ST, Arg);
      }
    } else if (const auto *PT = dyn_cast<PointerType>(CastType)) {
      return std::make_shared<PointerCastResult>(PT, Arg);
    }
    PrintFatalError("Unsupported type cast");
  } else if (Op->getName() == "address") {
    if (D->getNumArgs() != 2)
      PrintFatalError("'address' should have two arguments");
    Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);
    unsigned Alignment;
    if (auto *II = dyn_cast<IntInit>(D->getArg(1))) {
      Alignment = II->getValue();
    } else {
      PrintFatalError("'address' alignment argument should be an integer");
    }
    return std::make_shared<AddressResult>(Arg, Alignment);
  } else if (Op->getName() == "unsignedflag") {
    if (D->getNumArgs() != 1)
      PrintFatalError("unsignedflag should have exactly one argument");
    Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef();
    if (!TypeRec->isSubClassOf("Type"))
      PrintFatalError("unsignedflag's argument should be a type");
    if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) {
      return std::make_shared<IntLiteralResult>(
        getScalarType("u32"), ST->kind() == ScalarTypeKind::UnsignedInt);
    } else {
      PrintFatalError("unsignedflag's argument should be a scalar type");
    }
  } else if (Op->getName() == "bitsize") {
    if (D->getNumArgs() != 1)
      PrintFatalError("bitsize should have exactly one argument");
    Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef();
    if (!TypeRec->isSubClassOf("Type"))
      PrintFatalError("bitsize's argument should be a type");
    if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) {
      return std::make_shared<IntLiteralResult>(getScalarType("u32"),
                                                ST->sizeInBits());
    } else {
      PrintFatalError("bitsize's argument should be a scalar type");
    }
  } else {
    std::vector<Result::Ptr> Args;
    for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i)
      Args.push_back(getCodeForDagArg(D, i, Scope, Param));
    if (Op->isSubClassOf("IRBuilderBase")) {
      std::set<unsigned> AddressArgs;
      std::map<unsigned, std::string> IntegerArgs;
      for (Record *sp : Op->getValueAsListOfDefs("special_params")) {
        unsigned Index = sp->getValueAsInt("index");
        if (sp->isSubClassOf("IRBuilderAddrParam")) {
          AddressArgs.insert(Index);
        } else if (sp->isSubClassOf("IRBuilderIntParam")) {
          IntegerArgs[Index] = std::string(sp->getValueAsString("type"));
        }
      }
      return std::make_shared<IRBuilderResult>(Op->getValueAsString("prefix"),
                                               Args, AddressArgs, IntegerArgs);
    } else if (Op->isSubClassOf("IRIntBase")) {
      std::vector<const Type *> ParamTypes;
      for (Record *RParam : Op->getValueAsListOfDefs("params"))
        ParamTypes.push_back(getType(RParam, Param));
      std::string IntName = std::string(Op->getValueAsString("intname"));
      if (Op->getValueAsBit("appendKind"))
        IntName += "_" + toLetter(cast<ScalarType>(Param)->kind());
      return std::make_shared<IRIntrinsicResult>(IntName, ParamTypes, Args);
    } else {
      PrintFatalError("Unsupported dag node " + Op->getName());
    }
  }
}

Result::Ptr EmitterBase::getCodeForDagArg(DagInit *D, unsigned ArgNum,
                                          const Result::Scope &Scope,
                                          const Type *Param) {
  Init *Arg = D->getArg(ArgNum);
  StringRef Name = D->getArgNameStr(ArgNum);

  if (!Name.empty()) {
    if (!isa<UnsetInit>(Arg))
      PrintFatalError(
          "dag operator argument should not have both a value and a name");
    auto it = Scope.find(std::string(Name));
    if (it == Scope.end())
      PrintFatalError("unrecognized variable name '" + Name + "'");
    return it->second;
  }

  if (auto *II = dyn_cast<IntInit>(Arg))
    return std::make_shared<IntLiteralResult>(getScalarType("u32"),
                                              II->getValue());

  if (auto *DI = dyn_cast<DagInit>(Arg))
    return getCodeForDag(DI, Scope, Param);

  if (auto *DI = dyn_cast<DefInit>(Arg)) {
    Record *Rec = DI->getDef();
    if (Rec->isSubClassOf("Type")) {
      const Type *T = getType(Rec, Param);
      return std::make_shared<TypeResult>(T);
    }
  }

