IteratorModeling.cpp 33.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
//===-- IteratorModeling.cpp --------------------------------------*- C++ -*--//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Defines a modeling-checker for modeling STL iterator-like iterators.
//
//===----------------------------------------------------------------------===//
//
// In the code, iterator can be represented as a:
// * type-I: typedef-ed pointer. Operations over such iterator, such as
//           comparisons or increments, are modeled straightforwardly by the
//           analyzer.
// * type-II: structure with its method bodies available.  Operations over such
//            iterator are inlined by the analyzer, and results of modeling
//            these operations are exposing implementation details of the
//            iterators, which is not necessarily helping.
// * type-III: completely opaque structure. Operations over such iterator are
//             modeled conservatively, producing conjured symbols everywhere.
//
// To handle all these types in a common way we introduce a structure called
// IteratorPosition which is an abstraction of the position the iterator
// represents using symbolic expressions. The checker handles all the
// operations on this structure.
//
// Additionally, depending on the circumstances, operators of types II and III
// can be represented as:
// * type-IIa, type-IIIa: conjured structure symbols - when returned by value
//                        from conservatively evaluated methods such as
//                        `.begin()`.
// * type-IIb, type-IIIb: memory regions of iterator-typed objects, such as
//                        variables or temporaries, when the iterator object is
//                        currently treated as an lvalue.
// * type-IIc, type-IIIc: compound values of iterator-typed objects, when the
//                        iterator object is treated as an rvalue taken of a
//                        particular lvalue, eg. a copy of "type-a" iterator
//                        object, or an iterator that existed before the
//                        analysis has started.
//
// To handle any of these three different representations stored in an SVal we
// use setter and getters functions which separate the three cases. To store
// them we use a pointer union of symbol and memory region.
//
// The checker works the following way: We record the begin and the
// past-end iterator for all containers whenever their `.begin()` and `.end()`
// are called. Since the Constraint Manager cannot handle such SVals we need
// to take over its role. We post-check equality and non-equality comparisons
// and record that the two sides are equal if we are in the 'equal' branch
// (true-branch for `==` and false-branch for `!=`).
//
// In case of type-I or type-II iterators we get a concrete integer as a result
// of the comparison (1 or 0) but in case of type-III we only get a Symbol. In
// this latter case we record the symbol and reload it in evalAssume() and do
// the propagation there. We also handle (maybe double) negated comparisons
// which are represented in the form of (x == 0 or x != 0) where x is the
// comparison itself.
//
// Since `SimpleConstraintManager` cannot handle complex symbolic expressions
// we only use expressions of the format S, S+n or S-n for iterator positions
// where S is a conjured symbol and n is an unsigned concrete integer. When
// making an assumption e.g. `S1 + n == S2 + m` we store `S1 - S2 == m - n` as
// a constraint which we later retrieve when doing an actual comparison.

#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"

#include "Iterator.h"

#include <utility>

using namespace clang;
using namespace ento;
using namespace iterator;

namespace {

class IteratorModeling
    : public Checker<check::PostCall, check::PostStmt<UnaryOperator>,
                     check::PostStmt<BinaryOperator>,
                     check::PostStmt<MaterializeTemporaryExpr>,
                     check::Bind, check::LiveSymbols, check::DeadSymbols> {

  using AdvanceFn = void (IteratorModeling::*)(CheckerContext &, const Expr *,
                                               SVal, SVal, SVal) const;

  void handleOverloadedOperator(CheckerContext &C, const CallEvent &Call,
                                OverloadedOperatorKind Op) const;
  void handleAdvanceLikeFunction(CheckerContext &C, const CallEvent &Call,
                                 const Expr *OrigExpr,
                                 const AdvanceFn *Handler) const;

