SemaStmtAsm.cpp 36.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
//===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file implements semantic analysis for inline asm statements.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/ExprCXX.h"
#include "clang/AST/GlobalDecl.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaInternal.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
using namespace clang;
using namespace sema;

/// Remove the upper-level LValueToRValue cast from an expression.
static void removeLValueToRValueCast(Expr *E) {
  Expr *Parent = E;
  Expr *ExprUnderCast = nullptr;
  SmallVector<Expr *, 8> ParentsToUpdate;

  while (true) {
    ParentsToUpdate.push_back(Parent);
    if (auto *ParenE = dyn_cast<ParenExpr>(Parent)) {
      Parent = ParenE->getSubExpr();
      continue;
    }

    Expr *Child = nullptr;
    CastExpr *ParentCast = dyn_cast<CastExpr>(Parent);
    if (ParentCast)
      Child = ParentCast->getSubExpr();
    else
      return;

    if (auto *CastE = dyn_cast<CastExpr>(Child))
      if (CastE->getCastKind() == CK_LValueToRValue) {
        ExprUnderCast = CastE->getSubExpr();
        // LValueToRValue cast inside GCCAsmStmt requires an explicit cast.
        ParentCast->setSubExpr(ExprUnderCast);
        break;
      }
    Parent = Child;
  }

  // Update parent expressions to have same ValueType as the underlying.
  assert(ExprUnderCast &&
         "Should be reachable only if LValueToRValue cast was found!");
  auto ValueKind = ExprUnderCast->getValueKind();
  for (Expr *E : ParentsToUpdate)
    E->setValueKind(ValueKind);
}

/// Emit a warning about usage of "noop"-like casts for lvalues (GNU extension)
/// and fix the argument with removing LValueToRValue cast from the expression.
static void emitAndFixInvalidAsmCastLValue(const Expr *LVal, Expr *BadArgument,
                                           Sema &S) {
  if (!S.getLangOpts().HeinousExtensions) {
    S.Diag(LVal->getBeginLoc(), diag::err_invalid_asm_cast_lvalue)
        << BadArgument->getSourceRange();
  } else {
    S.Diag(LVal->getBeginLoc(), diag::warn_invalid_asm_cast_lvalue)
        << BadArgument->getSourceRange();
  }
  removeLValueToRValueCast(BadArgument);
}

/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
/// ignore "noop" casts in places where an lvalue is required by an inline asm.
/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
/// provide a strong guidance to not use it.
///
/// This method checks to see if the argument is an acceptable l-value and
/// returns false if it is a case we can handle.
static bool CheckAsmLValue(Expr *E, Sema &S) {
  // Type dependent expressions will be checked during instantiation.
  if (E->isTypeDependent())
    return false;

  if (E->isLValue())
    return false;  // Cool, this is an lvalue.

  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
  // are supposed to allow.
  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
  if (E != E2 && E2->isLValue()) {
    emitAndFixInvalidAsmCastLValue(E2, E, S);
    // Accept, even if we emitted an error diagnostic.
    return false;
  }

  // None of the above, just randomly invalid non-lvalue.
  return true;
}

/// isOperandMentioned - Return true if the specified operand # is mentioned
/// anywhere in the decomposed asm string.
static bool
isOperandMentioned(unsigned OpNo,
                   ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) {
  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
    const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
    if (!Piece.isOperand())
      continue;

    // If this is a reference to the input and if the input was the smaller
    // one, then we have to reject this asm.
    if (Piece.getOperandNo() == OpNo)
      return true;
  }
  return false;
}

static bool CheckNakedParmReference(Expr *E, Sema &S) {
  FunctionDecl *Func = dyn_cast<FunctionDecl>(S.CurContext);
  if (!Func)
    return false;
  if (!Func->hasAttr<NakedAttr>())
    return false;

  SmallVector<Expr*, 4> WorkList;
  WorkList.push_back(E);
  while (WorkList.size()) {
    Expr *E = WorkList.pop_back_val();
    if (isa<CXXThisExpr>(E)) {
      S.Diag(E->getBeginLoc(), diag::err_asm_naked_this_ref);
      S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
      return true;
    }
    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
      if (isa<ParmVarDecl>(DRE->getDecl())) {
        S.Diag(DRE->getBeginLoc(), diag::err_asm_naked_parm_ref);
        S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
        return true;
      }
    }
    for (Stmt *Child : E->children()) {
      if (Expr *E = dyn_cast_or_null<Expr>(Child))
        WorkList.push_back(E);
    }
  }
  return false;
}