  PrintFatalError("bad dag argument type for code generation");
}

Result::Ptr EmitterBase::getCodeForArg(unsigned ArgNum, const Type *ArgType,
                                       bool Promote, bool Immediate) {
  Result::Ptr V = std::make_shared<BuiltinArgResult>(
      ArgNum, isa<PointerType>(ArgType), Immediate);

  if (Promote) {
    if (const auto *ST = dyn_cast<ScalarType>(ArgType)) {
      if (ST->isInteger() && ST->sizeInBits() < 32)
        V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
    } else if (const auto *PT = dyn_cast<PredicateType>(ArgType)) {
      V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
      V = std::make_shared<IRIntrinsicResult>("arm_mve_pred_i2v",
                                              std::vector<const Type *>{PT},
                                              std::vector<Result::Ptr>{V});
    }
  }

  return V;
}

ACLEIntrinsic::ACLEIntrinsic(EmitterBase &ME, Record *R, const Type *Param)
    : ReturnType(ME.getType(R->getValueAsDef("ret"), Param)) {
  // Derive the intrinsic's full name, by taking the name of the
  // Tablegen record (or override) and appending the suffix from its
  // parameter type. (If the intrinsic is unparametrised, its
  // parameter type will be given as Void, which returns the empty
  // string for acleSuffix.)
  StringRef BaseName =
      (R->isSubClassOf("NameOverride") ? R->getValueAsString("basename")
                                       : R->getName());
  StringRef overrideLetter = R->getValueAsString("overrideKindLetter");
  FullName =
      (Twine(BaseName) + Param->acleSuffix(std::string(overrideLetter))).str();

  // Derive the intrinsic's polymorphic name, by removing components from the
  // full name as specified by its 'pnt' member ('polymorphic name type'),
  // which indicates how many type suffixes to remove, and any other piece of
  // the name that should be removed.
  Record *PolymorphicNameType = R->getValueAsDef("pnt");
  SmallVector<StringRef, 8> NameParts;
  StringRef(FullName).split(NameParts, '_');
  for (unsigned i = 0, e = PolymorphicNameType->getValueAsInt(
                           "NumTypeSuffixesToDiscard");
       i < e; ++i)
    NameParts.pop_back();
  if (!PolymorphicNameType->isValueUnset("ExtraSuffixToDiscard")) {
    StringRef ExtraSuffix =
        PolymorphicNameType->getValueAsString("ExtraSuffixToDiscard");
    auto it = NameParts.end();
    while (it != NameParts.begin()) {
      --it;
      if (*it == ExtraSuffix) {
        NameParts.erase(it);
        break;
      }
    }
  }
  ShortName = join(std::begin(NameParts), std::end(NameParts), "_");

  BuiltinExtension = R->getValueAsString("builtinExtension");

  PolymorphicOnly = R->getValueAsBit("polymorphicOnly");
  NonEvaluating = R->getValueAsBit("nonEvaluating");
  HeaderOnly = R->getValueAsBit("headerOnly");

  // Process the intrinsic's argument list.
  DagInit *ArgsDag = R->getValueAsDag("args");
  Result::Scope Scope;
  for (unsigned i = 0, e = ArgsDag->getNumArgs(); i < e; ++i) {
    Init *TypeInit = ArgsDag->getArg(i);

    bool Promote = true;
    if (auto TypeDI = dyn_cast<DefInit>(TypeInit))
      if (TypeDI->getDef()->isSubClassOf("unpromoted"))
        Promote = false;

    // Work out the type of the argument, for use in the function prototype in
    // the header file.
    const Type *ArgType = ME.getType(TypeInit, Param);
    ArgTypes.push_back(ArgType);

    // If the argument is a subclass of Immediate, record the details about
    // what values it can take, for Sema checking.
    bool Immediate = false;
    if (auto TypeDI = dyn_cast<DefInit>(TypeInit)) {
      Record *TypeRec = TypeDI->getDef();
      if (TypeRec->isSubClassOf("Immediate")) {
        Immediate = true;

        Record *Bounds = TypeRec->getValueAsDef("bounds");
        ImmediateArg &IA = ImmediateArgs[i];
        if (Bounds->isSubClassOf("IB_ConstRange")) {
          IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
          IA.i1 = Bounds->getValueAsInt("lo");
          IA.i2 = Bounds->getValueAsInt("hi");
        } else if (Bounds->getName() == "IB_UEltValue") {
          IA.boundsType = ImmediateArg::BoundsType::UInt;
          IA.i1 = Param->sizeInBits();
        } else if (Bounds->getName() == "IB_LaneIndex") {
          IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
          IA.i1 = 0;
          IA.i2 = 128 / Param->sizeInBits() - 1;
        } else if (Bounds->isSubClassOf("IB_EltBit")) {
          IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
          IA.i1 = Bounds->getValueAsInt("base");
          const Type *T = ME.getType(Bounds->getValueAsDef("type"), Param);
          IA.i2 = IA.i1 + T->sizeInBits() - 1;
        } else {
          PrintFatalError("unrecognised ImmediateBounds subclass");
        }

        IA.ArgType = ArgType;

        if (!TypeRec->isValueUnset("extra")) {
          IA.ExtraCheckType = TypeRec->getValueAsString("extra");
          if (!TypeRec->isValueUnset("extraarg"))
            IA.ExtraCheckArgs = TypeRec->getValueAsString("extraarg");
        }
      }
    }