  void handleComparison(CheckerContext &C, const Expr *CE, SVal RetVal,
                        const SVal &LVal, const SVal &RVal,
                        OverloadedOperatorKind Op) const;
  void processComparison(CheckerContext &C, ProgramStateRef State,
                         SymbolRef Sym1, SymbolRef Sym2, const SVal &RetVal,
                         OverloadedOperatorKind Op) const;
  void handleIncrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter,
                       bool Postfix) const;
  void handleDecrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter,
                       bool Postfix) const;
  void handleRandomIncrOrDecr(CheckerContext &C, const Expr *CE,
                              OverloadedOperatorKind Op, const SVal &RetVal,
                              const SVal &Iterator, const SVal &Amount) const;
  void handlePtrIncrOrDecr(CheckerContext &C, const Expr *Iterator,
                           OverloadedOperatorKind OK, SVal Offset) const;
  void handleAdvance(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
                     SVal Amount) const;
  void handlePrev(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
                  SVal Amount) const;
  void handleNext(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
                  SVal Amount) const;
  void assignToContainer(CheckerContext &C, const Expr *CE, const SVal &RetVal,
                         const MemRegion *Cont) const;
  bool noChangeInAdvance(CheckerContext &C, SVal Iter, const Expr *CE) const;
  void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
                  const char *Sep) const override;

  // std::advance, std::prev & std::next
  CallDescriptionMap<AdvanceFn> AdvanceLikeFunctions = {
      // template<class InputIt, class Distance>
      // void advance(InputIt& it, Distance n);
      {{{"std", "advance"}, 2}, &IteratorModeling::handleAdvance},

      // template<class BidirIt>
      // BidirIt prev(
      //   BidirIt it,
      //   typename std::iterator_traits<BidirIt>::difference_type n = 1);
      {{{"std", "prev"}, 2}, &IteratorModeling::handlePrev},

      // template<class ForwardIt>
      // ForwardIt next(
      //   ForwardIt it,
      //   typename std::iterator_traits<ForwardIt>::difference_type n = 1);
      {{{"std", "next"}, 2}, &IteratorModeling::handleNext},
  };

public:
  IteratorModeling() = default;

  void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
  void checkBind(SVal Loc, SVal Val, const Stmt *S, CheckerContext &C) const;
  void checkPostStmt(const UnaryOperator *UO, CheckerContext &C) const;
  void checkPostStmt(const BinaryOperator *BO, CheckerContext &C) const;
  void checkPostStmt(const CXXConstructExpr *CCE, CheckerContext &C) const;
  void checkPostStmt(const DeclStmt *DS, CheckerContext &C) const;
  void checkPostStmt(const MaterializeTemporaryExpr *MTE,
                     CheckerContext &C) const;
  void checkLiveSymbols(ProgramStateRef State, SymbolReaper &SR) const;
  void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
};

bool isSimpleComparisonOperator(OverloadedOperatorKind OK);
bool isSimpleComparisonOperator(BinaryOperatorKind OK);
ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val);
ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1,
                              SymbolRef Sym2, bool Equal);
bool isBoundThroughLazyCompoundVal(const Environment &Env,
                                   const MemRegion *Reg);
const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call);

} // namespace

void IteratorModeling::checkPostCall(const CallEvent &Call,
                                     CheckerContext &C) const {
  // Record new iterator positions and iterator position changes
  const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
  if (!Func)
    return;

  if (Func->isOverloadedOperator()) {
    const auto Op = Func->getOverloadedOperator();
    handleOverloadedOperator(C, Call, Op);
    return;
  }

  const auto *OrigExpr = Call.getOriginExpr();
  if (!OrigExpr)
    return;

  const AdvanceFn *Handler = AdvanceLikeFunctions.lookup(Call);
  if (Handler) {
    handleAdvanceLikeFunction(C, Call, OrigExpr, Handler);
    return;
  }

  if (!isIteratorType(Call.getResultType()))
    return;

  auto State = C.getState();

  // Already bound to container?
  if (getIteratorPosition(State, Call.getReturnValue()))
    return;

  // Copy-like and move constructors
  if (isa<CXXConstructorCall>(&Call) && Call.getNumArgs() == 1) {
    if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(0))) {
      State = setIteratorPosition(State, Call.getReturnValue(), *Pos);
      if (cast<CXXConstructorDecl>(Func)->isMoveConstructor()) {
        State = removeIteratorPosition(State, Call.getArgSVal(0));
      }
      C.addTransition(State);
      return;
    }
  }