/// Returns true if given expression is not compatible with inline
/// assembly's memory constraint; false otherwise.
static bool checkExprMemoryConstraintCompat(Sema &S, Expr *E,
                                            TargetInfo::ConstraintInfo &Info,
                                            bool is_input_expr) {
  enum {
    ExprBitfield = 0,
    ExprVectorElt,
    ExprGlobalRegVar,
    ExprSafeType
  } EType = ExprSafeType;

  // Bitfields, vector elements and global register variables are not
  // compatible.
  if (E->refersToBitField())
    EType = ExprBitfield;
  else if (E->refersToVectorElement())
    EType = ExprVectorElt;
  else if (E->refersToGlobalRegisterVar())
    EType = ExprGlobalRegVar;

  if (EType != ExprSafeType) {
    S.Diag(E->getBeginLoc(), diag::err_asm_non_addr_value_in_memory_constraint)
        << EType << is_input_expr << Info.getConstraintStr()
        << E->getSourceRange();
    return true;
  }

  return false;
}

// Extracting the register name from the Expression value,
// if there is no register name to extract, returns ""
static StringRef extractRegisterName(const Expr *Expression,
                                     const TargetInfo &Target) {
  Expression = Expression->IgnoreImpCasts();
  if (const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(Expression)) {
    // Handle cases where the expression is a variable
    const VarDecl *Variable = dyn_cast<VarDecl>(AsmDeclRef->getDecl());
    if (Variable && Variable->getStorageClass() == SC_Register) {
      if (AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>())
        if (Target.isValidGCCRegisterName(Attr->getLabel()))
          return Target.getNormalizedGCCRegisterName(Attr->getLabel(), true);
    }
  }
  return "";
}

// Checks if there is a conflict between the input and output lists with the
// clobbers list. If there's a conflict, returns the location of the
// conflicted clobber, else returns nullptr
static SourceLocation
getClobberConflictLocation(MultiExprArg Exprs, StringLiteral **Constraints,
                           StringLiteral **Clobbers, int NumClobbers,
                           unsigned NumLabels,
                           const TargetInfo &Target, ASTContext &Cont) {
  llvm::StringSet<> InOutVars;
  // Collect all the input and output registers from the extended asm
  // statement in order to check for conflicts with the clobber list
  for (unsigned int i = 0; i < Exprs.size() - NumLabels; ++i) {
    StringRef Constraint = Constraints[i]->getString();
    StringRef InOutReg = Target.getConstraintRegister(
        Constraint, extractRegisterName(Exprs[i], Target));
    if (InOutReg != "")
      InOutVars.insert(InOutReg);
  }
  // Check for each item in the clobber list if it conflicts with the input
  // or output
  for (int i = 0; i < NumClobbers; ++i) {
    StringRef Clobber = Clobbers[i]->getString();
    // We only check registers, therefore we don't check cc and memory
    // clobbers
    if (Clobber == "cc" || Clobber == "memory")
      continue;
    Clobber = Target.getNormalizedGCCRegisterName(Clobber, true);
    // Go over the output's registers we collected
    if (InOutVars.count(Clobber))
      return Clobbers[i]->getBeginLoc();
  }
  return SourceLocation();
}

StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
                                 bool IsVolatile, unsigned NumOutputs,
                                 unsigned NumInputs, IdentifierInfo **Names,
                                 MultiExprArg constraints, MultiExprArg Exprs,
                                 Expr *asmString, MultiExprArg clobbers,
                                 unsigned NumLabels,
                                 SourceLocation RParenLoc) {
  unsigned NumClobbers = clobbers.size();
  StringLiteral **Constraints =
    reinterpret_cast<StringLiteral**>(constraints.data());
  StringLiteral *AsmString = cast<StringLiteral>(asmString);
  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data());

  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;

  // The parser verifies that there is a string literal here.
  assert(AsmString->isAscii());

