expression-traits.cpp 21.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
// RUN: %clang_cc1 -std=c++98 -fsyntax-only -verify -fcxx-exceptions %s

//
// Tests for "expression traits" intrinsics such as __is_lvalue_expr.
//
// For the time being, these tests are written against the 2003 C++
// standard (ISO/IEC 14882:2003 -- see draft at
// http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2001/n1316/).
//
// C++0x has its own, more-refined, idea of lvalues and rvalues.
// If/when we need to support those, we'll need to track both
// standard documents.

#if !__has_feature(cxx_static_assert)
# define CONCAT_(X_, Y_) CONCAT1_(X_, Y_)
# define CONCAT1_(X_, Y_) X_ ## Y_

// This emulation can be used multiple times on one line (and thus in
// a macro), except at class scope
# define static_assert(b_, m_) \
  typedef int CONCAT_(sa_, __LINE__)[b_ ? 1 : -1]
#endif

// Tests are broken down according to section of the C++03 standard
// (ISO/IEC 14882:2003(E))

// Assertion macros encoding the following two paragraphs
//
// basic.lval/1 Every expression is either an lvalue or an rvalue.
//
// expr.prim/5 A parenthesized expression is a primary expression whose type
// and value are identical to those of the enclosed expression. The
// presence of parentheses does not affect whether the expression is
// an lvalue.
//
// Note: these asserts cannot be made at class scope in C++03.  Put
// them in a member function instead.
#define ASSERT_LVALUE(expr)                                             \
    static_assert(__is_lvalue_expr(expr), "should be an lvalue");       \
    static_assert(__is_lvalue_expr((expr)),                             \
                  "the presence of parentheses should have"             \
                  " no effect on lvalueness (expr.prim/5)");            \
    static_assert(!__is_rvalue_expr(expr), "should be an lvalue");      \
    static_assert(!__is_rvalue_expr((expr)),                            \
                  "the presence of parentheses should have"             \
                  " no effect on lvalueness (expr.prim/5)")

#define ASSERT_RVALUE(expr);                                            \
    static_assert(__is_rvalue_expr(expr), "should be an rvalue");       \
    static_assert(__is_rvalue_expr((expr)),                             \
                  "the presence of parentheses should have"             \
                  " no effect on lvalueness (expr.prim/5)");            \
    static_assert(!__is_lvalue_expr(expr), "should be an rvalue");      \
    static_assert(!__is_lvalue_expr((expr)),                            \
                  "the presence of parentheses should have"             \
                  " no effect on lvalueness (expr.prim/5)")

enum Enum { Enumerator };

int ReturnInt();
void ReturnVoid();
Enum ReturnEnum();

void basic_lval_5()
{
    // basic.lval/5: The result of calling a function that does not return
    // a reference is an rvalue.
    ASSERT_RVALUE(ReturnInt());
    ASSERT_RVALUE(ReturnVoid());
    ASSERT_RVALUE(ReturnEnum());
}

int& ReturnIntReference();
extern Enum& ReturnEnumReference();

void basic_lval_6()
{
    // basic.lval/6: An expression which holds a temporary object resulting
    // from a cast to a nonreference type is an rvalue (this includes
    // the explicit creation of an object using functional notation
    struct IntClass
    {
        explicit IntClass(int = 0);
        IntClass(char const*);
        operator int() const;
    };
    
    struct ConvertibleToIntClass
    {
        operator IntClass() const;
    };

    ConvertibleToIntClass b;

    // Make sure even trivial conversions are not detected as lvalues
    int intLvalue = 0;
    ASSERT_RVALUE((int)intLvalue);
    ASSERT_RVALUE((short)intLvalue);
    ASSERT_RVALUE((long)intLvalue);
    
    // Same tests with function-call notation
    ASSERT_RVALUE(int(intLvalue));
    ASSERT_RVALUE(short(intLvalue));
    ASSERT_RVALUE(long(intLvalue));

    char charLValue = 'x';
    ASSERT_RVALUE((signed char)charLValue);
    ASSERT_RVALUE((unsigned char)charLValue);

    ASSERT_RVALUE(static_cast<int>(IntClass()));
    IntClass intClassLValue;
    ASSERT_RVALUE(static_cast<int>(intClassLValue)); 
    ASSERT_RVALUE(static_cast<IntClass>(ConvertibleToIntClass()));
    ConvertibleToIntClass convertibleToIntClassLValue;
    ASSERT_RVALUE(static_cast<IntClass>(convertibleToIntClassLValue));
    

    typedef signed char signed_char;
    typedef unsigned char unsigned_char;
    ASSERT_RVALUE(signed_char(charLValue));
    ASSERT_RVALUE(unsigned_char(charLValue));