    // The argument will usually have a name in the arguments dag, which goes
    // into the variable-name scope that the code gen will refer to.
    StringRef ArgName = ArgsDag->getArgNameStr(i);
    if (!ArgName.empty())
      Scope[std::string(ArgName)] =
          ME.getCodeForArg(i, ArgType, Promote, Immediate);
  }

  // Finally, go through the codegen dag and translate it into a Result object
  // (with an arbitrary DAG of depended-on Results hanging off it).
  DagInit *CodeDag = R->getValueAsDag("codegen");
  Record *MainOp = cast<DefInit>(CodeDag->getOperator())->getDef();
  if (MainOp->isSubClassOf("CustomCodegen")) {
    // Or, if it's the special case of CustomCodegen, just accumulate
    // a list of parameters we're going to assign to variables before
    // breaking from the loop.
    CustomCodeGenArgs["CustomCodeGenType"] =
        (Twine("CustomCodeGen::") + MainOp->getValueAsString("type")).str();
    for (unsigned i = 0, e = CodeDag->getNumArgs(); i < e; ++i) {
      StringRef Name = CodeDag->getArgNameStr(i);
      if (Name.empty()) {
        PrintFatalError("Operands to CustomCodegen should have names");
      } else if (auto *II = dyn_cast<IntInit>(CodeDag->getArg(i))) {
        CustomCodeGenArgs[std::string(Name)] = itostr(II->getValue());
      } else if (auto *SI = dyn_cast<StringInit>(CodeDag->getArg(i))) {
        CustomCodeGenArgs[std::string(Name)] = std::string(SI->getValue());
      } else {
        PrintFatalError("Operands to CustomCodegen should be integers");
      }
    }
  } else {
    Code = ME.getCodeForDag(CodeDag, Scope, Param);
  }
}

EmitterBase::EmitterBase(RecordKeeper &Records) {
  // Construct the whole EmitterBase.

  // First, look up all the instances of PrimitiveType. This gives us the list
  // of vector typedefs we have to put in arm_mve.h, and also allows us to
  // collect all the useful ScalarType instances into a big list so that we can
  // use it for operations such as 'find the unsigned version of this signed
  // integer type'.
  for (Record *R : Records.getAllDerivedDefinitions("PrimitiveType"))
    ScalarTypes[std::string(R->getName())] = std::make_unique<ScalarType>(R);

  // Now go through the instances of Intrinsic, and for each one, iterate
  // through its list of type parameters making an ACLEIntrinsic for each one.
  for (Record *R : Records.getAllDerivedDefinitions("Intrinsic")) {
    for (Record *RParam : R->getValueAsListOfDefs("params")) {
      const Type *Param = getType(RParam, getVoidType());
      auto Intrinsic = std::make_unique<ACLEIntrinsic>(*this, R, Param);
      ACLEIntrinsics[Intrinsic->fullName()] = std::move(Intrinsic);
    }
  }
}

/// A wrapper on raw_string_ostream that contains its own buffer rather than
/// having to point it at one elsewhere. (In other words, it works just like
/// std::ostringstream; also, this makes it convenient to declare a whole array
/// of them at once.)
///
/// We have to set this up using multiple inheritance, to ensure that the
/// string member has been constructed before raw_string_ostream's constructor
/// is given a pointer to it.
class string_holder {
protected:
  std::string S;
};
class raw_self_contained_string_ostream : private string_holder,
                                          public raw_string_ostream {
public:
  raw_self_contained_string_ostream()
      : string_holder(), raw_string_ostream(S) {}
};

const char LLVMLicenseHeader[] =
    " *\n"
    " *\n"
    " * Part of the LLVM Project, under the Apache License v2.0 with LLVM"
    " Exceptions.\n"
    " * See https://llvm.org/LICENSE.txt for license information.\n"
    " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
    " *\n"
    " *===-----------------------------------------------------------------"
    "------===\n"
    " */\n"
    "\n";

// Machinery for the grouping of intrinsics by similar codegen.
//
// The general setup is that 'MergeableGroup' stores the things that a set of
// similarly shaped intrinsics have in common: the text of their code
// generation, and the number and type of their parameter variables.
// MergeableGroup is the key in a std::map whose value is a set of
// OutputIntrinsic, which stores the ways in which a particular intrinsic
// specializes the MergeableGroup's generic description: the function name and
// the _values_ of the parameter variables.

