Store.cpp 21.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
//===- Store.cpp - Interface for maps from Locations to Values ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file defined the types Store and StoreManager.
//
//===----------------------------------------------------------------------===//

#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/AST/Type.h"
#include "clang/Basic/LLVM.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstdint>

using namespace clang;
using namespace ento;

StoreManager::StoreManager(ProgramStateManager &stateMgr)
    : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
      MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}

StoreRef StoreManager::enterStackFrame(Store OldStore,
                                       const CallEvent &Call,
                                       const StackFrameContext *LCtx) {
  StoreRef Store = StoreRef(OldStore, *this);

  SmallVector<CallEvent::FrameBindingTy, 16> InitialBindings;
  Call.getInitialStackFrameContents(LCtx, InitialBindings);

  for (const auto &I : InitialBindings)
    Store = Bind(Store.getStore(), I.first.castAs<Loc>(), I.second);

  return Store;
}

const ElementRegion *StoreManager::MakeElementRegion(const SubRegion *Base,
                                                     QualType EleTy,
                                                     uint64_t index) {
  NonLoc idx = svalBuilder.makeArrayIndex(index);
  return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
}

const ElementRegion *StoreManager::GetElementZeroRegion(const SubRegion *R,
                                                        QualType T) {
  NonLoc idx = svalBuilder.makeZeroArrayIndex();
  assert(!T.isNull());
  return MRMgr.getElementRegion(T, idx, R, Ctx);
}

const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) {
  ASTContext &Ctx = StateMgr.getContext();

  // Handle casts to Objective-C objects.
  if (CastToTy->isObjCObjectPointerType())
    return R->StripCasts();

  if (CastToTy->isBlockPointerType()) {
    // FIXME: We may need different solutions, depending on the symbol
    // involved.  Blocks can be casted to/from 'id', as they can be treated
    // as Objective-C objects.  This could possibly be handled by enhancing
    // our reasoning of downcasts of symbolic objects.
    if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
      return R;

    // We don't know what to make of it.  Return a NULL region, which
    // will be interpreted as UnknownVal.
    return nullptr;
  }

  // Now assume we are casting from pointer to pointer. Other cases should
  // already be handled.
  QualType PointeeTy = CastToTy->getPointeeType();
  QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);

  // Handle casts to void*.  We just pass the region through.
  if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
    return R;

  // Handle casts from compatible types.
  if (R->isBoundable())
    if (const auto *TR = dyn_cast<TypedValueRegion>(R)) {
      QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
      if (CanonPointeeTy == ObjTy)
        return R;
    }

  // Process region cast according to the kind of the region being cast.
  switch (R->getKind()) {
    case MemRegion::CXXThisRegionKind:
    case MemRegion::CodeSpaceRegionKind:
    case MemRegion::StackLocalsSpaceRegionKind:
    case MemRegion::StackArgumentsSpaceRegionKind:
    case MemRegion::HeapSpaceRegionKind:
    case MemRegion::UnknownSpaceRegionKind:
    case MemRegion::StaticGlobalSpaceRegionKind:
    case MemRegion::GlobalInternalSpaceRegionKind:
    case MemRegion::GlobalSystemSpaceRegionKind:
    case MemRegion::GlobalImmutableSpaceRegionKind: {
      llvm_unreachable("Invalid region cast");
    }

    case MemRegion::FunctionCodeRegionKind:
    case MemRegion::BlockCodeRegionKind:
    case MemRegion::BlockDataRegionKind:
    case MemRegion::StringRegionKind:
      // FIXME: Need to handle arbitrary downcasts.
    case MemRegion::SymbolicRegionKind:
    case MemRegion::AllocaRegionKind:
    case MemRegion::CompoundLiteralRegionKind:
    case MemRegion::FieldRegionKind:
    case MemRegion::ObjCIvarRegionKind:
    case MemRegion::ObjCStringRegionKind:
    case MemRegion::NonParamVarRegionKind:
    case MemRegion::ParamVarRegionKind:
    case MemRegion::CXXTempObjectRegionKind:
    case MemRegion::CXXBaseObjectRegionKind:
    case MemRegion::CXXDerivedObjectRegionKind:
      return MakeElementRegion(cast<SubRegion>(R), PointeeTy);