    ASSERT_RVALUE(int(IntClass()));
    ASSERT_RVALUE(int(intClassLValue)); 
    ASSERT_RVALUE(IntClass(ConvertibleToIntClass()));
    ASSERT_RVALUE(IntClass(convertibleToIntClassLValue));
}

void conv_ptr_1()
{
    // conv.ptr/1: A null pointer constant is an integral constant
    // expression (5.19) rvalue of integer type that evaluates to
    // zero.
    ASSERT_RVALUE(0);
}

void expr_6()
{
    // expr/6: If an expression initially has the type "reference to T"
    // (8.3.2, 8.5.3), ... the expression is an lvalue.
    int x = 0;
    int& referenceToInt = x;
    ASSERT_LVALUE(referenceToInt);
    ASSERT_LVALUE(ReturnIntReference());
}

void expr_prim_2()
{
    // 5.1/2 A string literal is an lvalue; all other
    // literals are rvalues.
    ASSERT_LVALUE("foo");
    ASSERT_RVALUE(1);
    ASSERT_RVALUE(1.2);
    ASSERT_RVALUE(10UL);
}

void expr_prim_3()
{
    // 5.1/3: The keyword "this" names a pointer to the object for
    // which a nonstatic member function (9.3.2) is invoked. ...The
    // expression is an rvalue.
    struct ThisTest
    {
        void f() { ASSERT_RVALUE(this); }
    };
}

extern int variable;
void Function();

struct BaseClass
{
    virtual ~BaseClass();
    
    int BaseNonstaticMemberFunction();
    static int BaseStaticMemberFunction();
    int baseDataMember;
};

struct Class : BaseClass
{
    static void function();
    static int variable;

    template <class T>
    struct NestedClassTemplate {};

    template <class T>
    static int& NestedFuncTemplate() { return variable; }  // expected-note{{possible target for call}}

    template <class T>
    int& NestedMemfunTemplate() { return variable; } // expected-note{{possible target for call}}

    int operator*() const;

    template <class T>
    int operator+(T) const; // expected-note{{possible target for call}}

    int NonstaticMemberFunction();
    static int StaticMemberFunction();
    int dataMember;

    int& referenceDataMember;
    static int& staticReferenceDataMember;
    static int staticNonreferenceDataMember;

    enum Enum { Enumerator };

    operator long() const;
    
    Class();
    Class(int,int);

    void expr_prim_4()
    {
        // 5.1/4: The operator :: followed by an identifier, a
        // qualified-id, or an operator-function-id is a primary-
        // expression. ...The result is an lvalue if the entity is
        // a function or variable.
        ASSERT_LVALUE(::Function);         // identifier: function
        ASSERT_LVALUE(::variable);         // identifier: variable

        // the only qualified-id form that can start without "::" (and thus
        // be legal after "::" ) is
        //
        // ::<sub>opt</sub> nested-name-specifier template<sub>opt</sub> unqualified-id
        ASSERT_LVALUE(::Class::function);  // qualified-id: function
        ASSERT_LVALUE(::Class::variable);  // qualified-id: variable

        // The standard doesn't give a clear answer about whether these
        // should really be lvalues or rvalues without some surrounding
        // context that forces them to be interpreted as naming a
        // particular function template specialization (that situation
        // doesn't come up in legal pure C++ programs). This language
        // extension simply rejects them as requiring additional context
        __is_lvalue_expr(::Class::NestedFuncTemplate);    // qualified-id: template \
        // expected-error{{reference to overloaded function could not be resolved; did you mean to call it?}}
        
        __is_lvalue_expr(::Class::NestedMemfunTemplate);  // qualified-id: template \
        // expected-error{{reference to non-static member function must be called}}
        
        __is_lvalue_expr(::Class::operator+);             // operator-function-id: template \
        // expected-error{{reference to non-static member function must be called}}

        //ASSERT_RVALUE(::Class::operator*);         // operator-function-id: member function
    }

    void expr_prim_7()
    {
        // expr.prim/7 An identifier is an id-expression provided it has been
        // suitably declared (clause 7). [Note: ... ] The type of the
        // expression is the type of the identifier. The result is the
        // entity denoted by the identifier. The result is an lvalue if
        // the entity is a function, variable, or data member... (cont'd)
        ASSERT_LVALUE(Function);        // identifier: function
        ASSERT_LVALUE(StaticMemberFunction);        // identifier: function
        ASSERT_LVALUE(variable);        // identifier: variable
        ASSERT_LVALUE(dataMember);      // identifier: data member
        //ASSERT_RVALUE(NonstaticMemberFunction); // identifier: member function