  // Assumption: if return value is an iterator which is not yet bound to a
  //             container, then look for the first iterator argument of the
  //             same type as the return value and bind the return value to
  //             the same container. This approach works for STL algorithms.
  // FIXME: Add a more conservative mode
  for (unsigned i = 0; i < Call.getNumArgs(); ++i) {
    if (isIteratorType(Call.getArgExpr(i)->getType()) &&
        Call.getArgExpr(i)->getType().getNonReferenceType().getDesugaredType(
            C.getASTContext()).getTypePtr() ==
        Call.getResultType().getDesugaredType(C.getASTContext()).getTypePtr()) {
      if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(i))) {
        assignToContainer(C, OrigExpr, Call.getReturnValue(),
                          Pos->getContainer());
        return;
      }
    }
  }
}

void IteratorModeling::checkBind(SVal Loc, SVal Val, const Stmt *S,
                                 CheckerContext &C) const {
  auto State = C.getState();
  const auto *Pos = getIteratorPosition(State, Val);
  if (Pos) {
    State = setIteratorPosition(State, Loc, *Pos);
    C.addTransition(State);
  } else {
    const auto *OldPos = getIteratorPosition(State, Loc);
    if (OldPos) {
      State = removeIteratorPosition(State, Loc);
      C.addTransition(State);
    }
  }
}

void IteratorModeling::checkPostStmt(const UnaryOperator *UO,
                                     CheckerContext &C) const {
  UnaryOperatorKind OK = UO->getOpcode();
  if (!isIncrementOperator(OK) && !isDecrementOperator(OK))
    return;

  auto &SVB = C.getSValBuilder();
  handlePtrIncrOrDecr(C, UO->getSubExpr(),
                      isIncrementOperator(OK) ? OO_Plus : OO_Minus,
                      SVB.makeArrayIndex(1));
}

void IteratorModeling::checkPostStmt(const BinaryOperator *BO,
                                     CheckerContext &C) const {
  const ProgramStateRef State = C.getState();
  const BinaryOperatorKind OK = BO->getOpcode();
  const Expr *const LHS = BO->getLHS();
  const Expr *const RHS = BO->getRHS();
  const SVal LVal = State->getSVal(LHS, C.getLocationContext());
  const SVal RVal = State->getSVal(RHS, C.getLocationContext());

  if (isSimpleComparisonOperator(BO->getOpcode())) {
    SVal Result = State->getSVal(BO, C.getLocationContext());
    handleComparison(C, BO, Result, LVal, RVal,
                     BinaryOperator::getOverloadedOperator(OK));
  } else if (isRandomIncrOrDecrOperator(OK)) {
    // In case of operator+ the iterator can be either on the LHS (eg.: it + 1),
    // or on the RHS (eg.: 1 + it). Both cases are modeled.
    const bool IsIterOnLHS = BO->getLHS()->getType()->isPointerType();
    const Expr *const &IterExpr = IsIterOnLHS ? LHS : RHS;
    const Expr *const &AmountExpr = IsIterOnLHS ? RHS : LHS;

    // The non-iterator side must have an integral or enumeration type.
    if (!AmountExpr->getType()->isIntegralOrEnumerationType())
      return;
    const SVal &AmountVal = IsIterOnLHS ? RVal : LVal;
    handlePtrIncrOrDecr(C, IterExpr, BinaryOperator::getOverloadedOperator(OK),
                        AmountVal);
  }
}

void IteratorModeling::checkPostStmt(const MaterializeTemporaryExpr *MTE,
                                     CheckerContext &C) const {
  /* Transfer iterator state to temporary objects */
  auto State = C.getState();
  const auto *Pos = getIteratorPosition(State, C.getSVal(MTE->getSubExpr()));
  if (!Pos)
    return;
  State = setIteratorPosition(State, C.getSVal(MTE), *Pos);
  C.addTransition(State);
}