struct ComparableStringVector : std::vector<std::string> {
  // Infrastructure: a derived class of vector<string> which comes with an
  // ordering, so that it can be used as a key in maps and an element in sets.
  // There's no requirement on the ordering beyond being deterministic.
  bool operator<(const ComparableStringVector &rhs) const {
    if (size() != rhs.size())
      return size() < rhs.size();
    for (size_t i = 0, e = size(); i < e; ++i)
      if ((*this)[i] != rhs[i])
        return (*this)[i] < rhs[i];
    return false;
  }
};

struct OutputIntrinsic {
  const ACLEIntrinsic *Int;
  std::string Name;
  ComparableStringVector ParamValues;
  bool operator<(const OutputIntrinsic &rhs) const {
    if (Name != rhs.Name)
      return Name < rhs.Name;
    return ParamValues < rhs.ParamValues;
  }
};
struct MergeableGroup {
  std::string Code;
  ComparableStringVector ParamTypes;
  bool operator<(const MergeableGroup &rhs) const {
    if (Code != rhs.Code)
      return Code < rhs.Code;
    return ParamTypes < rhs.ParamTypes;
  }
};

void EmitterBase::EmitBuiltinCG(raw_ostream &OS) {
  // Pass 1: generate code for all the intrinsics as if every type or constant
  // that can possibly be abstracted out into a parameter variable will be.
  // This identifies the sets of intrinsics we'll group together into a single
  // piece of code generation.

  std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroupsPrelim;

  for (const auto &kv : ACLEIntrinsics) {
    const ACLEIntrinsic &Int = *kv.second;
    if (Int.headerOnly())
      continue;

    MergeableGroup MG;
    OutputIntrinsic OI;

    OI.Int = &Int;
    OI.Name = Int.fullName();
    CodeGenParamAllocator ParamAllocPrelim{&MG.ParamTypes, &OI.ParamValues};
    raw_string_ostream OS(MG.Code);
    Int.genCode(OS, ParamAllocPrelim, 1);
    OS.flush();

    MergeableGroupsPrelim[MG].insert(OI);
  }

  // Pass 2: for each of those groups, optimize the parameter variable set by
  // eliminating 'parameters' that are the same for all intrinsics in the
  // group, and merging together pairs of parameter variables that take the
  // same values as each other for all intrinsics in the group.

  std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroups;

  for (const auto &kv : MergeableGroupsPrelim) {
    const MergeableGroup &MG = kv.first;
    std::vector<int> ParamNumbers;
    std::map<ComparableStringVector, int> ParamNumberMap;

    // Loop over the parameters for this group.
    for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
      // Is this parameter the same for all intrinsics in the group?
      const OutputIntrinsic &OI_first = *kv.second.begin();
      bool Constant = all_of(kv.second, [&](const OutputIntrinsic &OI) {
        return OI.ParamValues[i] == OI_first.ParamValues[i];
      });

      // If so, record it as -1, meaning 'no parameter variable needed'. Then
      // the corresponding call to allocParam in pass 2 will not generate a
      // variable at all, and just use the value inline.
      if (Constant) {
        ParamNumbers.push_back(-1);
        continue;
      }

      // Otherwise, make a list of the values this parameter takes for each
      // intrinsic, and see if that value vector matches anything we already
      // have. We also record the parameter type, so that we don't accidentally
      // match up two parameter variables with different types. (Not that
      // there's much chance of them having textually equivalent values, but in
      // _principle_ it could happen.)
      ComparableStringVector key;
      key.push_back(MG.ParamTypes[i]);
      for (const auto &OI : kv.second)
        key.push_back(OI.ParamValues[i]);

      auto Found = ParamNumberMap.find(key);
      if (Found != ParamNumberMap.end()) {
        // Yes, an existing parameter variable can be reused for this.
        ParamNumbers.push_back(Found->second);
        continue;
      }

      // No, we need a new parameter variable.
      int ExistingIndex = ParamNumberMap.size();
      ParamNumberMap[key] = ExistingIndex;
      ParamNumbers.push_back(ExistingIndex);
    }

    // Now we're ready to do the pass 2 code generation, which will emit the
    // reduced set of parameter variables we've just worked out.

    for (const auto &OI_prelim : kv.second) {
      const ACLEIntrinsic *Int = OI_prelim.Int;

      MergeableGroup MG;
      OutputIntrinsic OI;

      OI.Int = OI_prelim.Int;
      OI.Name = OI_prelim.Name;
      CodeGenParamAllocator ParamAlloc{&MG.ParamTypes, &OI.ParamValues,
                                       &ParamNumbers};
      raw_string_ostream OS(MG.Code);
      Int->genCode(OS, ParamAlloc, 2);
      OS.flush();

      MergeableGroups[MG].insert(OI);
    }
  }

  // Output the actual C++ code.

  for (const auto &kv : MergeableGroups) {
    const MergeableGroup &MG = kv.first;

    // List of case statements in the main switch on BuiltinID, and an open
    // brace.
    const char *prefix = "";
    for (const auto &OI : kv.second) {
      OS << prefix << "case ARM::BI__builtin_arm_" << OI.Int->builtinExtension()
         << "_" << OI.Name << ":";

      prefix = "\n";
    }
    OS << " {\n";

    if (!MG.ParamTypes.empty()) {
      // If we've got some parameter variables, then emit their declarations...
      for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
        StringRef Type = MG.ParamTypes[i];
        OS << "  " << Type;
        if (!Type.endswith("*"))
          OS << " ";
        OS << " Param" << utostr(i) << ";\n";
      }