  FunctionDecl *FD = dyn_cast<FunctionDecl>(getCurLexicalContext());
  llvm::StringMap<bool> FeatureMap;
  Context.getFunctionFeatureMap(FeatureMap, FD);

  for (unsigned i = 0; i != NumOutputs; i++) {
    StringLiteral *Literal = Constraints[i];
    assert(Literal->isAscii());

    StringRef OutputName;
    if (Names[i])
      OutputName = Names[i]->getName();

    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
    if (!Context.getTargetInfo().validateOutputConstraint(Info)) {
      targetDiag(Literal->getBeginLoc(),
                 diag::err_asm_invalid_output_constraint)
          << Info.getConstraintStr();
      return new (Context)
          GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
                     NumInputs, Names, Constraints, Exprs.data(), AsmString,
                     NumClobbers, Clobbers, NumLabels, RParenLoc);
    }

    ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
    if (ER.isInvalid())
      return StmtError();
    Exprs[i] = ER.get();

    // Check that the output exprs are valid lvalues.
    Expr *OutputExpr = Exprs[i];

    // Referring to parameters is not allowed in naked functions.
    if (CheckNakedParmReference(OutputExpr, *this))
      return StmtError();

    // Check that the output expression is compatible with memory constraint.
    if (Info.allowsMemory() &&
        checkExprMemoryConstraintCompat(*this, OutputExpr, Info, false))
      return StmtError();

    // Disallow _ExtInt, since the backends tend to have difficulties with
    // non-normal sizes.
    if (OutputExpr->getType()->isExtIntType())
      return StmtError(
          Diag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_type)
          << OutputExpr->getType() << 0 /*Input*/
          << OutputExpr->getSourceRange());

    OutputConstraintInfos.push_back(Info);

    // If this is dependent, just continue.
    if (OutputExpr->isTypeDependent())
      continue;

    Expr::isModifiableLvalueResult IsLV =
        OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr);
    switch (IsLV) {
    case Expr::MLV_Valid:
      // Cool, this is an lvalue.
      break;
    case Expr::MLV_ArrayType:
      // This is OK too.
      break;
    case Expr::MLV_LValueCast: {
      const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context);
      emitAndFixInvalidAsmCastLValue(LVal, OutputExpr, *this);
      // Accept, even if we emitted an error diagnostic.
      break;
    }
    case Expr::MLV_IncompleteType:
    case Expr::MLV_IncompleteVoidType:
      if (RequireCompleteType(OutputExpr->getBeginLoc(), Exprs[i]->getType(),
                              diag::err_dereference_incomplete_type))
        return StmtError();
      LLVM_FALLTHROUGH;
    default:
      return StmtError(Diag(OutputExpr->getBeginLoc(),
                            diag::err_asm_invalid_lvalue_in_output)
                       << OutputExpr->getSourceRange());
    }

    unsigned Size = Context.getTypeSize(OutputExpr->getType());
    if (!Context.getTargetInfo().validateOutputSize(
            FeatureMap, Literal->getString(), Size)) {
      targetDiag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_output_size)
          << Info.getConstraintStr();
      return new (Context)
          GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
                     NumInputs, Names, Constraints, Exprs.data(), AsmString,
                     NumClobbers, Clobbers, NumLabels, RParenLoc);
    }
  }

  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;

  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
    StringLiteral *Literal = Constraints[i];
    assert(Literal->isAscii());

    StringRef InputName;
    if (Names[i])
      InputName = Names[i]->getName();

    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
    if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos,
                                                         Info)) {
      targetDiag(Literal->getBeginLoc(), diag::err_asm_invalid_input_constraint)
          << Info.getConstraintStr();
      return new (Context)
          GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
                     NumInputs, Names, Constraints, Exprs.data(), AsmString,
                     NumClobbers, Clobbers, NumLabels, RParenLoc);
    }

    ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
    if (ER.isInvalid())
      return StmtError();
    Exprs[i] = ER.get();

    Expr *InputExpr = Exprs[i];

    // Referring to parameters is not allowed in naked functions.
    if (CheckNakedParmReference(InputExpr, *this))
      return StmtError();

    // Check that the input expression is compatible with memory constraint.
    if (Info.allowsMemory() &&
        checkExprMemoryConstraintCompat(*this, InputExpr, Info, true))
      return StmtError();