void IteratorModeling::checkLiveSymbols(ProgramStateRef State,
                                        SymbolReaper &SR) const {
  // Keep symbolic expressions of iterator positions alive
  auto RegionMap = State->get<IteratorRegionMap>();
  for (const auto &Reg : RegionMap) {
    const auto Offset = Reg.second.getOffset();
    for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i)
      if (isa<SymbolData>(*i))
        SR.markLive(*i);
  }

  auto SymbolMap = State->get<IteratorSymbolMap>();
  for (const auto &Sym : SymbolMap) {
    const auto Offset = Sym.second.getOffset();
    for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i)
      if (isa<SymbolData>(*i))
        SR.markLive(*i);
  }

}

void IteratorModeling::checkDeadSymbols(SymbolReaper &SR,
                                        CheckerContext &C) const {
  // Cleanup
  auto State = C.getState();

  auto RegionMap = State->get<IteratorRegionMap>();
  for (const auto &Reg : RegionMap) {
    if (!SR.isLiveRegion(Reg.first)) {
      // The region behind the `LazyCompoundVal` is often cleaned up before
      // the `LazyCompoundVal` itself. If there are iterator positions keyed
      // by these regions their cleanup must be deferred.
      if (!isBoundThroughLazyCompoundVal(State->getEnvironment(), Reg.first)) {
        State = State->remove<IteratorRegionMap>(Reg.first);
      }
    }
  }

  auto SymbolMap = State->get<IteratorSymbolMap>();
  for (const auto &Sym : SymbolMap) {
    if (!SR.isLive(Sym.first)) {
      State = State->remove<IteratorSymbolMap>(Sym.first);
    }
  }

  C.addTransition(State);
}

void
IteratorModeling::handleOverloadedOperator(CheckerContext &C,
                                           const CallEvent &Call,
                                           OverloadedOperatorKind Op) const {
    if (isSimpleComparisonOperator(Op)) {
      const auto *OrigExpr = Call.getOriginExpr();
      if (!OrigExpr)
        return;

      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
        handleComparison(C, OrigExpr, Call.getReturnValue(),
                         InstCall->getCXXThisVal(), Call.getArgSVal(0), Op);
        return;
      }

      handleComparison(C, OrigExpr, Call.getReturnValue(), Call.getArgSVal(0),
                         Call.getArgSVal(1), Op);
      return;
    } else if (isRandomIncrOrDecrOperator(Op)) {
      const auto *OrigExpr = Call.getOriginExpr();
      if (!OrigExpr)
        return;

      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
        if (Call.getNumArgs() >= 1 &&
              Call.getArgExpr(0)->getType()->isIntegralOrEnumerationType()) {
          handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(),
                                 InstCall->getCXXThisVal(), Call.getArgSVal(0));
          return;
        }
      } else if (Call.getNumArgs() >= 2) {
        const Expr *FirstArg = Call.getArgExpr(0);
        const Expr *SecondArg = Call.getArgExpr(1);
        const QualType FirstType = FirstArg->getType();
        const QualType SecondType = SecondArg->getType();

        if (FirstType->isIntegralOrEnumerationType() ||
            SecondType->isIntegralOrEnumerationType()) {
          // In case of operator+ the iterator can be either on the LHS (eg.:
          // it + 1), or on the RHS (eg.: 1 + it). Both cases are modeled.
          const bool IsIterFirst = FirstType->isStructureOrClassType();
          const SVal FirstArg = Call.getArgSVal(0);
          const SVal SecondArg = Call.getArgSVal(1);
          const SVal &Iterator = IsIterFirst ? FirstArg : SecondArg;
          const SVal &Amount = IsIterFirst ? SecondArg : FirstArg;

          handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(),
                                 Iterator, Amount);
          return;
        }
      }
    } else if (isIncrementOperator(Op)) {
      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
        handleIncrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
                        Call.getNumArgs());
        return;
      }

      handleIncrement(C, Call.getReturnValue(), Call.getArgSVal(0),
                      Call.getNumArgs());
      return;
    } else if (isDecrementOperator(Op)) {
      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
        handleDecrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
                        Call.getNumArgs());
        return;
      }