      // ... and an inner switch on BuiltinID that will fill them in with each
      // individual intrinsic's values.
      OS << "  switch (BuiltinID) {\n";
      for (const auto &OI : kv.second) {
        OS << "  case ARM::BI__builtin_arm_" << OI.Int->builtinExtension()
           << "_" << OI.Name << ":\n";
        for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i)
          OS << "    Param" << utostr(i) << " = " << OI.ParamValues[i] << ";\n";
        OS << "    break;\n";
      }
      OS << "  }\n";
    }

    // And finally, output the code, and close the outer pair of braces. (The
    // code will always end with a 'return' statement, so we need not insert a
    // 'break' here.)
    OS << MG.Code << "}\n";
  }
}

void EmitterBase::EmitBuiltinAliases(raw_ostream &OS) {
  // Build a sorted table of:
  // - intrinsic id number
  // - full name
  // - polymorphic name or -1
  StringToOffsetTable StringTable;
  OS << "static const IntrinToName MapData[] = {\n";
  for (const auto &kv : ACLEIntrinsics) {
    const ACLEIntrinsic &Int = *kv.second;
    if (Int.headerOnly())
      continue;
    int32_t ShortNameOffset =
        Int.polymorphic() ? StringTable.GetOrAddStringOffset(Int.shortName())
                          : -1;
    OS << "  { ARM::BI__builtin_arm_" << Int.builtinExtension() << "_"
       << Int.fullName() << ", "
       << StringTable.GetOrAddStringOffset(Int.fullName()) << ", "
       << ShortNameOffset << "},\n";
  }
  OS << "};\n\n";

  OS << "ArrayRef<IntrinToName> Map(MapData);\n\n";

  OS << "static const char IntrinNames[] = {\n";
  StringTable.EmitString(OS);
  OS << "};\n\n";
}

void EmitterBase::GroupSemaChecks(
    std::map<std::string, std::set<std::string>> &Checks) {
  for (const auto &kv : ACLEIntrinsics) {
    const ACLEIntrinsic &Int = *kv.second;
    if (Int.headerOnly())
      continue;
    std::string Check = Int.genSema();
    if (!Check.empty())
      Checks[Check].insert(Int.fullName());
  }
}

// -----------------------------------------------------------------------------
// The class used for generating arm_mve.h and related Clang bits
//

class MveEmitter : public EmitterBase {
public:
  MveEmitter(RecordKeeper &Records) : EmitterBase(Records){};
  void EmitHeader(raw_ostream &OS) override;
  void EmitBuiltinDef(raw_ostream &OS) override;
  void EmitBuiltinSema(raw_ostream &OS) override;
};

void MveEmitter::EmitHeader(raw_ostream &OS) {
  // Accumulate pieces of the header file that will be enabled under various
  // different combinations of #ifdef. The index into parts[] is made up of
  // the following bit flags.
  constexpr unsigned Float = 1;
  constexpr unsigned UseUserNamespace = 2;

  constexpr unsigned NumParts = 4;
  raw_self_contained_string_ostream parts[NumParts];

  // Write typedefs for all the required vector types, and a few scalar
  // types that don't already have the name we want them to have.

  parts[0] << "typedef uint16_t mve_pred16_t;\n";
  parts[Float] << "typedef __fp16 float16_t;\n"
                  "typedef float float32_t;\n";
  for (const auto &kv : ScalarTypes) {
    const ScalarType *ST = kv.second.get();
    if (ST->hasNonstandardName())
      continue;
    raw_ostream &OS = parts[ST->requiresFloat() ? Float : 0];
    const VectorType *VT = getVectorType(ST);

    OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes()
       << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " "
       << VT->cName() << ";\n";

    // Every vector type also comes with a pair of multi-vector types for
    // the VLD2 and VLD4 instructions.
    for (unsigned n = 2; n <= 4; n += 2) {
      const MultiVectorType *MT = getMultiVectorType(n, VT);
      OS << "typedef struct { " << VT->cName() << " val[" << n << "]; } "
         << MT->cName() << ";\n";
    }
  }
  parts[0] << "\n";
  parts[Float] << "\n";

  // Write declarations for all the intrinsics.

  for (const auto &kv : ACLEIntrinsics) {
    const ACLEIntrinsic &Int = *kv.second;

    // We generate each intrinsic twice, under its full unambiguous
    // name and its shorter polymorphic name (if the latter exists).
    for (bool Polymorphic : {false, true}) {
      if (Polymorphic && !Int.polymorphic())
        continue;
      if (!Polymorphic && Int.polymorphicOnly())
        continue;

      // We also generate each intrinsic under a name like __arm_vfooq
      // (which is in C language implementation namespace, so it's
      // safe to define in any conforming user program) and a shorter
      // one like vfooq (which is in user namespace, so a user might
      // reasonably have used it for something already). If so, they
      // can #define __ARM_MVE_PRESERVE_USER_NAMESPACE before
      // including the header, which will suppress the shorter names
      // and leave only the implementation-namespace ones. Then they
      // have to write __arm_vfooq everywhere, of course.