    // Only allow void types for memory constraints.
    if (Info.allowsMemory() && !Info.allowsRegister()) {
      if (CheckAsmLValue(InputExpr, *this))
        return StmtError(Diag(InputExpr->getBeginLoc(),
                              diag::err_asm_invalid_lvalue_in_input)
                         << Info.getConstraintStr()
                         << InputExpr->getSourceRange());
    } else if (Info.requiresImmediateConstant() && !Info.allowsRegister()) {
      if (!InputExpr->isValueDependent()) {
        Expr::EvalResult EVResult;
        if (InputExpr->EvaluateAsRValue(EVResult, Context, true)) {
          // For compatibility with GCC, we also allow pointers that would be
          // integral constant expressions if they were cast to int.
          llvm::APSInt IntResult;
          if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
                                               Context))
            if (!Info.isValidAsmImmediate(IntResult))
              return StmtError(Diag(InputExpr->getBeginLoc(),
                                    diag::err_invalid_asm_value_for_constraint)
                               << IntResult.toString(10)
                               << Info.getConstraintStr()
                               << InputExpr->getSourceRange());
        }
      }

    } else {
      ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
      if (Result.isInvalid())
        return StmtError();

      Exprs[i] = Result.get();
    }

    if (Info.allowsRegister()) {
      if (InputExpr->getType()->isVoidType()) {
        return StmtError(
            Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type_in_input)
            << InputExpr->getType() << Info.getConstraintStr()
            << InputExpr->getSourceRange());
      }
    }

    if (InputExpr->getType()->isExtIntType())
      return StmtError(
          Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type)
          << InputExpr->getType() << 1 /*Output*/
          << InputExpr->getSourceRange());

    InputConstraintInfos.push_back(Info);

    const Type *Ty = Exprs[i]->getType().getTypePtr();
    if (Ty->isDependentType())
      continue;

    if (!Ty->isVoidType() || !Info.allowsMemory())
      if (RequireCompleteType(InputExpr->getBeginLoc(), Exprs[i]->getType(),
                              diag::err_dereference_incomplete_type))
        return StmtError();

    unsigned Size = Context.getTypeSize(Ty);
    if (!Context.getTargetInfo().validateInputSize(FeatureMap,
                                                   Literal->getString(), Size))
      return StmtResult(
          targetDiag(InputExpr->getBeginLoc(), diag::err_asm_invalid_input_size)
          << Info.getConstraintStr());
  }

  // Check that the clobbers are valid.
  for (unsigned i = 0; i != NumClobbers; i++) {
    StringLiteral *Literal = Clobbers[i];
    assert(Literal->isAscii());

    StringRef Clobber = Literal->getString();

    if (!Context.getTargetInfo().isValidClobber(Clobber)) {
      targetDiag(Literal->getBeginLoc(), diag::err_asm_unknown_register_name)
          << Clobber;
      return new (Context)
          GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
                     NumInputs, Names, Constraints, Exprs.data(), AsmString,
                     NumClobbers, Clobbers, NumLabels, RParenLoc);
    }
  }

  GCCAsmStmt *NS =
    new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
                             NumInputs, Names, Constraints, Exprs.data(),
                             AsmString, NumClobbers, Clobbers, NumLabels,
                             RParenLoc);
  // Validate the asm string, ensuring it makes sense given the operands we
  // have.
  SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces;
  unsigned DiagOffs;
  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
    targetDiag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
        << AsmString->getSourceRange();
    return NS;
  }

  // Validate constraints and modifiers.
  for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
    GCCAsmStmt::AsmStringPiece &Piece = Pieces[i];
    if (!Piece.isOperand()) continue;

    // Look for the correct constraint index.
    unsigned ConstraintIdx = Piece.getOperandNo();
    unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs();
    // Labels are the last in the Exprs list.
    if (NS->isAsmGoto() && ConstraintIdx >= NumOperands)
      continue;
    // Look for the (ConstraintIdx - NumOperands + 1)th constraint with
    // modifier '+'.
    if (ConstraintIdx >= NumOperands) {
      unsigned I = 0, E = NS->getNumOutputs();

      for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I)
        if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) {
          ConstraintIdx = I;
          break;
        }

      assert(I != E && "Invalid operand number should have been caught in "
                       " AnalyzeAsmString");
    }