      handleDecrement(C, Call.getReturnValue(), Call.getArgSVal(0),
                        Call.getNumArgs());
      return;
    }
}

void
IteratorModeling::handleAdvanceLikeFunction(CheckerContext &C,
                                            const CallEvent &Call,
                                            const Expr *OrigExpr,
                                            const AdvanceFn *Handler) const {
  if (!C.wasInlined) {
    (this->**Handler)(C, OrigExpr, Call.getReturnValue(),
                      Call.getArgSVal(0), Call.getArgSVal(1));
    return;
  }

  // If std::advance() was inlined, but a non-standard function it calls inside
  // was not, then we have to model it explicitly
  const auto *IdInfo = cast<FunctionDecl>(Call.getDecl())->getIdentifier();
  if (IdInfo) {
    if (IdInfo->getName() == "advance") {
      if (noChangeInAdvance(C, Call.getArgSVal(0), OrigExpr)) {
        (this->**Handler)(C, OrigExpr, Call.getReturnValue(),
                          Call.getArgSVal(0), Call.getArgSVal(1));
      }
    }
  }
}

void IteratorModeling::handleComparison(CheckerContext &C, const Expr *CE,
                                       SVal RetVal, const SVal &LVal,
                                       const SVal &RVal,
                                       OverloadedOperatorKind Op) const {
  // Record the operands and the operator of the comparison for the next
  // evalAssume, if the result is a symbolic expression. If it is a concrete
  // value (only one branch is possible), then transfer the state between
  // the operands according to the operator and the result
   auto State = C.getState();
  const auto *LPos = getIteratorPosition(State, LVal);
  const auto *RPos = getIteratorPosition(State, RVal);
  const MemRegion *Cont = nullptr;
  if (LPos) {
    Cont = LPos->getContainer();
  } else if (RPos) {
    Cont = RPos->getContainer();
  }
  if (!Cont)
    return;

  // At least one of the iterators has recorded positions. If one of them does
  // not then create a new symbol for the offset.
  SymbolRef Sym;
  if (!LPos || !RPos) {
    auto &SymMgr = C.getSymbolManager();
    Sym = SymMgr.conjureSymbol(CE, C.getLocationContext(),
                               C.getASTContext().LongTy, C.blockCount());
    State = assumeNoOverflow(State, Sym, 4);
  }

  if (!LPos) {
    State = setIteratorPosition(State, LVal,
                                IteratorPosition::getPosition(Cont, Sym));
    LPos = getIteratorPosition(State, LVal);
  } else if (!RPos) {
    State = setIteratorPosition(State, RVal,
                                IteratorPosition::getPosition(Cont, Sym));
    RPos = getIteratorPosition(State, RVal);
  }

  // If the value for which we just tried to set a new iterator position is
  // an `SVal`for which no iterator position can be set then the setting was
  // unsuccessful. We cannot handle the comparison in this case.
  if (!LPos || !RPos)
    return;

  // We cannot make assumptions on `UnknownVal`. Let us conjure a symbol
  // instead.
  if (RetVal.isUnknown()) {
    auto &SymMgr = C.getSymbolManager();
    auto *LCtx = C.getLocationContext();
    RetVal = nonloc::SymbolVal(SymMgr.conjureSymbol(
        CE, LCtx, C.getASTContext().BoolTy, C.blockCount()));
    State = State->BindExpr(CE, LCtx, RetVal);
  }

  processComparison(C, State, LPos->getOffset(), RPos->getOffset(), RetVal, Op);
}

void IteratorModeling::processComparison(CheckerContext &C,
                                         ProgramStateRef State, SymbolRef Sym1,
                                         SymbolRef Sym2, const SVal &RetVal,
                                         OverloadedOperatorKind Op) const {
  if (const auto TruthVal = RetVal.getAs<nonloc::ConcreteInt>()) {
    if ((State = relateSymbols(State, Sym1, Sym2,
                              (Op == OO_EqualEqual) ==
                               (TruthVal->getValue() != 0)))) {
      C.addTransition(State);
    } else {
      C.generateSink(State, C.getPredecessor());
    }
    return;
  }