    case MemRegion::ElementRegionKind: {
      // If we are casting from an ElementRegion to another type, the
      // algorithm is as follows:
      //
      // (1) Compute the "raw offset" of the ElementRegion from the
      //     base region.  This is done by calling 'getAsRawOffset()'.
      //
      // (2a) If we get a 'RegionRawOffset' after calling
      //      'getAsRawOffset()', determine if the absolute offset
      //      can be exactly divided into chunks of the size of the
      //      casted-pointee type.  If so, create a new ElementRegion with
      //      the pointee-cast type as the new ElementType and the index
      //      being the offset divded by the chunk size.  If not, create
      //      a new ElementRegion at offset 0 off the raw offset region.
      //
      // (2b) If we don't a get a 'RegionRawOffset' after calling
      //      'getAsRawOffset()', it means that we are at offset 0.
      //
      // FIXME: Handle symbolic raw offsets.

      const ElementRegion *elementR = cast<ElementRegion>(R);
      const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
      const MemRegion *baseR = rawOff.getRegion();

      // If we cannot compute a raw offset, throw up our hands and return
      // a NULL MemRegion*.
      if (!baseR)
        return nullptr;

      CharUnits off = rawOff.getOffset();

      if (off.isZero()) {
        // Edge case: we are at 0 bytes off the beginning of baseR.  We
        // check to see if type we are casting to is the same as the base
        // region.  If so, just return the base region.
        if (const auto *TR = dyn_cast<TypedValueRegion>(baseR)) {
          QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
          QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
          if (CanonPointeeTy == ObjTy)
            return baseR;
        }

        // Otherwise, create a new ElementRegion at offset 0.
        return MakeElementRegion(cast<SubRegion>(baseR), PointeeTy);
      }

      // We have a non-zero offset from the base region.  We want to determine
      // if the offset can be evenly divided by sizeof(PointeeTy).  If so,
      // we create an ElementRegion whose index is that value.  Otherwise, we
      // create two ElementRegions, one that reflects a raw offset and the other
      // that reflects the cast.

      // Compute the index for the new ElementRegion.
      int64_t newIndex = 0;
      const MemRegion *newSuperR = nullptr;

      // We can only compute sizeof(PointeeTy) if it is a complete type.
      if (!PointeeTy->isIncompleteType()) {
        // Compute the size in **bytes**.
        CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
        if (!pointeeTySize.isZero()) {
          // Is the offset a multiple of the size?  If so, we can layer the
          // ElementRegion (with elementType == PointeeTy) directly on top of
          // the base region.
          if (off % pointeeTySize == 0) {
            newIndex = off / pointeeTySize;
            newSuperR = baseR;
          }
        }
      }

      if (!newSuperR) {
        // Create an intermediate ElementRegion to represent the raw byte.
        // This will be the super region of the final ElementRegion.
        newSuperR = MakeElementRegion(cast<SubRegion>(baseR), Ctx.CharTy,
                                      off.getQuantity());
      }

      return MakeElementRegion(cast<SubRegion>(newSuperR), PointeeTy, newIndex);
    }
  }

  llvm_unreachable("unreachable");
}

static bool regionMatchesCXXRecordType(SVal V, QualType Ty) {
  const MemRegion *MR = V.getAsRegion();
  if (!MR)
    return true;

  const auto *TVR = dyn_cast<TypedValueRegion>(MR);
  if (!TVR)
    return true;

  const CXXRecordDecl *RD = TVR->getValueType()->getAsCXXRecordDecl();
  if (!RD)
    return true;

  const CXXRecordDecl *Expected = Ty->getPointeeCXXRecordDecl();
  if (!Expected)
    Expected = Ty->getAsCXXRecordDecl();

  return Expected->getCanonicalDecl() == RD->getCanonicalDecl();
}

SVal StoreManager::evalDerivedToBase(SVal Derived, const CastExpr *Cast) {
  // Sanity check to avoid doing the wrong thing in the face of
  // reinterpret_cast.
  if (!regionMatchesCXXRecordType(Derived, Cast->getSubExpr()->getType()))
    return UnknownVal();