    // Now that we have the right indexes go ahead and check.
    StringLiteral *Literal = Constraints[ConstraintIdx];
    const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr();
    if (Ty->isDependentType() || Ty->isIncompleteType())
      continue;

    unsigned Size = Context.getTypeSize(Ty);
    std::string SuggestedModifier;
    if (!Context.getTargetInfo().validateConstraintModifier(
            Literal->getString(), Piece.getModifier(), Size,
            SuggestedModifier)) {
      targetDiag(Exprs[ConstraintIdx]->getBeginLoc(),
                 diag::warn_asm_mismatched_size_modifier);

      if (!SuggestedModifier.empty()) {
        auto B = targetDiag(Piece.getRange().getBegin(),
                            diag::note_asm_missing_constraint_modifier)
                 << SuggestedModifier;
        SuggestedModifier = "%" + SuggestedModifier + Piece.getString();
        B << FixItHint::CreateReplacement(Piece.getRange(), SuggestedModifier);
      }
    }
  }

  // Validate tied input operands for type mismatches.
  unsigned NumAlternatives = ~0U;
  for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) {
    TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
    StringRef ConstraintStr = Info.getConstraintStr();
    unsigned AltCount = ConstraintStr.count(',') + 1;
    if (NumAlternatives == ~0U) {
      NumAlternatives = AltCount;
    } else if (NumAlternatives != AltCount) {
      targetDiag(NS->getOutputExpr(i)->getBeginLoc(),
                 diag::err_asm_unexpected_constraint_alternatives)
          << NumAlternatives << AltCount;
      return NS;
    }
  }
  SmallVector<size_t, 4> InputMatchedToOutput(OutputConstraintInfos.size(),
                                              ~0U);
  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
    StringRef ConstraintStr = Info.getConstraintStr();
    unsigned AltCount = ConstraintStr.count(',') + 1;
    if (NumAlternatives == ~0U) {
      NumAlternatives = AltCount;
    } else if (NumAlternatives != AltCount) {
      targetDiag(NS->getInputExpr(i)->getBeginLoc(),
                 diag::err_asm_unexpected_constraint_alternatives)
          << NumAlternatives << AltCount;
      return NS;
    }

    // If this is a tied constraint, verify that the output and input have
    // either exactly the same type, or that they are int/ptr operands with the
    // same size (int/long, int*/long, are ok etc).
    if (!Info.hasTiedOperand()) continue;

    unsigned TiedTo = Info.getTiedOperand();
    unsigned InputOpNo = i+NumOutputs;
    Expr *OutputExpr = Exprs[TiedTo];
    Expr *InputExpr = Exprs[InputOpNo];

    // Make sure no more than one input constraint matches each output.
    assert(TiedTo < InputMatchedToOutput.size() && "TiedTo value out of range");
    if (InputMatchedToOutput[TiedTo] != ~0U) {
      targetDiag(NS->getInputExpr(i)->getBeginLoc(),
                 diag::err_asm_input_duplicate_match)
          << TiedTo;
      targetDiag(NS->getInputExpr(InputMatchedToOutput[TiedTo])->getBeginLoc(),
                 diag::note_asm_input_duplicate_first)
          << TiedTo;
      return NS;
    }
    InputMatchedToOutput[TiedTo] = i;

    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
      continue;

    QualType InTy = InputExpr->getType();
    QualType OutTy = OutputExpr->getType();
    if (Context.hasSameType(InTy, OutTy))
      continue;  // All types can be tied to themselves.

    // Decide if the input and output are in the same domain (integer/ptr or
    // floating point.
    enum AsmDomain {
      AD_Int, AD_FP, AD_Other
    } InputDomain, OutputDomain;

    if (InTy->isIntegerType() || InTy->isPointerType())
      InputDomain = AD_Int;
    else if (InTy->isRealFloatingType())
      InputDomain = AD_FP;
    else
      InputDomain = AD_Other;

    if (OutTy->isIntegerType() || OutTy->isPointerType())
      OutputDomain = AD_Int;
    else if (OutTy->isRealFloatingType())
      OutputDomain = AD_FP;
    else
      OutputDomain = AD_Other;