  const auto ConditionVal = RetVal.getAs<DefinedSVal>();
  if (!ConditionVal)
    return;

  if (auto StateTrue = relateSymbols(State, Sym1, Sym2, Op == OO_EqualEqual)) {
    StateTrue = StateTrue->assume(*ConditionVal, true);
    C.addTransition(StateTrue);
  }

  if (auto StateFalse = relateSymbols(State, Sym1, Sym2, Op != OO_EqualEqual)) {
    StateFalse = StateFalse->assume(*ConditionVal, false);
    C.addTransition(StateFalse);
  }
}

void IteratorModeling::handleIncrement(CheckerContext &C, const SVal &RetVal,
                                       const SVal &Iter, bool Postfix) const {
  // Increment the symbolic expressions which represents the position of the
  // iterator
  auto State = C.getState();
  auto &BVF = C.getSymbolManager().getBasicVals();

  const auto *Pos = getIteratorPosition(State, Iter);
  if (!Pos)
    return;

  auto NewState =
    advancePosition(State, Iter, OO_Plus,
                    nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))));
  assert(NewState &&
         "Advancing position by concrete int should always be successful");

  const auto *NewPos = getIteratorPosition(NewState, Iter);
  assert(NewPos &&
         "Iterator should have position after successful advancement");

  State = setIteratorPosition(State, Iter, *NewPos);
  State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos);
  C.addTransition(State);
}

void IteratorModeling::handleDecrement(CheckerContext &C, const SVal &RetVal,
                                       const SVal &Iter, bool Postfix) const {
  // Decrement the symbolic expressions which represents the position of the
  // iterator
  auto State = C.getState();
  auto &BVF = C.getSymbolManager().getBasicVals();

  const auto *Pos = getIteratorPosition(State, Iter);
  if (!Pos)
    return;

  auto NewState =
    advancePosition(State, Iter, OO_Minus,
                    nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))));
  assert(NewState &&
         "Advancing position by concrete int should always be successful");

  const auto *NewPos = getIteratorPosition(NewState, Iter);
  assert(NewPos &&
         "Iterator should have position after successful advancement");

  State = setIteratorPosition(State, Iter, *NewPos);
  State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos);
  C.addTransition(State);
}

void IteratorModeling::handleRandomIncrOrDecr(CheckerContext &C, const Expr *CE,
                                              OverloadedOperatorKind Op,
                                              const SVal &RetVal,
                                              const SVal &Iterator,
                                              const SVal &Amount) const {
  // Increment or decrement the symbolic expressions which represents the
  // position of the iterator
  auto State = C.getState();

  const auto *Pos = getIteratorPosition(State, Iterator);
  if (!Pos)
    return;

  const auto *Value = &Amount;
  SVal Val;
  if (auto LocAmount = Amount.getAs<Loc>()) {
    Val = State->getRawSVal(*LocAmount);
    Value = &Val;
  }

  const auto &TgtVal =
      (Op == OO_PlusEqual || Op == OO_MinusEqual) ? Iterator : RetVal;

  // `AdvancedState` is a state where the position of `LHS` is advanced. We
  // only need this state to retrieve the new position, but we do not want
  // to change the position of `LHS` (in every case).
  auto AdvancedState = advancePosition(State, Iterator, Op, *Value);
  if (AdvancedState) {
    const auto *NewPos = getIteratorPosition(AdvancedState, Iterator);
    assert(NewPos &&
           "Iterator should have position after successful advancement");

    State = setIteratorPosition(State, TgtVal, *NewPos);
    C.addTransition(State);
  } else {
    assignToContainer(C, CE, TgtVal, Pos->getContainer());
  }
}

void IteratorModeling::handlePtrIncrOrDecr(CheckerContext &C,
                                           const Expr *Iterator,
                                           OverloadedOperatorKind OK,
                                           SVal Offset) const {
  if (!Offset.getAs<DefinedSVal>())
    return;