  // Walk through the cast path to create nested CXXBaseRegions.
  SVal Result = Derived;
  for (CastExpr::path_const_iterator I = Cast->path_begin(),
                                     E = Cast->path_end();
       I != E; ++I) {
    Result = evalDerivedToBase(Result, (*I)->getType(), (*I)->isVirtual());
  }
  return Result;
}

SVal StoreManager::evalDerivedToBase(SVal Derived, const CXXBasePath &Path) {
  // Walk through the path to create nested CXXBaseRegions.
  SVal Result = Derived;
  for (const auto &I : Path)
    Result = evalDerivedToBase(Result, I.Base->getType(),
                               I.Base->isVirtual());
  return Result;
}

SVal StoreManager::evalDerivedToBase(SVal Derived, QualType BaseType,
                                     bool IsVirtual) {
  const MemRegion *DerivedReg = Derived.getAsRegion();
  if (!DerivedReg)
    return Derived;

  const CXXRecordDecl *BaseDecl = BaseType->getPointeeCXXRecordDecl();
  if (!BaseDecl)
    BaseDecl = BaseType->getAsCXXRecordDecl();
  assert(BaseDecl && "not a C++ object?");

  if (const auto *AlreadyDerivedReg =
          dyn_cast<CXXDerivedObjectRegion>(DerivedReg)) {
    if (const auto *SR =
            dyn_cast<SymbolicRegion>(AlreadyDerivedReg->getSuperRegion()))
      if (SR->getSymbol()->getType()->getPointeeCXXRecordDecl() == BaseDecl)
        return loc::MemRegionVal(SR);

    DerivedReg = AlreadyDerivedReg->getSuperRegion();
  }

  const MemRegion *BaseReg = MRMgr.getCXXBaseObjectRegion(
      BaseDecl, cast<SubRegion>(DerivedReg), IsVirtual);

  return loc::MemRegionVal(BaseReg);
}

/// Returns the static type of the given region, if it represents a C++ class
/// object.
///
/// This handles both fully-typed regions, where the dynamic type is known, and
/// symbolic regions, where the dynamic type is merely bounded (and even then,
/// only ostensibly!), but does not take advantage of any dynamic type info.
static const CXXRecordDecl *getCXXRecordType(const MemRegion *MR) {
  if (const auto *TVR = dyn_cast<TypedValueRegion>(MR))
    return TVR->getValueType()->getAsCXXRecordDecl();
  if (const auto *SR = dyn_cast<SymbolicRegion>(MR))
    return SR->getSymbol()->getType()->getPointeeCXXRecordDecl();
  return nullptr;
}

SVal StoreManager::attemptDownCast(SVal Base, QualType TargetType,
                                   bool &Failed) {
  Failed = false;

  const MemRegion *MR = Base.getAsRegion();
  if (!MR)
    return UnknownVal();

  // Assume the derived class is a pointer or a reference to a CXX record.
  TargetType = TargetType->getPointeeType();
  assert(!TargetType.isNull());
  const CXXRecordDecl *TargetClass = TargetType->getAsCXXRecordDecl();
  if (!TargetClass && !TargetType->isVoidType())
    return UnknownVal();

  // Drill down the CXXBaseObject chains, which represent upcasts (casts from
  // derived to base).
  while (const CXXRecordDecl *MRClass = getCXXRecordType(MR)) {
    // If found the derived class, the cast succeeds.
    if (MRClass == TargetClass)
      return loc::MemRegionVal(MR);

    // We skip over incomplete types. They must be the result of an earlier
    // reinterpret_cast, as one can only dynamic_cast between types in the same
    // class hierarchy.
    if (!TargetType->isVoidType() && MRClass->hasDefinition()) {
      // Static upcasts are marked as DerivedToBase casts by Sema, so this will
      // only happen when multiple or virtual inheritance is involved.
      CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
                         /*DetectVirtual=*/false);
      if (MRClass->isDerivedFrom(TargetClass, Paths))
        return evalDerivedToBase(loc::MemRegionVal(MR), Paths.front());
    }

    if (const auto *BaseR = dyn_cast<CXXBaseObjectRegion>(MR)) {
      // Drill down the chain to get the derived classes.
      MR = BaseR->getSuperRegion();
      continue;
    }

