mig.mm
11.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
// RUN: %clang_analyze_cc1 -w -analyzer-checker=core,osx.MIG -std=c++14 \
// RUN: -analyzer-output=text -fblocks -verify %s
typedef unsigned uint32_t;
// XNU APIs.
typedef int kern_return_t;
#define KERN_SUCCESS 0
#define KERN_ERROR 1
#define MIG_NO_REPLY (-305)
typedef unsigned mach_port_name_t;
typedef unsigned vm_address_t;
typedef unsigned vm_size_t;
typedef void *ipc_space_t;
typedef unsigned long io_user_reference_t;
typedef struct ipc_port *ipc_port_t;
typedef unsigned mach_port_t;
typedef uint32_t UInt32;
struct os_refcnt {};
typedef struct os_refcnt os_refcnt_t;
struct thread {
os_refcnt_t ref_count;
};
typedef struct thread *thread_t;
kern_return_t vm_deallocate(mach_port_name_t, vm_address_t, vm_size_t);
kern_return_t mach_vm_deallocate(mach_port_name_t, vm_address_t, vm_size_t);
void mig_deallocate(vm_address_t, vm_size_t);
kern_return_t mach_port_deallocate(ipc_space_t, mach_port_name_t);
void ipc_port_release(ipc_port_t);
void thread_deallocate(thread_t);
static void os_ref_retain(struct os_refcnt *rc);
#define thread_reference_internal(thread) os_ref_retain(&(thread)->ref_count);
#define MIG_SERVER_ROUTINE __attribute__((mig_server_routine))
// IOKit wrappers.
class OSObject;
typedef kern_return_t IOReturn;
#define kIOReturnError 1
enum {
kOSAsyncRef64Count = 8,
};
typedef io_user_reference_t OSAsyncReference64[kOSAsyncRef64Count];
struct IOExternalMethodArguments {
io_user_reference_t *asyncReference;
};
struct IOExternalMethodDispatch {};
class IOUserClient {
public:
static IOReturn releaseAsyncReference64(OSAsyncReference64);
static IOReturn releaseNotificationPort(mach_port_t port);
MIG_SERVER_ROUTINE
virtual IOReturn externalMethod(
uint32_t selector, IOExternalMethodArguments *arguments,
IOExternalMethodDispatch *dispatch = 0, OSObject *target = 0,
void *reference = 0);
MIG_SERVER_ROUTINE
virtual IOReturn registerNotificationPort(mach_port_t, UInt32, UInt32);
};
// Tests.
MIG_SERVER_ROUTINE
kern_return_t basic_test(mach_port_name_t port, vm_address_t address, vm_size_t size) {
vm_deallocate(port, address, size); // expected-note{{Value passed through parameter 'address' is deallocated}}
if (size > 10) { // expected-note{{Assuming 'size' is > 10}}
// expected-note@-1{{Taking true branch}}
return KERN_ERROR; // expected-warning{{MIG callback fails with error after deallocating argument value. This is a use-after-free vulnerability because the caller will try to deallocate it again}}
// expected-note@-1{{MIG callback fails with error after deallocating argument value. This is a use-after-free vulnerability because the caller will try to deallocate it again}}
}
return KERN_SUCCESS;
}
MIG_SERVER_ROUTINE
kern_return_t test_unknown_return_value(mach_port_name_t port, vm_address_t address, vm_size_t size) {
extern kern_return_t foo();
vm_deallocate(port, address, size);
// We don't know if it's a success or a failure.
return foo(); // no-warning
}
// Make sure we don't crash when they forgot to write the return statement.
MIG_SERVER_ROUTINE
kern_return_t no_crash(mach_port_name_t port, vm_address_t address, vm_size_t size) {
vm_deallocate(port, address, size);
}
// When releasing two parameters, add a note for both of them.
// Also when returning a variable, explain why do we think that it contains
// a non-success code.