        // (cont'd)...A nested-name-specifier that names a class,
        // optionally followed by the keyword template (14.2), and then
        // followed by the name of a member of either that class (9.2) or
        // one of its base classes... is a qualified-id... The result is
        // the member. The type of the result is the type of the
        // member. The result is an lvalue if the member is a static
        // member function or a data member.
        ASSERT_LVALUE(Class::dataMember);
        ASSERT_LVALUE(Class::StaticMemberFunction);
        //ASSERT_RVALUE(Class::NonstaticMemberFunction); // identifier: member function

        ASSERT_LVALUE(Class::baseDataMember);
        ASSERT_LVALUE(Class::BaseStaticMemberFunction);
        //ASSERT_RVALUE(Class::BaseNonstaticMemberFunction); // identifier: member function
    }
};

void expr_call_10()
{
    // expr.call/10: A function call is an lvalue if and only if the
    // result type is a reference.  This statement is partially
    // redundant with basic.lval/5
    basic_lval_5();
    
    ASSERT_LVALUE(ReturnIntReference());
    ASSERT_LVALUE(ReturnEnumReference());
}

namespace Namespace
{
  int x;
  void function();
}

void expr_prim_8()
{
    // expr.prim/8 A nested-name-specifier that names a namespace
    // (7.3), followed by the name of a member of that namespace (or
    // the name of a member of a namespace made visible by a
    // using-directive ) is a qualified-id; 3.4.3.2 describes name
    // lookup for namespace members that appear in qualified-ids. The
    // result is the member. The type of the result is the type of the
    // member. The result is an lvalue if the member is a function or
    // a variable.
    ASSERT_LVALUE(Namespace::x);
    ASSERT_LVALUE(Namespace::function);
}

void expr_sub_1(int* pointer)
{
    // expr.sub/1 A postfix expression followed by an expression in
    // square brackets is a postfix expression. One of the expressions
    // shall have the type "pointer to T" and the other shall have
    // enumeration or integral type. The result is an lvalue of type
    // "T."
    ASSERT_LVALUE(pointer[1]);
    
    // The expression E1[E2] is identical (by definition) to *((E1)+(E2)).
    ASSERT_LVALUE(*(pointer+1));
}

void expr_type_conv_1()
{
    // expr.type.conv/1 A simple-type-specifier (7.1.5) followed by a
    // parenthesized expression-list constructs a value of the specified
    // type given the expression list. ... If the expression list
    // specifies more than a single value, the type shall be a class with
    // a suitably declared constructor (8.5, 12.1), and the expression
    // T(x1, x2, ...) is equivalent in effect to the declaration T t(x1,
    // x2, ...); for some invented temporary variable t, with the result
    // being the value of t as an rvalue.
    ASSERT_RVALUE(Class(2,2));
}

void expr_type_conv_2()
{
    // expr.type.conv/2 The expression T(), where T is a
    // simple-type-specifier (7.1.5.2) for a non-array complete object
    // type or the (possibly cv-qualified) void type, creates an
    // rvalue of the specified type,
    ASSERT_RVALUE(int());
    ASSERT_RVALUE(Class());
    ASSERT_RVALUE(void());
}


void expr_ref_4()
{
    // Applies to expressions of the form E1.E2
    
    // If E2 is declared to have type "reference to T", then E1.E2 is
    // an lvalue;.... Otherwise, one of the following rules applies.
    ASSERT_LVALUE(Class().staticReferenceDataMember);
    ASSERT_LVALUE(Class().referenceDataMember);
    
    // - If E2 is a static data member, and the type of E2 is T, then
    // E1.E2 is an lvalue; ...
    ASSERT_LVALUE(Class().staticNonreferenceDataMember);
    ASSERT_LVALUE(Class().staticReferenceDataMember);


    // - If E2 is a non-static data member, ... If E1 is an lvalue,
    // then E1.E2 is an lvalue...
    Class lvalue;
    ASSERT_LVALUE(lvalue.dataMember);
    ASSERT_RVALUE(Class().dataMember);

    // - If E1.E2 refers to a static member function, ... then E1.E2
    // is an lvalue
    ASSERT_LVALUE(Class().StaticMemberFunction);
    
    // - Otherwise, if E1.E2 refers to a non-static member function,
    // then E1.E2 is not an lvalue.
    //ASSERT_RVALUE(Class().NonstaticMemberFunction);