  QualType PtrType = Iterator->getType();
  if (!PtrType->isPointerType())
    return;
  QualType ElementType = PtrType->getPointeeType();

  ProgramStateRef State = C.getState();
  SVal OldVal = State->getSVal(Iterator, C.getLocationContext());

  const IteratorPosition *OldPos = getIteratorPosition(State, OldVal);
  if (!OldPos)
    return;

  SVal NewVal;
  if (OK == OO_Plus || OK == OO_PlusEqual) {
    NewVal = State->getLValue(ElementType, Offset, OldVal);
  } else {
    auto &SVB = C.getSValBuilder();
    SVal NegatedOffset = SVB.evalMinus(Offset.castAs<NonLoc>());
    NewVal = State->getLValue(ElementType, NegatedOffset, OldVal);
  }

  // `AdvancedState` is a state where the position of `Old` is advanced. We
  // only need this state to retrieve the new position, but we do not want
  // ever to change the position of `OldVal`.
  auto AdvancedState = advancePosition(State, OldVal, OK, Offset);
  if (AdvancedState) {
    const IteratorPosition *NewPos = getIteratorPosition(AdvancedState, OldVal);
    assert(NewPos &&
           "Iterator should have position after successful advancement");

    ProgramStateRef NewState = setIteratorPosition(State, NewVal, *NewPos);
    C.addTransition(NewState);
  } else {
    assignToContainer(C, Iterator, NewVal, OldPos->getContainer());
  }
}

void IteratorModeling::handleAdvance(CheckerContext &C, const Expr *CE,
                                     SVal RetVal, SVal Iter,
                                     SVal Amount) const {
  handleRandomIncrOrDecr(C, CE, OO_PlusEqual, RetVal, Iter, Amount);
}

void IteratorModeling::handlePrev(CheckerContext &C, const Expr *CE,
                                  SVal RetVal, SVal Iter, SVal Amount) const {
  handleRandomIncrOrDecr(C, CE, OO_Minus, RetVal, Iter, Amount);
}

void IteratorModeling::handleNext(CheckerContext &C, const Expr *CE,
                                  SVal RetVal, SVal Iter, SVal Amount) const {
  handleRandomIncrOrDecr(C, CE, OO_Plus, RetVal, Iter, Amount);
}

void IteratorModeling::assignToContainer(CheckerContext &C, const Expr *CE,
                                         const SVal &RetVal,
                                         const MemRegion *Cont) const {
  Cont = Cont->getMostDerivedObjectRegion();

  auto State = C.getState();
  const auto *LCtx = C.getLocationContext();
  State = createIteratorPosition(State, RetVal, Cont, CE, LCtx, C.blockCount());

  C.addTransition(State);
}

bool IteratorModeling::noChangeInAdvance(CheckerContext &C, SVal Iter,
                                         const Expr *CE) const {
  // Compare the iterator position before and after the call. (To be called
  // from `checkPostCall()`.)
  const auto StateAfter = C.getState();

  const auto *PosAfter = getIteratorPosition(StateAfter, Iter);
  // If we have no position after the call of `std::advance`, then we are not
  // interested. (Modeling of an inlined `std::advance()` should not remove the
  // position in any case.)
  if (!PosAfter)
    return false;

  const ExplodedNode *N = findCallEnter(C.getPredecessor(), CE);
  assert(N && "Any call should have a `CallEnter` node.");

  const auto StateBefore = N->getState();
  const auto *PosBefore = getIteratorPosition(StateBefore, Iter);
  // FIXME: `std::advance()` should not create a new iterator position but
  //        change existing ones. However, in case of iterators implemented as
  //        pointers the handling of parameters in `std::advance()`-like
  //        functions is still incomplete which may result in cases where
  //        the new position is assigned to the wrong pointer. This causes
  //        crash if we use an assertion here.
  if (!PosBefore)
    return false;

  return PosBefore->getOffset() == PosAfter->getOffset();
}

void IteratorModeling::printState(raw_ostream &Out, ProgramStateRef State,
                                  const char *NL, const char *Sep) const {
  auto SymbolMap = State->get<IteratorSymbolMap>();
  auto RegionMap = State->get<IteratorRegionMap>();
  // Use a counter to add newlines before every line except the first one.
  unsigned Count = 0;

  if (!SymbolMap.isEmpty() || !RegionMap.isEmpty()) {
    Out << Sep << "Iterator Positions :" << NL;
    for (const auto &Sym : SymbolMap) {
      if (Count++)
        Out << NL;