      for (bool UserNamespace : {false, true}) {
        raw_ostream &OS = parts[(Int.requiresFloat() ? Float : 0) |
                                (UserNamespace ? UseUserNamespace : 0)];

        // Make the name of the function in this declaration.

        std::string FunctionName =
            Polymorphic ? Int.shortName() : Int.fullName();
        if (!UserNamespace)
          FunctionName = "__arm_" + FunctionName;

        // Make strings for the types involved in the function's
        // prototype.

        std::string RetTypeName = Int.returnType()->cName();
        if (!StringRef(RetTypeName).endswith("*"))
          RetTypeName += " ";

        std::vector<std::string> ArgTypeNames;
        for (const Type *ArgTypePtr : Int.argTypes())
          ArgTypeNames.push_back(ArgTypePtr->cName());
        std::string ArgTypesString =
            join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", ");

        // Emit the actual declaration. All these functions are
        // declared 'static inline' without a body, which is fine
        // provided clang recognizes them as builtins, and has the
        // effect that this type signature is used in place of the one
        // that Builtins.def didn't provide. That's how we can get
        // structure types that weren't defined until this header was
        // included to be part of the type signature of a builtin that
        // was known to clang already.
        //
        // The declarations use __attribute__(__clang_arm_builtin_alias),
        // so that each function declared will be recognized as the
        // appropriate MVE builtin in spite of its user-facing name.
        //
        // (That's better than making them all wrapper functions,
        // partly because it avoids any compiler error message citing
        // the wrapper function definition instead of the user's code,
        // and mostly because some MVE intrinsics have arguments
        // required to be compile-time constants, and that property
        // can't be propagated through a wrapper function. It can be
        // propagated through a macro, but macros can't be overloaded
        // on argument types very easily - you have to use _Generic,
        // which makes error messages very confusing when the user
        // gets it wrong.)
        //
        // Finally, the polymorphic versions of the intrinsics are
        // also defined with __attribute__(overloadable), so that when
        // the same name is defined with several type signatures, the
        // right thing happens. Each one of the overloaded
        // declarations is given a different builtin id, which
        // has exactly the effect we want: first clang resolves the
        // overload to the right function, then it knows which builtin
        // it's referring to, and then the Sema checking for that
        // builtin can check further things like the constant
        // arguments.
        //
        // One more subtlety is the newline just before the return
        // type name. That's a cosmetic tweak to make the error
        // messages legible if the user gets the types wrong in a call
        // to a polymorphic function: this way, clang will print just
        // the _final_ line of each declaration in the header, to show
        // the type signatures that would have been legal. So all the
        // confusing machinery with __attribute__ is left out of the
        // error message, and the user sees something that's more or
        // less self-documenting: "here's a list of actually readable
        // type signatures for vfooq(), and here's why each one didn't
        // match your call".

        OS << "static __inline__ __attribute__(("
           << (Polymorphic ? "__overloadable__, " : "")
           << "__clang_arm_builtin_alias(__builtin_arm_mve_" << Int.fullName()
           << ")))\n"
           << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n";
      }
    }
  }
  for (auto &part : parts)
    part << "\n";

  // Now we've finished accumulating bits and pieces into the parts[] array.
  // Put it all together to write the final output file.

  OS << "/*===---- arm_mve.h - ARM MVE intrinsics "
        "-----------------------------------===\n"
     << LLVMLicenseHeader
     << "#ifndef __ARM_MVE_H\n"
        "#define __ARM_MVE_H\n"
        "\n"
        "#if !__ARM_FEATURE_MVE\n"
        "#error \"MVE support not enabled\"\n"
        "#endif\n"
        "\n"
        "#include <stdint.h>\n"
        "\n"
        "#ifdef __cplusplus\n"
        "extern \"C\" {\n"
        "#endif\n"
        "\n";

  for (size_t i = 0; i < NumParts; ++i) {
    std::vector<std::string> conditions;
    if (i & Float)
      conditions.push_back("(__ARM_FEATURE_MVE & 2)");
    if (i & UseUserNamespace)
      conditions.push_back("(!defined __ARM_MVE_PRESERVE_USER_NAMESPACE)");

    std::string condition =
        join(std::begin(conditions), std::end(conditions), " && ");
    if (!condition.empty())
      OS << "#if " << condition << "\n\n";
    OS << parts[i].str();
    if (!condition.empty())
      OS << "#endif /* " << condition << " */\n\n";
  }

