riscv32-ilp32d-abi.c
12.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
// RUN: %clang_cc1 -triple riscv32 -target-feature +d -target-abi ilp32d -emit-llvm %s -o - \
// RUN: | FileCheck %s
#include <stdint.h>
// Verify that the tracking of used GPRs and FPRs works correctly by checking
// that small integers are sign/zero extended when passed in registers.
// Doubles are passed in FPRs, so argument 'i' will be passed zero-extended
// because it will be passed in a GPR.
// CHECK: define void @f_fpr_tracking(double %a, double %b, double %c, double %d, double %e, double %f, double %g, double %h, i8 zeroext %i)
void f_fpr_tracking(double a, double b, double c, double d, double e, double f,
double g, double h, uint8_t i) {}
// Check that fp, fp+fp, and int+fp structs are lowered correctly. These will
// be passed in FPR, FPR+FPR, or GPR+FPR regs if sufficient registers are
// available the widths are <= XLEN and FLEN, and should be expanded to
// separate arguments in IR. They are passed by the same rules for returns,
// but will be lowered to simple two-element structs if necessary (as LLVM IR
// functions cannot return multiple values).
// A struct containing just one floating-point real is passed as though it
// were a standalone floating-point real.
struct double_s { double f; };
// CHECK: define void @f_double_s_arg(double %0)
void f_double_s_arg(struct double_s a) {}
// CHECK: define double @f_ret_double_s()
struct double_s f_ret_double_s() {
return (struct double_s){1.0};
}
// A struct containing a double and any number of zero-width bitfields is
// passed as though it were a standalone floating-point real.
struct zbf_double_s { int : 0; double f; };
struct zbf_double_zbf_s { int : 0; double f; int : 0; };
// CHECK: define void @f_zbf_double_s_arg(double %0)
void f_zbf_double_s_arg(struct zbf_double_s a) {}
// CHECK: define double @f_ret_zbf_double_s()
struct zbf_double_s f_ret_zbf_double_s() {
return (struct zbf_double_s){1.0};
}
// CHECK: define void @f_zbf_double_zbf_s_arg(double %0)
void f_zbf_double_zbf_s_arg(struct zbf_double_zbf_s a) {}
// CHECK: define double @f_ret_zbf_double_zbf_s()
struct zbf_double_zbf_s f_ret_zbf_double_zbf_s() {
return (struct zbf_double_zbf_s){1.0};
}
// Check that structs containing two floating point values (FLEN <= width) are
// expanded provided sufficient FPRs are available.
struct double_double_s { double f; double g; };
struct double_float_s { double f; float g; };
// CHECK: define void @f_double_double_s_arg(double %0, double %1)
void f_double_double_s_arg(struct double_double_s a) {}
// CHECK: define { double, double } @f_ret_double_double_s()
struct double_double_s f_ret_double_double_s() {
return (struct double_double_s){1.0, 2.0};
}
// CHECK: define void @f_double_float_s_arg(double %0, float %1)
void f_double_float_s_arg(struct double_float_s a) {}
// CHECK: define { double, float } @f_ret_double_float_s()
struct double_float_s f_ret_double_float_s() {
return (struct double_float_s){1.0, 2.0};
}
// CHECK: define void @f_double_double_s_arg_insufficient_fprs(float %a, double %b, double %c, double %d, double %e, double %f, double %g, %struct.double_double_s* %h)
void f_double_double_s_arg_insufficient_fprs(float a, double b, double c, double d,
double e, double f, double g, struct double_double_s h) {}
// Check that structs containing int+double values are expanded, provided
// sufficient FPRs and GPRs are available. The integer components are neither
// sign or zero-extended.
struct double_int8_s { double f; int8_t i; };
struct double_uint8_s { double f; uint8_t i; };
struct double_int32_s { double f; int32_t i; };
struct double_int64_s { double f; int64_t i; };
struct double_int64bf_s { double f; int64_t i : 32; };
struct double_int8_zbf_s { double f; int8_t i; int : 0; };
// CHECK: define void @f_double_int8_s_arg(double %0, i8 %1)
void f_double_int8_s_arg(struct double_int8_s a) {}
// CHECK: define { double, i8 } @f_ret_double_int8_s()
struct double_int8_s f_ret_double_int8_s() {
return (struct double_int8_s){1.0, 2};
}
// CHECK: define void @f_double_uint8_s_arg(double %0, i8 %1)
void f_double_uint8_s_arg(struct double_uint8_s a) {}
// CHECK: define { double, i8 } @f_ret_double_uint8_s()
struct double_uint8_s f_ret_double_uint8_s() {
return (struct double_uint8_s){1.0, 2};
}
// CHECK: define void @f_double_int32_s_arg(double %0, i32 %1)
void f_double_int32_s_arg(struct double_int32_s a) {}
// CHECK: define { double, i32 } @f_ret_double_int32_s()
struct double_int32_s f_ret_double_int32_s() {
return (struct double_int32_s){1.0, 2};
}
// CHECK: define void @f_double_int64_s_arg(%struct.double_int64_s* %a)
void f_double_int64_s_arg(struct double_int64_s a) {}
// CHECK: define void @f_ret_double_int64_s(%struct.double_int64_s* noalias sret align 8 %agg.result)
struct double_int64_s f_ret_double_int64_s() {
return (struct double_int64_s){1.0, 2};
}
// CHECK: define void @f_double_int64bf_s_arg(double %0, i32 %1)
void f_double_int64bf_s_arg(struct double_int64bf_s a) {}
// CHECK: define { double, i32 } @f_ret_double_int64bf_s()
struct double_int64bf_s f_ret_double_int64bf_s() {
return (struct double_int64bf_s){1.0, 2};
}
// The zero-width bitfield means the struct can't be passed according to the
// floating point calling convention.