    // They are ok if they are the same size and in the same domain.  This
    // allows tying things like:
    //   void* to int*
    //   void* to int            if they are the same size.
    //   double to long double   if they are the same size.
    //
    uint64_t OutSize = Context.getTypeSize(OutTy);
    uint64_t InSize = Context.getTypeSize(InTy);
    if (OutSize == InSize && InputDomain == OutputDomain &&
        InputDomain != AD_Other)
      continue;

    // If the smaller input/output operand is not mentioned in the asm string,
    // then we can promote the smaller one to a larger input and the asm string
    // won't notice.
    bool SmallerValueMentioned = false;

    // If this is a reference to the input and if the input was the smaller
    // one, then we have to reject this asm.
    if (isOperandMentioned(InputOpNo, Pieces)) {
      // This is a use in the asm string of the smaller operand.  Since we
      // codegen this by promoting to a wider value, the asm will get printed
      // "wrong".
      SmallerValueMentioned |= InSize < OutSize;
    }
    if (isOperandMentioned(TiedTo, Pieces)) {
      // If this is a reference to the output, and if the output is the larger
      // value, then it's ok because we'll promote the input to the larger type.
      SmallerValueMentioned |= OutSize < InSize;
    }

    // If the smaller value wasn't mentioned in the asm string, and if the
    // output was a register, just extend the shorter one to the size of the
    // larger one.
    if (!SmallerValueMentioned && InputDomain != AD_Other &&
        OutputConstraintInfos[TiedTo].allowsRegister())
      continue;

    // Either both of the operands were mentioned or the smaller one was
    // mentioned.  One more special case that we'll allow: if the tied input is
    // integer, unmentioned, and is a constant, then we'll allow truncating it
    // down to the size of the destination.
    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
        !isOperandMentioned(InputOpNo, Pieces) &&
        InputExpr->isEvaluatable(Context)) {
      CastKind castKind =
        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get();
      Exprs[InputOpNo] = InputExpr;
      NS->setInputExpr(i, InputExpr);
      continue;
    }

    targetDiag(InputExpr->getBeginLoc(), diag::err_asm_tying_incompatible_types)
        << InTy << OutTy << OutputExpr->getSourceRange()
        << InputExpr->getSourceRange();
    return NS;
  }

  // Check for conflicts between clobber list and input or output lists
  SourceLocation ConstraintLoc =
      getClobberConflictLocation(Exprs, Constraints, Clobbers, NumClobbers,
                                 NumLabels,
                                 Context.getTargetInfo(), Context);
  if (ConstraintLoc.isValid())
    targetDiag(ConstraintLoc, diag::error_inoutput_conflict_with_clobber);

  // Check for duplicate asm operand name between input, output and label lists.
  typedef std::pair<StringRef , Expr *> NamedOperand;
  SmallVector<NamedOperand, 4> NamedOperandList;
  for (unsigned i = 0, e = NumOutputs + NumInputs + NumLabels; i != e; ++i)
    if (Names[i])
      NamedOperandList.emplace_back(
          std::make_pair(Names[i]->getName(), Exprs[i]));
  // Sort NamedOperandList.
  std::stable_sort(NamedOperandList.begin(), NamedOperandList.end(),
              [](const NamedOperand &LHS, const NamedOperand &RHS) {
                return LHS.first < RHS.first;
              });
  // Find adjacent duplicate operand.
  SmallVector<NamedOperand, 4>::iterator Found =
      std::adjacent_find(begin(NamedOperandList), end(NamedOperandList),
                         [](const NamedOperand &LHS, const NamedOperand &RHS) {
                           return LHS.first == RHS.first;
                         });
  if (Found != NamedOperandList.end()) {
    Diag((Found + 1)->second->getBeginLoc(),
         diag::error_duplicate_asm_operand_name)
        << (Found + 1)->first;
    Diag(Found->second->getBeginLoc(), diag::note_duplicate_asm_operand_name)
        << Found->first;
    return StmtError();
  }
  if (NS->isAsmGoto())
    setFunctionHasBranchIntoScope();
  return NS;
}