    // If this is a cast to void*, return the region.
    if (TargetType->isVoidType())
      return loc::MemRegionVal(MR);

    // Strange use of reinterpret_cast can give us paths we don't reason
    // about well, by putting in ElementRegions where we'd expect
    // CXXBaseObjectRegions. If it's a valid reinterpret_cast (i.e. if the
    // derived class has a zero offset from the base class), then it's safe
    // to strip the cast; if it's invalid, -Wreinterpret-base-class should
    // catch it. In the interest of performance, the analyzer will silently
    // do the wrong thing in the invalid case (because offsets for subregions
    // will be wrong).
    const MemRegion *Uncasted = MR->StripCasts(/*IncludeBaseCasts=*/false);
    if (Uncasted == MR) {
      // We reached the bottom of the hierarchy and did not find the derived
      // class. We must be casting the base to derived, so the cast should
      // fail.
      break;
    }

    MR = Uncasted;
  }

  // If we're casting a symbolic base pointer to a derived class, use
  // CXXDerivedObjectRegion to represent the cast. If it's a pointer to an
  // unrelated type, it must be a weird reinterpret_cast and we have to
  // be fine with ElementRegion. TODO: Should we instead make
  // Derived{TargetClass, Element{SourceClass, SR}}?
  if (const auto *SR = dyn_cast<SymbolicRegion>(MR)) {
    QualType T = SR->getSymbol()->getType();
    const CXXRecordDecl *SourceClass = T->getPointeeCXXRecordDecl();
    if (TargetClass && SourceClass && TargetClass->isDerivedFrom(SourceClass))
      return loc::MemRegionVal(
          MRMgr.getCXXDerivedObjectRegion(TargetClass, SR));
    return loc::MemRegionVal(GetElementZeroRegion(SR, TargetType));
  }

  // We failed if the region we ended up with has perfect type info.
  Failed = isa<TypedValueRegion>(MR);
  return UnknownVal();
}

static bool hasSameUnqualifiedPointeeType(QualType ty1, QualType ty2) {
  return ty1->getPointeeType().getCanonicalType().getTypePtr() ==
         ty2->getPointeeType().getCanonicalType().getTypePtr();
}

/// CastRetrievedVal - Used by subclasses of StoreManager to implement
///  implicit casts that arise from loads from regions that are reinterpreted
///  as another region.
SVal StoreManager::CastRetrievedVal(SVal V, const TypedValueRegion *R,
                                    QualType castTy) {
  if (castTy.isNull() || V.isUnknownOrUndef())
    return V;

  // The dispatchCast() call below would convert the int into a float.
  // What we want, however, is a bit-by-bit reinterpretation of the int
  // as a float, which usually yields nothing garbage. For now skip casts
  // from ints to floats.
  // TODO: What other combinations of types are affected?
  if (castTy->isFloatingType()) {
    SymbolRef Sym = V.getAsSymbol();
    if (Sym && !Sym->getType()->isFloatingType())
      return UnknownVal();
  }

  // When retrieving symbolic pointer and expecting a non-void pointer,
  // wrap them into element regions of the expected type if necessary.
  // SValBuilder::dispatchCast() doesn't do that, but it is necessary to
  // make sure that the retrieved value makes sense, because there's no other
  // cast in the AST that would tell us to cast it to the correct pointer type.
  // We might need to do that for non-void pointers as well.
  // FIXME: We really need a single good function to perform casts for us
  // correctly every time we need it.
  if (castTy->isPointerType() && !castTy->isVoidPointerType())
    if (const auto *SR = dyn_cast_or_null<SymbolicRegion>(V.getAsRegion())) {
      QualType sr = SR->getSymbol()->getType();
      if (!hasSameUnqualifiedPointeeType(sr, castTy))
          return loc::MemRegionVal(castRegion(SR, castTy));
    }

  return svalBuilder.dispatchCast(V, castTy);
}

SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
  if (Base.isUnknownOrUndef())
    return Base;