  OS << "#ifdef __cplusplus\n"
        "} /* extern \"C\" */\n"
        "#endif\n"
        "\n"
        "#endif /* __ARM_MVE_H */\n";
}

void MveEmitter::EmitBuiltinDef(raw_ostream &OS) {
  for (const auto &kv : ACLEIntrinsics) {
    const ACLEIntrinsic &Int = *kv.second;
    OS << "TARGET_HEADER_BUILTIN(__builtin_arm_mve_" << Int.fullName()
       << ", \"\", \"n\", \"arm_mve.h\", ALL_LANGUAGES, \"\")\n";
  }

  std::set<std::string> ShortNamesSeen;

  for (const auto &kv : ACLEIntrinsics) {
    const ACLEIntrinsic &Int = *kv.second;
    if (Int.polymorphic()) {
      StringRef Name = Int.shortName();
      if (ShortNamesSeen.find(std::string(Name)) == ShortNamesSeen.end()) {
        OS << "BUILTIN(__builtin_arm_mve_" << Name << ", \"vi.\", \"nt";
        if (Int.nonEvaluating())
          OS << "u"; // indicate that this builtin doesn't evaluate its args
        OS << "\")\n";
        ShortNamesSeen.insert(std::string(Name));
      }
    }
  }
}

void MveEmitter::EmitBuiltinSema(raw_ostream &OS) {
  std::map<std::string, std::set<std::string>> Checks;
  GroupSemaChecks(Checks);

  for (const auto &kv : Checks) {
    for (StringRef Name : kv.second)
      OS << "case ARM::BI__builtin_arm_mve_" << Name << ":\n";
    OS << "  return " << kv.first;
  }
}

// -----------------------------------------------------------------------------
// Class that describes an ACLE intrinsic implemented as a macro.
//
// This class is used when the intrinsic is polymorphic in 2 or 3 types, but we
// want to avoid a combinatorial explosion by reinterpreting the arguments to
// fixed types.

class FunctionMacro {
  std::vector<StringRef> Params;
  StringRef Definition;

public:
  FunctionMacro(const Record &R);

  const std::vector<StringRef> &getParams() const { return Params; }
  StringRef getDefinition() const { return Definition; }
};

FunctionMacro::FunctionMacro(const Record &R) {
  Params = R.getValueAsListOfStrings("params");
  Definition = R.getValueAsString("definition");
}

// -----------------------------------------------------------------------------
// The class used for generating arm_cde.h and related Clang bits
//

class CdeEmitter : public EmitterBase {
  std::map<StringRef, FunctionMacro> FunctionMacros;

public:
  CdeEmitter(RecordKeeper &Records);
  void EmitHeader(raw_ostream &OS) override;
  void EmitBuiltinDef(raw_ostream &OS) override;
  void EmitBuiltinSema(raw_ostream &OS) override;
};

CdeEmitter::CdeEmitter(RecordKeeper &Records) : EmitterBase(Records) {
  for (Record *R : Records.getAllDerivedDefinitions("FunctionMacro"))
    FunctionMacros.emplace(R->getName(), FunctionMacro(*R));
}

void CdeEmitter::EmitHeader(raw_ostream &OS) {
  // Accumulate pieces of the header file that will be enabled under various
  // different combinations of #ifdef. The index into parts[] is one of the
  // following:
  constexpr unsigned None = 0;
  constexpr unsigned MVE = 1;
  constexpr unsigned MVEFloat = 2;

  constexpr unsigned NumParts = 3;
  raw_self_contained_string_ostream parts[NumParts];

  // Write typedefs for all the required vector types, and a few scalar
  // types that don't already have the name we want them to have.

  parts[MVE] << "typedef uint16_t mve_pred16_t;\n";
  parts[MVEFloat] << "typedef __fp16 float16_t;\n"
                     "typedef float float32_t;\n";
  for (const auto &kv : ScalarTypes) {
    const ScalarType *ST = kv.second.get();
    if (ST->hasNonstandardName())
      continue;
    // We don't have float64x2_t
    if (ST->kind() == ScalarTypeKind::Float && ST->sizeInBits() == 64)
      continue;
    raw_ostream &OS = parts[ST->requiresFloat() ? MVEFloat : MVE];
    const VectorType *VT = getVectorType(ST);

    OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes()
       << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " "
       << VT->cName() << ";\n";
  }
  parts[MVE] << "\n";
  parts[MVEFloat] << "\n";

  // Write declarations for all the intrinsics.

  for (const auto &kv : ACLEIntrinsics) {
    const ACLEIntrinsic &Int = *kv.second;

    // We generate each intrinsic twice, under its full unambiguous
    // name and its shorter polymorphic name (if the latter exists).
    for (bool Polymorphic : {false, true}) {
      if (Polymorphic && !Int.polymorphic())
        continue;
      if (!Polymorphic && Int.polymorphicOnly())
        continue;

      raw_ostream &OS =
          parts[Int.requiresFloat() ? MVEFloat
                                    : Int.requiresMVE() ? MVE : None];

      // Make the name of the function in this declaration.
      std::string FunctionName =
          "__arm_" + (Polymorphic ? Int.shortName() : Int.fullName());