MIG_SERVER_ROUTINE
kern_return_t release_twice(mach_port_name_t port, vm_address_t addr1, vm_address_t addr2, vm_size_t size) {
kern_return_t ret = KERN_ERROR; // expected-note{{'ret' initialized to 1}}
vm_deallocate(port, addr1, size); // expected-note{{Value passed through parameter 'addr1' is deallocated}}
vm_deallocate(port, addr2, size); // expected-note{{Value passed through parameter 'addr2' is deallocated}}
return ret; // expected-warning{{MIG callback fails with error after deallocating argument value. This is a use-after-free vulnerability because the caller will try to deallocate it again}}
// expected-note@-1{{MIG callback fails with error after deallocating argument value. This is a use-after-free vulnerability because the caller will try to deallocate it again}}
}
MIG_SERVER_ROUTINE
kern_return_t no_unrelated_notes(mach_port_name_t port, vm_address_t address, vm_size_t size) {
vm_deallocate(port, address, size); // no-note
1 / 0; // expected-warning{{Division by zero}}
// expected-note@-1{{Division by zero}}
return KERN_SUCCESS;
}
// Make sure we find the bug when the object is destroyed within an
// automatic destructor.
MIG_SERVER_ROUTINE
kern_return_t test_vm_deallocate_in_automatic_dtor(mach_port_name_t port, vm_address_t address, vm_size_t size) {
struct WillDeallocate {
mach_port_name_t port;
vm_address_t address;
vm_size_t size;
~WillDeallocate() {
vm_deallocate(port, address, size); // expected-note{{Value passed through parameter 'address' is deallocated}}
}
} will_deallocate{port, address, size};
if (size > 10) {
// expected-note@-1{{Assuming 'size' is > 10}}
// expected-note@-2{{Taking true branch}}
return KERN_ERROR;
// expected-note@-1{{Calling '~WillDeallocate'}}
// expected-note@-2{{Returning from '~WillDeallocate'}}
// expected-warning@-3{{MIG callback fails with error after deallocating argument value. This is a use-after-free vulnerability because the caller will try to deallocate it again}}
// expected-note@-4 {{MIG callback fails with error after deallocating argument value. This is a use-after-free vulnerability because the caller will try to deallocate it again}}
}
return KERN_SUCCESS;
}
// Check that we work on Objective-C messages and blocks.
@interface I
- (kern_return_t)fooAtPort:(mach_port_name_t)port withAddress:(vm_address_t)address ofSize:(vm_size_t)size;
@end
@implementation I
- (kern_return_t)fooAtPort:(mach_port_name_t)port
withAddress:(vm_address_t)address
ofSize:(vm_size_t)size MIG_SERVER_ROUTINE {
vm_deallocate(port, address, size); // expected-note{{Value passed through parameter 'address' is deallocated}}
return KERN_ERROR; // expected-warning{{MIG callback fails with error after deallocating argument value. This is a use-after-free vulnerability because the caller will try to deallocate it again}}
// expected-note@-1{{MIG callback fails with error after deallocating argument value. This is a use-after-free vulnerability because the caller will try to deallocate it again}}
}
@end
void test_block() {
kern_return_t (^block)(mach_port_name_t, vm_address_t, vm_size_t) =
^MIG_SERVER_ROUTINE (mach_port_name_t port,
vm_address_t address, vm_size_t size) {
vm_deallocate(port, address, size); // expected-note{{Value passed through parameter 'address' is deallocated}}
return KERN_ERROR; // expected-warning{{MIG callback fails with error after deallocating argument value. This is a use-after-free vulnerability because the caller will try to deallocate it again}}
// expected-note@-1{{MIG callback fails with error after deallocating argument value. This is a use-after-free vulnerability because the caller will try to deallocate it again}}
};
}
void test_block_with_weird_return_type() {
struct Empty {};
// The block is written within a function so that it was actually analyzed as
// a top-level function during analysis. If we were to write it as a global
// variable of block type instead, it would not have been analyzed, because
// ASTConsumer won't find the block's code body within the VarDecl.