    // - If E2 is a member enumerator, and the type of E2 is T, the
    // expression E1.E2 is not an lvalue. The type of E1.E2 is T.
    ASSERT_RVALUE(Class().Enumerator);
    ASSERT_RVALUE(lvalue.Enumerator);
}


void expr_post_incr_1(int x)
{
    // expr.post.incr/1 The value obtained by applying a postfix ++ is
    // the value that the operand had before applying the
    // operator... The result is an rvalue.
    ASSERT_RVALUE(x++);
}

void expr_dynamic_cast_2()
{
    // expr.dynamic.cast/2: If T is a pointer type, v shall be an
    // rvalue of a pointer to complete class type, and the result is
    // an rvalue of type T.
    Class instance;
    ASSERT_RVALUE(dynamic_cast<Class*>(&instance));

    // If T is a reference type, v shall be an
    // lvalue of a complete class type, and the result is an lvalue of
    // the type referred to by T.
    ASSERT_LVALUE(dynamic_cast<Class&>(instance));
}

void expr_dynamic_cast_5()
{
    // expr.dynamic.cast/5: If T is "reference to cv1 B" and v has type
    // "cv2 D" such that B is a base class of D, the result is an
    // lvalue for the unique B sub-object of the D object referred
    // to by v.
    typedef BaseClass B;
    typedef Class D;
    D object;
    ASSERT_LVALUE(dynamic_cast<B&>(object));
}

// expr.dynamic.cast/8: The run-time check logically executes as follows:
//
// - If, in the most derived object pointed (referred) to by v, v
// points (refers) to a public base class subobject of a T object, and
// if only one object of type T is derived from the sub-object pointed
// (referred) to by v, the result is a pointer (an lvalue referring)
// to that T object.
//
// - Otherwise, if v points (refers) to a public base class sub-object
// of the most derived object, and the type of the most derived object
// has a base class, of type T, that is unambiguous and public, the
// result is a pointer (an lvalue referring) to the T sub-object of
// the most derived object.
//
// The mention of "lvalue" in the text above appears to be a
// defect that is being corrected by the response to UK65 (see
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2841.html).

#if 0
void expr_typeid_1()
{
    // expr.typeid/1: The result of a typeid expression is an lvalue...
    ASSERT_LVALUE(typeid(1));
}
#endif

void expr_static_cast_1(int x)
{
    // expr.static.cast/1: The result of the expression
    // static_cast<T>(v) is the result of converting the expression v
    // to type T. If T is a reference type, the result is an lvalue;
    // otherwise, the result is an rvalue.
    ASSERT_LVALUE(static_cast<int&>(x));
    ASSERT_RVALUE(static_cast<int>(x));
}

void expr_reinterpret_cast_1()
{
    // expr.reinterpret.cast/1: The result of the expression
    // reinterpret_cast<T>(v) is the result of converting the
    // expression v to type T. If T is a reference type, the result is
    // an lvalue; otherwise, the result is an rvalue
    ASSERT_RVALUE(reinterpret_cast<int*>(0));
    char const v = 0;
    ASSERT_LVALUE(reinterpret_cast<char const&>(v));
}

void expr_unary_op_1(int* pointer, struct incomplete* pointerToIncompleteType)
{
    // expr.unary.op/1: The unary * operator performs indirection: the
    // expression to which it is applied shall be a pointer to an
    // object type, or a pointer to a function type and the result is
    // an lvalue referring to the object or function to which the
    // expression points.  
    ASSERT_LVALUE(*pointer);
    ASSERT_LVALUE(*Function);

    // [Note: a pointer to an incomplete type
    // (other than cv void ) can be dereferenced. ]
    ASSERT_LVALUE(*pointerToIncompleteType);
}

void expr_pre_incr_1(int operand)
{
    // expr.pre.incr/1: The operand of prefix ++ ... shall be a
    // modifiable lvalue.... The value is the new value of the
    // operand; it is an lvalue.
    ASSERT_LVALUE(++operand);
}

void expr_cast_1(int x)
{
    // expr.cast/1: The result of the expression (T) cast-expression
    // is of type T. The result is an lvalue if T is a reference type,
    // otherwise the result is an rvalue.
    ASSERT_LVALUE((void(&)())expr_cast_1);
    ASSERT_LVALUE((int&)x);
    ASSERT_RVALUE((void(*)())expr_cast_1);
    ASSERT_RVALUE((int)x);
}

void expr_mptr_oper()
{
    // expr.mptr.oper/6: The result of a .* expression is an lvalue
    // only if its first operand is an lvalue and its second operand
    // is a pointer to data member... (cont'd)
    typedef Class MakeRValue;
    ASSERT_RVALUE(MakeRValue().*(&Class::dataMember));
    //ASSERT_RVALUE(MakeRValue().*(&Class::NonstaticMemberFunction));
    Class lvalue;
    ASSERT_LVALUE(lvalue.*(&Class::dataMember));
    //ASSERT_RVALUE(lvalue.*(&Class::NonstaticMemberFunction));
    