void Sema::FillInlineAsmIdentifierInfo(Expr *Res,
                                       llvm::InlineAsmIdentifierInfo &Info) {
  QualType T = Res->getType();
  Expr::EvalResult Eval;
  if (T->isFunctionType() || T->isDependentType())
    return Info.setLabel(Res);
  if (Res->isRValue()) {
    bool IsEnum = isa<clang::EnumType>(T);
    if (DeclRefExpr *DRE = dyn_cast<clang::DeclRefExpr>(Res))
      if (DRE->getDecl()->getKind() == Decl::EnumConstant)
        IsEnum = true;
    if (IsEnum && Res->EvaluateAsRValue(Eval, Context))
      return Info.setEnum(Eval.Val.getInt().getSExtValue());

    return Info.setLabel(Res);
  }
  unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
  unsigned Type = Size;
  if (const auto *ATy = Context.getAsArrayType(T))
    Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity();
  bool IsGlobalLV = false;
  if (Res->EvaluateAsLValue(Eval, Context))
    IsGlobalLV = Eval.isGlobalLValue();
  Info.setVar(Res, IsGlobalLV, Size, Type);
}

ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS,
                                           SourceLocation TemplateKWLoc,
                                           UnqualifiedId &Id,
                                           bool IsUnevaluatedContext) {

  if (IsUnevaluatedContext)
    PushExpressionEvaluationContext(
        ExpressionEvaluationContext::UnevaluatedAbstract,
        ReuseLambdaContextDecl);

  ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id,
                                        /*trailing lparen*/ false,
                                        /*is & operand*/ false,
                                        /*CorrectionCandidateCallback=*/nullptr,
                                        /*IsInlineAsmIdentifier=*/ true);

  if (IsUnevaluatedContext)
    PopExpressionEvaluationContext();

  if (!Result.isUsable()) return Result;

  Result = CheckPlaceholderExpr(Result.get());
  if (!Result.isUsable()) return Result;

  // Referring to parameters is not allowed in naked functions.
  if (CheckNakedParmReference(Result.get(), *this))
    return ExprError();

  QualType T = Result.get()->getType();

  if (T->isDependentType()) {
    return Result;
  }

  // Any sort of function type is fine.
  if (T->isFunctionType()) {
    return Result;
  }

  // Otherwise, it needs to be a complete type.
  if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) {
    return ExprError();
  }

  return Result;
}

bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member,
                                unsigned &Offset, SourceLocation AsmLoc) {
  Offset = 0;
  SmallVector<StringRef, 2> Members;
  Member.split(Members, ".");

  NamedDecl *FoundDecl = nullptr;

  // MS InlineAsm uses 'this' as a base
  if (getLangOpts().CPlusPlus && Base.equals("this")) {
    if (const Type *PT = getCurrentThisType().getTypePtrOrNull())
      FoundDecl = PT->getPointeeType()->getAsTagDecl();
  } else {
    LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(),
                            LookupOrdinaryName);
    if (LookupName(BaseResult, getCurScope()) && BaseResult.isSingleResult())
      FoundDecl = BaseResult.getFoundDecl();
  }

  if (!FoundDecl)
    return true;

  for (StringRef NextMember : Members) {
    const RecordType *RT = nullptr;
    if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl))
      RT = VD->getType()->getAs<RecordType>();
    else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(FoundDecl)) {
      MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
      // MS InlineAsm often uses struct pointer aliases as a base
      QualType QT = TD->getUnderlyingType();
      if (const auto *PT = QT->getAs<PointerType>())
        QT = PT->getPointeeType();
      RT = QT->getAs<RecordType>();
    } else if (TypeDecl *TD = dyn_cast<TypeDecl>(FoundDecl))
      RT = TD->getTypeForDecl()->getAs<RecordType>();
    else if (FieldDecl *TD = dyn_cast<FieldDecl>(FoundDecl))
      RT = TD->getType()->getAs<RecordType>();
    if (!RT)
      return true;

    if (RequireCompleteType(AsmLoc, QualType(RT, 0),
                            diag::err_asm_incomplete_type))
      return true;

    LookupResult FieldResult(*this, &Context.Idents.get(NextMember),
                             SourceLocation(), LookupMemberName);

    if (!LookupQualifiedName(FieldResult, RT->getDecl()))
      return true;

    if (!FieldResult.isSingleResult())
      return true;
    FoundDecl = FieldResult.getFoundDecl();