// CHECK: define void @f_double_int8_zbf_s(double %0, i8 %1)
void f_double_int8_zbf_s(struct double_int8_zbf_s a) {}
// CHECK: define { double, i8 } @f_ret_double_int8_zbf_s()
struct double_int8_zbf_s f_ret_double_int8_zbf_s() {
return (struct double_int8_zbf_s){1.0, 2};
}
// CHECK: define void @f_double_int8_s_arg_insufficient_gprs(i32 %a, i32 %b, i32 %c, i32 %d, i32 %e, i32 %f, i32 %g, i32 %h, %struct.double_int8_s* %i)
void f_double_int8_s_arg_insufficient_gprs(int a, int b, int c, int d, int e,
int f, int g, int h, struct double_int8_s i) {}
// CHECK: define void @f_struct_double_int8_insufficient_fprs(float %a, double %b, double %c, double %d, double %e, double %f, double %g, double %h, %struct.double_int8_s* %i)
void f_struct_double_int8_insufficient_fprs(float a, double b, double c, double d,
double e, double f, double g, double h, struct double_int8_s i) {}
// Complex floating-point values or structs containing a single complex
// floating-point value should be passed as if it were an fp+fp struct.
// CHECK: define void @f_doublecomplex(double %a.coerce0, double %a.coerce1)
void f_doublecomplex(double __complex__ a) {}
// CHECK: define { double, double } @f_ret_doublecomplex()
double __complex__ f_ret_doublecomplex() {
return 1.0;
}
struct doublecomplex_s { double __complex__ c; };
// CHECK: define void @f_doublecomplex_s_arg(double %0, double %1)
void f_doublecomplex_s_arg(struct doublecomplex_s a) {}
// CHECK: define { double, double } @f_ret_doublecomplex_s()
struct doublecomplex_s f_ret_doublecomplex_s() {
return (struct doublecomplex_s){1.0};
}
// Test single or two-element structs that need flattening. e.g. those
// containing nested structs, doubles in small arrays, zero-length structs etc.
struct doublearr1_s { double a[1]; };
// CHECK: define void @f_doublearr1_s_arg(double %0)
void f_doublearr1_s_arg(struct doublearr1_s a) {}
// CHECK: define double @f_ret_doublearr1_s()
struct doublearr1_s f_ret_doublearr1_s() {
return (struct doublearr1_s){{1.0}};
}
struct doublearr2_s { double a[2]; };
// CHECK: define void @f_doublearr2_s_arg(double %0, double %1)
void f_doublearr2_s_arg(struct doublearr2_s a) {}
// CHECK: define { double, double } @f_ret_doublearr2_s()
struct doublearr2_s f_ret_doublearr2_s() {
return (struct doublearr2_s){{1.0, 2.0}};
}
struct doublearr2_tricky1_s { struct { double f[1]; } g[2]; };
// CHECK: define void @f_doublearr2_tricky1_s_arg(double %0, double %1)
void f_doublearr2_tricky1_s_arg(struct doublearr2_tricky1_s a) {}
// CHECK: define { double, double } @f_ret_doublearr2_tricky1_s()
struct doublearr2_tricky1_s f_ret_doublearr2_tricky1_s() {
return (struct doublearr2_tricky1_s){{{{1.0}}, {{2.0}}}};
}
struct doublearr2_tricky2_s { struct {}; struct { double f[1]; } g[2]; };
// CHECK: define void @f_doublearr2_tricky2_s_arg(double %0, double %1)
void f_doublearr2_tricky2_s_arg(struct doublearr2_tricky2_s a) {}
// CHECK: define { double, double } @f_ret_doublearr2_tricky2_s()
struct doublearr2_tricky2_s f_ret_doublearr2_tricky2_s() {
return (struct doublearr2_tricky2_s){{}, {{{1.0}}, {{2.0}}}};
}
struct doublearr2_tricky3_s { union {}; struct { double f[1]; } g[2]; };
// CHECK: define void @f_doublearr2_tricky3_s_arg(double %0, double %1)
void f_doublearr2_tricky3_s_arg(struct doublearr2_tricky3_s a) {}
// CHECK: define { double, double } @f_ret_doublearr2_tricky3_s()
struct doublearr2_tricky3_s f_ret_doublearr2_tricky3_s() {
return (struct doublearr2_tricky3_s){{}, {{{1.0}}, {{2.0}}}};
}
struct doublearr2_tricky4_s { union {}; struct { struct {}; double f[1]; } g[2]; };
// CHECK: define void @f_doublearr2_tricky4_s_arg(double %0, double %1)
void f_doublearr2_tricky4_s_arg(struct doublearr2_tricky4_s a) {}
// CHECK: define { double, double } @f_ret_doublearr2_tricky4_s()
struct doublearr2_tricky4_s f_ret_doublearr2_tricky4_s() {
return (struct doublearr2_tricky4_s){{}, {{{}, {1.0}}, {{}, {2.0}}}};
}
// Test structs that should be passed according to the normal integer calling
// convention.