    // (cont'd)...The result of an ->* expression is an lvalue only
    // if its second operand is a pointer to data member. If the
    // second operand is the null pointer to member value (4.11), the
    // behavior is undefined.
    ASSERT_LVALUE((&lvalue)->*(&Class::dataMember));
    //ASSERT_RVALUE((&lvalue)->*(&Class::NonstaticMemberFunction));
}

void expr_cond(bool cond)
{
    // 5.16 Conditional operator [expr.cond]
    //
    // 2 If either the second or the third operand has type (possibly
    // cv-qualified) void, one of the following shall hold:
    //
    // - The second or the third operand (but not both) is a
    // (possibly parenthesized) throw-expression (15.1); the result
    // is of the type and value category of the other.

    Class classLvalue;
    ASSERT_RVALUE(cond ? throw 1 : (void)0);
    ASSERT_RVALUE(cond ? (void)0 : throw 1);
    ASSERT_RVALUE(cond ? throw 1 : 0);
    ASSERT_RVALUE(cond ? 0 : throw 1);
    ASSERT_LVALUE(cond ? throw 1 : classLvalue);
    ASSERT_LVALUE(cond ? classLvalue : throw 1);

    // - Both the second and the third operands have type void; the result
    // is of type void and is an rvalue. [Note: this includes the case
    // where both operands are throw-expressions. ]
    ASSERT_RVALUE(cond ? (void)1 : (void)0);
    ASSERT_RVALUE(cond ? throw 1 : throw 0);
    
    // expr.cond/4: If the second and third operands are lvalues and
    // have the same type, the result is of that type and is an
    // lvalue.
    ASSERT_LVALUE(cond ? classLvalue : classLvalue);
    int intLvalue = 0;
    ASSERT_LVALUE(cond ? intLvalue : intLvalue);
    
    // expr.cond/5:Otherwise, the result is an rvalue.
    typedef Class MakeRValue;
    ASSERT_RVALUE(cond ? MakeRValue() : classLvalue);
    ASSERT_RVALUE(cond ? classLvalue : MakeRValue());
    ASSERT_RVALUE(cond ? MakeRValue() : MakeRValue());
    ASSERT_RVALUE(cond ? classLvalue : intLvalue);
    ASSERT_RVALUE(cond ? intLvalue : int());
}

void expr_ass_1(int x)
{
    // expr.ass/1: There are several assignment operators, all of
    // which group right-to-left. All require a modifiable lvalue as
    // their left operand, and the type of an assignment expression is
    // that of its left operand. The result of the assignment
    // operation is the value stored in the left operand after the
    // assignment has taken place; the result is an lvalue.
    ASSERT_LVALUE(x = 1);
    ASSERT_LVALUE(x += 1);
    ASSERT_LVALUE(x -= 1);
    ASSERT_LVALUE(x *= 1);
    ASSERT_LVALUE(x /= 1);
    ASSERT_LVALUE(x %= 1);
    ASSERT_LVALUE(x ^= 1);
    ASSERT_LVALUE(x &= 1);
    ASSERT_LVALUE(x |= 1);
}

void expr_comma(int x)
{
    // expr.comma: A pair of expressions separated by a comma is
    // evaluated left-to-right and the value of the left expression is
    // discarded... result is an lvalue if its right operand is.

    // Can't use the ASSERT_XXXX macros without adding parens around
    // the comma expression.
    static_assert(__is_lvalue_expr(x,x), "expected an lvalue");
    static_assert(__is_rvalue_expr(x,1), "expected an rvalue");
    static_assert(__is_lvalue_expr(1,x), "expected an lvalue");
    static_assert(__is_rvalue_expr(1,1), "expected an rvalue");
}

#if 0
template<typename T> void f();

// FIXME These currently fail
void expr_fun_lvalue()
{
  ASSERT_LVALUE(&f<int>);
}

void expr_fun_rvalue()
{
  ASSERT_RVALUE(f<int>);
}
#endif

template <int NonTypeNonReferenceParameter, int& NonTypeReferenceParameter>
void check_temp_param_6()
{
    ASSERT_RVALUE(NonTypeNonReferenceParameter);
    ASSERT_LVALUE(NonTypeReferenceParameter);
}

int AnInt = 0;

void temp_param_6()
{
    check_temp_param_6<3,AnInt>();
}