// At the same time, we shouldn't call it from the function, because otherwise
// it will be analyzed as an inlined function rather than as a top-level
// function.
Empty (^block)(mach_port_name_t, vm_address_t, vm_size_t) =
^MIG_SERVER_ROUTINE(mach_port_name_t port,
vm_address_t address, vm_size_t size) {
vm_deallocate(port, address, size);
return Empty{}; // no-crash
};
}
// Test various APIs.
MIG_SERVER_ROUTINE
kern_return_t test_mach_vm_deallocate(mach_port_name_t port, vm_address_t address, vm_size_t size) {
mach_vm_deallocate(port, address, size); // expected-note{{Value passed through parameter 'address' is deallocated}}
return KERN_ERROR; // expected-warning{{MIG callback fails with error after deallocating argument value}}
// expected-note@-1{{MIG callback fails with error after deallocating argument value}}
}
MIG_SERVER_ROUTINE
kern_return_t test_mach_port_deallocate(ipc_space_t space,
mach_port_name_t port) {
mach_port_deallocate(space, port); // expected-note{{Value passed through parameter 'port' is deallocated}}
return KERN_ERROR; // expected-warning{{MIG callback fails with error after deallocating argument value}}
// expected-note@-1{{MIG callback fails with error after deallocating argument value}}
}
MIG_SERVER_ROUTINE
kern_return_t test_mig_deallocate(vm_address_t address, vm_size_t size) {
mig_deallocate(address, size); // expected-note{{Value passed through parameter 'address' is deallocated}}
return KERN_ERROR; // expected-warning{{MIG callback fails with error after deallocating argument value}}
// expected-note@-1{{MIG callback fails with error after deallocating argument value}}
}
MIG_SERVER_ROUTINE
kern_return_t test_ipc_port_release(ipc_port_t port) {
ipc_port_release(port); // expected-note{{Value passed through parameter 'port' is deallocated}}
return KERN_ERROR; // expected-warning{{MIG callback fails with error after deallocating argument value}}
// expected-note@-1{{MIG callback fails with error after deallocating argument value}}
}
// Let's try the C++11 attribute spelling syntax as well.
[[clang::mig_server_routine]]
IOReturn test_releaseAsyncReference64(IOExternalMethodArguments *arguments) {
IOUserClient::releaseAsyncReference64(arguments->asyncReference); // expected-note{{Value passed through parameter 'arguments' is deallocated}}
return kIOReturnError; // expected-warning{{MIG callback fails with error after deallocating argument value}}
// expected-note@-1{{MIG callback fails with error after deallocating argument value}}
}
MIG_SERVER_ROUTINE
kern_return_t test_no_reply(ipc_space_t space, mach_port_name_t port) {
mach_port_deallocate(space, port);
return MIG_NO_REPLY; // no-warning
}
class MyClient: public IOUserClient {
// The MIG_SERVER_ROUTINE annotation is intentionally skipped.
// It should be picked up from the superclass.
IOReturn externalMethod(uint32_t selector, IOExternalMethodArguments *arguments,
IOExternalMethodDispatch *dispatch = 0, OSObject *target = 0, void *reference = 0) override {
releaseAsyncReference64(arguments->asyncReference); // expected-note{{Value passed through parameter 'arguments' is deallocated}}
return kIOReturnError; // expected-warning{{MIG callback fails with error after deallocating argument value}}
// expected-note@-1{{MIG callback fails with error after deallocating argument value}}
}
IOReturn registerNotificationPort(mach_port_t port, UInt32 x, UInt32 y) {
releaseNotificationPort(port); // expected-note{{Value passed through parameter 'port' is deallocated}}
return kIOReturnError; // expected-warning{{MIG callback fails with error after deallocating argument value}}
// expected-note@-1{{MIG callback fails with error after deallocating argument value}}
}
};
MIG_SERVER_ROUTINE
kern_return_t test_os_ref_retain(thread_t thread) {
thread_reference_internal(thread);
thread_deallocate(thread);
return KERN_ERROR; // no-warning
}