      Sym.first->dumpToStream(Out);
      Out << " : ";
      const auto Pos = Sym.second;
      Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == ";
      Pos.getContainer()->dumpToStream(Out);
      Out<<" ; Offset == ";
      Pos.getOffset()->dumpToStream(Out);
    }

    for (const auto &Reg : RegionMap) {
      if (Count++)
        Out << NL;

      Reg.first->dumpToStream(Out);
      Out << " : ";
      const auto Pos = Reg.second;
      Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == ";
      Pos.getContainer()->dumpToStream(Out);
      Out<<" ; Offset == ";
      Pos.getOffset()->dumpToStream(Out);
    }
  }
}

namespace {

bool isSimpleComparisonOperator(OverloadedOperatorKind OK) {
  return OK == OO_EqualEqual || OK == OO_ExclaimEqual;
}

bool isSimpleComparisonOperator(BinaryOperatorKind OK) {
  return OK == BO_EQ || OK == BO_NE;
}

ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val) {
  if (auto Reg = Val.getAsRegion()) {
    Reg = Reg->getMostDerivedObjectRegion();
    return State->remove<IteratorRegionMap>(Reg);
  } else if (const auto Sym = Val.getAsSymbol()) {
    return State->remove<IteratorSymbolMap>(Sym);
  } else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) {
    return State->remove<IteratorRegionMap>(LCVal->getRegion());
  }
  return nullptr;
}

ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1,
                              SymbolRef Sym2, bool Equal) {
  auto &SVB = State->getStateManager().getSValBuilder();

  // FIXME: This code should be reworked as follows:
  // 1. Subtract the operands using evalBinOp().
  // 2. Assume that the result doesn't overflow.
  // 3. Compare the result to 0.
  // 4. Assume the result of the comparison.
  const auto comparison =
    SVB.evalBinOp(State, BO_EQ, nonloc::SymbolVal(Sym1),
                  nonloc::SymbolVal(Sym2), SVB.getConditionType());

  assert(comparison.getAs<DefinedSVal>() &&
    "Symbol comparison must be a `DefinedSVal`");

  auto NewState = State->assume(comparison.castAs<DefinedSVal>(), Equal);
  if (!NewState)
    return nullptr;

  if (const auto CompSym = comparison.getAsSymbol()) {
    assert(isa<SymIntExpr>(CompSym) &&
           "Symbol comparison must be a `SymIntExpr`");
    assert(BinaryOperator::isComparisonOp(
               cast<SymIntExpr>(CompSym)->getOpcode()) &&
           "Symbol comparison must be a comparison");
    return assumeNoOverflow(NewState, cast<SymIntExpr>(CompSym)->getLHS(), 2);
  }

  return NewState;
}

bool isBoundThroughLazyCompoundVal(const Environment &Env,
                                   const MemRegion *Reg) {
  for (const auto &Binding : Env) {
    if (const auto LCVal = Binding.second.getAs<nonloc::LazyCompoundVal>()) {
      if (LCVal->getRegion() == Reg)
        return true;
    }
  }

  return false;
}

const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call) {
  while (Node) {
    ProgramPoint PP = Node->getLocation();
    if (auto Enter = PP.getAs<CallEnter>()) {
      if (Enter->getCallExpr() == Call)
        break;
    }

    Node = Node->getFirstPred();
  }

  return Node;
}

} // namespace

void ento::registerIteratorModeling(CheckerManager &mgr) {
  mgr.registerChecker<IteratorModeling>();
}

bool ento::shouldRegisterIteratorModeling(const CheckerManager &mgr) {
  return true;
}