    // FIXME: Handle IndirectFieldDecl?
    FieldDecl *FD = dyn_cast<FieldDecl>(FoundDecl);
    if (!FD)
      return true;

    const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl());
    unsigned i = FD->getFieldIndex();
    CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i));
    Offset += (unsigned)Result.getQuantity();
  }

  return false;
}

ExprResult
Sema::LookupInlineAsmVarDeclField(Expr *E, StringRef Member,
                                  SourceLocation AsmLoc) {

  QualType T = E->getType();
  if (T->isDependentType()) {
    DeclarationNameInfo NameInfo;
    NameInfo.setLoc(AsmLoc);
    NameInfo.setName(&Context.Idents.get(Member));
    return CXXDependentScopeMemberExpr::Create(
        Context, E, T, /*IsArrow=*/false, AsmLoc, NestedNameSpecifierLoc(),
        SourceLocation(),
        /*FirstQualifierFoundInScope=*/nullptr, NameInfo, /*TemplateArgs=*/nullptr);
  }

  const RecordType *RT = T->getAs<RecordType>();
  // FIXME: Diagnose this as field access into a scalar type.
  if (!RT)
    return ExprResult();

  LookupResult FieldResult(*this, &Context.Idents.get(Member), AsmLoc,
                           LookupMemberName);

  if (!LookupQualifiedName(FieldResult, RT->getDecl()))
    return ExprResult();

  // Only normal and indirect field results will work.
  ValueDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl());
  if (!FD)
    FD = dyn_cast<IndirectFieldDecl>(FieldResult.getFoundDecl());
  if (!FD)
    return ExprResult();

  // Make an Expr to thread through OpDecl.
  ExprResult Result = BuildMemberReferenceExpr(
      E, E->getType(), AsmLoc, /*IsArrow=*/false, CXXScopeSpec(),
      SourceLocation(), nullptr, FieldResult, nullptr, nullptr);

  return Result;
}

StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
                                ArrayRef<Token> AsmToks,
                                StringRef AsmString,
                                unsigned NumOutputs, unsigned NumInputs,
                                ArrayRef<StringRef> Constraints,
                                ArrayRef<StringRef> Clobbers,
                                ArrayRef<Expr*> Exprs,
                                SourceLocation EndLoc) {
  bool IsSimple = (NumOutputs != 0 || NumInputs != 0);
  setFunctionHasBranchProtectedScope();

  for (uint64_t I = 0; I < NumOutputs + NumInputs; ++I) {
    if (Exprs[I]->getType()->isExtIntType())
      return StmtError(
          Diag(Exprs[I]->getBeginLoc(), diag::err_asm_invalid_type)
          << Exprs[I]->getType() << (I < NumOutputs)
          << Exprs[I]->getSourceRange());
  }

  MSAsmStmt *NS =
    new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple,
                            /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs,
                            Constraints, Exprs, AsmString,
                            Clobbers, EndLoc);
  return NS;
}

LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
                                       SourceLocation Location,
                                       bool AlwaysCreate) {
  LabelDecl* Label = LookupOrCreateLabel(PP.getIdentifierInfo(ExternalLabelName),
                                         Location);

  if (Label->isMSAsmLabel()) {
    // If we have previously created this label implicitly, mark it as used.
    Label->markUsed(Context);
  } else {
    // Otherwise, insert it, but only resolve it if we have seen the label itself.
    std::string InternalName;
    llvm::raw_string_ostream OS(InternalName);
    // Create an internal name for the label.  The name should not be a valid
    // mangled name, and should be unique.  We use a dot to make the name an
    // invalid mangled name. We use LLVM's inline asm ${:uid} escape so that a
    // unique label is generated each time this blob is emitted, even after
    // inlining or LTO.
    OS << "__MSASMLABEL_.${:uid}__";
    for (char C : ExternalLabelName) {
      OS << C;
      // We escape '$' in asm strings by replacing it with "$$"
      if (C == '$')
        OS << '$';
    }
    Label->setMSAsmLabel(OS.str());
  }
  if (AlwaysCreate) {
    // The label might have been created implicitly from a previously encountered
    // goto statement.  So, for both newly created and looked up labels, we mark
    // them as resolved.
    Label->setMSAsmLabelResolved();
  }
  // Adjust their location for being able to generate accurate diagnostics.
  Label->setLocation(Location);

  return Label;
}