struct int_double_int_s { int a; double b; int c; };
// CHECK: define void @f_int_double_int_s_arg(%struct.int_double_int_s* %a)
void f_int_double_int_s_arg(struct int_double_int_s a) {}
// CHECK: define void @f_ret_int_double_int_s(%struct.int_double_int_s* noalias sret align 8 %agg.result)
struct int_double_int_s f_ret_int_double_int_s() {
return (struct int_double_int_s){1, 2.0, 3};
}
struct int64_double_s { int64_t a; double b; };
// CHECK: define void @f_int64_double_s_arg(%struct.int64_double_s* %a)
void f_int64_double_s_arg(struct int64_double_s a) {}
// CHECK: define void @f_ret_int64_double_s(%struct.int64_double_s* noalias sret align 8 %agg.result)
struct int64_double_s f_ret_int64_double_s() {
return (struct int64_double_s){1, 2.0};
}
struct char_char_double_s { char a; char b; double c; };
// CHECK-LABEL: define void @f_char_char_double_s_arg(%struct.char_char_double_s* %a)
void f_char_char_double_s_arg(struct char_char_double_s a) {}
// CHECK: define void @f_ret_char_char_double_s(%struct.char_char_double_s* noalias sret align 8 %agg.result)
struct char_char_double_s f_ret_char_char_double_s() {
return (struct char_char_double_s){1, 2, 3.0};
}
// Unions are always passed according to the integer calling convention, even
// if they can only contain a double.
union double_u { double a; };
// CHECK: define void @f_double_u_arg(i64 %a.coerce)
void f_double_u_arg(union double_u a) {}
// CHECK: define i64 @f_ret_double_u()
union double_u f_ret_double_u() {
return (union double_u){1.0};
}
// Test that we don't incorrectly think double+int/double+double structs will
// be returned indirectly and thus have an off-by-one error for the number of
// GPRs available (this is an edge case when structs > 2*XLEN are still
// returned in registers). This includes complex doubles, which are treated as
// double+double structs by the ABI.
// CHECK: define { double, i32 } @f_ret_double_int32_s_double_int32_s_just_sufficient_gprs(i32 %a, i32 %b, i32 %c, i32 %d, i32 %e, i32 %f, i32 %g, double %0, i32 %1)
struct double_int32_s f_ret_double_int32_s_double_int32_s_just_sufficient_gprs(
int a, int b, int c, int d, int e, int f, int g, struct double_int32_s h) {
return (struct double_int32_s){1.0, 2};
}
// CHECK: define { double, double } @f_ret_double_double_s_double_int32_s_just_sufficient_gprs(i32 %a, i32 %b, i32 %c, i32 %d, i32 %e, i32 %f, i32 %g, double %0, i32 %1)
struct double_double_s f_ret_double_double_s_double_int32_s_just_sufficient_gprs(
int a, int b, int c, int d, int e, int f, int g, struct double_int32_s h) {
return (struct double_double_s){1.0, 2.0};
}
// CHECK: define { double, double } @f_ret_doublecomplex_double_int32_s_just_sufficient_gprs(i32 %a, i32 %b, i32 %c, i32 %d, i32 %e, i32 %f, i32 %g, double %0, i32 %1)
double __complex__ f_ret_doublecomplex_double_int32_s_just_sufficient_gprs(
int a, int b, int c, int d, int e, int f, int g, struct double_int32_s h) {
return 1.0;
}