  Loc BaseL = Base.castAs<Loc>();
  const SubRegion* BaseR = nullptr;

  switch (BaseL.getSubKind()) {
  case loc::MemRegionValKind:
    BaseR = cast<SubRegion>(BaseL.castAs<loc::MemRegionVal>().getRegion());
    break;

  case loc::GotoLabelKind:
    // These are anormal cases. Flag an undefined value.
    return UndefinedVal();

  case loc::ConcreteIntKind:
    // While these seem funny, this can happen through casts.
    // FIXME: What we should return is the field offset, not base. For example,
    //  add the field offset to the integer value.  That way things
    //  like this work properly:  &(((struct foo *) 0xa)->f)
    //  However, that's not easy to fix without reducing our abilities
    //  to catch null pointer dereference. Eg., ((struct foo *)0x0)->f = 7
    //  is a null dereference even though we're dereferencing offset of f
    //  rather than null. Coming up with an approach that computes offsets
    //  over null pointers properly while still being able to catch null
    //  dereferences might be worth it.
    return Base;

  default:
    llvm_unreachable("Unhandled Base.");
  }

  // NOTE: We must have this check first because ObjCIvarDecl is a subclass
  // of FieldDecl.
  if (const auto *ID = dyn_cast<ObjCIvarDecl>(D))
    return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));

  return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
}

SVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) {
  return getLValueFieldOrIvar(decl, base);
}

SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset,
                                    SVal Base) {
  // If the base is an unknown or undefined value, just return it back.
  // FIXME: For absolute pointer addresses, we just return that value back as
  //  well, although in reality we should return the offset added to that
  //  value. See also the similar FIXME in getLValueFieldOrIvar().
  if (Base.isUnknownOrUndef() || Base.getAs<loc::ConcreteInt>())
    return Base;

  if (Base.getAs<loc::GotoLabel>())
    return UnknownVal();

  const SubRegion *BaseRegion =
      Base.castAs<loc::MemRegionVal>().getRegionAs<SubRegion>();

  // Pointer of any type can be cast and used as array base.
  const auto *ElemR = dyn_cast<ElementRegion>(BaseRegion);

  // Convert the offset to the appropriate size and signedness.
  Offset = svalBuilder.convertToArrayIndex(Offset).castAs<NonLoc>();

  if (!ElemR) {
    // If the base region is not an ElementRegion, create one.
    // This can happen in the following example:
    //
    //   char *p = __builtin_alloc(10);
    //   p[1] = 8;
    //
    //  Observe that 'p' binds to an AllocaRegion.
    return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
                                                    BaseRegion, Ctx));
  }

  SVal BaseIdx = ElemR->getIndex();

  if (!BaseIdx.getAs<nonloc::ConcreteInt>())
    return UnknownVal();

  const llvm::APSInt &BaseIdxI =
      BaseIdx.castAs<nonloc::ConcreteInt>().getValue();

  // Only allow non-integer offsets if the base region has no offset itself.
  // FIXME: This is a somewhat arbitrary restriction. We should be using
  // SValBuilder here to add the two offsets without checking their types.
  if (!Offset.getAs<nonloc::ConcreteInt>()) {
    if (isa<ElementRegion>(BaseRegion->StripCasts()))
      return UnknownVal();

    return loc::MemRegionVal(MRMgr.getElementRegion(
        elementType, Offset, cast<SubRegion>(ElemR->getSuperRegion()), Ctx));
  }

  const llvm::APSInt& OffI = Offset.castAs<nonloc::ConcreteInt>().getValue();
  assert(BaseIdxI.isSigned());

  // Compute the new index.
  nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
                                                                    OffI));

  // Construct the new ElementRegion.
  const SubRegion *ArrayR = cast<SubRegion>(ElemR->getSuperRegion());
  return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
                                                  Ctx));
}

StoreManager::BindingsHandler::~BindingsHandler() = default;

bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager& SMgr,
                                                    Store store,
                                                    const MemRegion* R,
                                                    SVal val) {
  SymbolRef SymV = val.getAsLocSymbol();
  if (!SymV || SymV != Sym)
    return true;

  if (Binding) {
    First = false;
    return false;
  }
  else
    Binding = R;

  return true;
}