      // Make strings for the types involved in the function's
      // prototype.
      std::string RetTypeName = Int.returnType()->cName();
      if (!StringRef(RetTypeName).endswith("*"))
        RetTypeName += " ";

      std::vector<std::string> ArgTypeNames;
      for (const Type *ArgTypePtr : Int.argTypes())
        ArgTypeNames.push_back(ArgTypePtr->cName());
      std::string ArgTypesString =
          join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", ");

      // Emit the actual declaration. See MveEmitter::EmitHeader for detailed
      // comments
      OS << "static __inline__ __attribute__(("
         << (Polymorphic ? "__overloadable__, " : "")
         << "__clang_arm_builtin_alias(__builtin_arm_" << Int.builtinExtension()
         << "_" << Int.fullName() << ")))\n"
         << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n";
    }
  }

  for (const auto &kv : FunctionMacros) {
    StringRef Name = kv.first;
    const FunctionMacro &FM = kv.second;

    raw_ostream &OS = parts[MVE];
    OS << "#define "
       << "__arm_" << Name << "(" << join(FM.getParams(), ", ") << ") "
       << FM.getDefinition() << "\n";
  }

  for (auto &part : parts)
    part << "\n";

  // Now we've finished accumulating bits and pieces into the parts[] array.
  // Put it all together to write the final output file.

  OS << "/*===---- arm_cde.h - ARM CDE intrinsics "
        "-----------------------------------===\n"
     << LLVMLicenseHeader
     << "#ifndef __ARM_CDE_H\n"
        "#define __ARM_CDE_H\n"
        "\n"
        "#if !__ARM_FEATURE_CDE\n"
        "#error \"CDE support not enabled\"\n"
        "#endif\n"
        "\n"
        "#include <stdint.h>\n"
        "\n"
        "#ifdef __cplusplus\n"
        "extern \"C\" {\n"
        "#endif\n"
        "\n";

  for (size_t i = 0; i < NumParts; ++i) {
    std::string condition;
    if (i == MVEFloat)
      condition = "__ARM_FEATURE_MVE & 2";
    else if (i == MVE)
      condition = "__ARM_FEATURE_MVE";

    if (!condition.empty())
      OS << "#if " << condition << "\n\n";
    OS << parts[i].str();
    if (!condition.empty())
      OS << "#endif /* " << condition << " */\n\n";
  }

  OS << "#ifdef __cplusplus\n"
        "} /* extern \"C\" */\n"
        "#endif\n"
        "\n"
        "#endif /* __ARM_CDE_H */\n";
}

void CdeEmitter::EmitBuiltinDef(raw_ostream &OS) {
  for (const auto &kv : ACLEIntrinsics) {
    if (kv.second->headerOnly())
      continue;
    const ACLEIntrinsic &Int = *kv.second;
    OS << "TARGET_HEADER_BUILTIN(__builtin_arm_cde_" << Int.fullName()
       << ", \"\", \"ncU\", \"arm_cde.h\", ALL_LANGUAGES, \"\")\n";
  }
}

void CdeEmitter::EmitBuiltinSema(raw_ostream &OS) {
  std::map<std::string, std::set<std::string>> Checks;
  GroupSemaChecks(Checks);

  for (const auto &kv : Checks) {
    for (StringRef Name : kv.second)
      OS << "case ARM::BI__builtin_arm_cde_" << Name << ":\n";
    OS << "  Err = " << kv.first << "  break;\n";
  }
}

} // namespace

namespace clang {

// MVE

void EmitMveHeader(RecordKeeper &Records, raw_ostream &OS) {
  MveEmitter(Records).EmitHeader(OS);
}

void EmitMveBuiltinDef(RecordKeeper &Records, raw_ostream &OS) {
  MveEmitter(Records).EmitBuiltinDef(OS);
}

void EmitMveBuiltinSema(RecordKeeper &Records, raw_ostream &OS) {
  MveEmitter(Records).EmitBuiltinSema(OS);
}

void EmitMveBuiltinCG(RecordKeeper &Records, raw_ostream &OS) {
  MveEmitter(Records).EmitBuiltinCG(OS);
}

void EmitMveBuiltinAliases(RecordKeeper &Records, raw_ostream &OS) {
  MveEmitter(Records).EmitBuiltinAliases(OS);
}

// CDE

void EmitCdeHeader(RecordKeeper &Records, raw_ostream &OS) {
  CdeEmitter(Records).EmitHeader(OS);
}

void EmitCdeBuiltinDef(RecordKeeper &Records, raw_ostream &OS) {
  CdeEmitter(Records).EmitBuiltinDef(OS);
}

void EmitCdeBuiltinSema(RecordKeeper &Records, raw_ostream &OS) {
  CdeEmitter(Records).EmitBuiltinSema(OS);
}

void EmitCdeBuiltinCG(RecordKeeper &Records, raw_ostream &OS) {
  CdeEmitter(Records).EmitBuiltinCG(OS);
}

void EmitCdeBuiltinAliases(RecordKeeper &Records, raw_ostream &OS) {
  CdeEmitter(Records).EmitBuiltinAliases(OS);
}

} // end namespace clang