SemaCXXScopeSpec.cpp 42.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements C++ semantic analysis for scope specifiers.
//
//===----------------------------------------------------------------------===//

#include "TypeLocBuilder.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/Template.h"
#include "llvm/ADT/STLExtras.h"
using namespace clang;

/// Find the current instantiation that associated with the given type.
static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
                                                DeclContext *CurContext) {
  if (T.isNull())
    return nullptr;

  const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
  if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
    CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
    if (!Record->isDependentContext() ||
        Record->isCurrentInstantiation(CurContext))
      return Record;

    return nullptr;
  } else if (isa<InjectedClassNameType>(Ty))
    return cast<InjectedClassNameType>(Ty)->getDecl();
  else
    return nullptr;
}

/// Compute the DeclContext that is associated with the given type.
///
/// \param T the type for which we are attempting to find a DeclContext.
///
/// \returns the declaration context represented by the type T,
/// or NULL if the declaration context cannot be computed (e.g., because it is
/// dependent and not the current instantiation).
DeclContext *Sema::computeDeclContext(QualType T) {
  if (!T->isDependentType())
    if (const TagType *Tag = T->getAs<TagType>())
      return Tag->getDecl();

  return ::getCurrentInstantiationOf(T, CurContext);
}

/// Compute the DeclContext that is associated with the given
/// scope specifier.
///
/// \param SS the C++ scope specifier as it appears in the source
///
/// \param EnteringContext when true, we will be entering the context of
/// this scope specifier, so we can retrieve the declaration context of a
/// class template or class template partial specialization even if it is
/// not the current instantiation.
///
/// \returns the declaration context represented by the scope specifier @p SS,
/// or NULL if the declaration context cannot be computed (e.g., because it is
/// dependent and not the current instantiation).
DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
                                      bool EnteringContext) {
  if (!SS.isSet() || SS.isInvalid())
    return nullptr;

  NestedNameSpecifier *NNS = SS.getScopeRep();
  if (NNS->isDependent()) {
    // If this nested-name-specifier refers to the current
    // instantiation, return its DeclContext.
    if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
      return Record;

    if (EnteringContext) {
      const Type *NNSType = NNS->getAsType();
      if (!NNSType) {
        return nullptr;
      }

      // Look through type alias templates, per C++0x [temp.dep.type]p1.
      NNSType = Context.getCanonicalType(NNSType);
      if (const TemplateSpecializationType *SpecType
            = NNSType->getAs<TemplateSpecializationType>()) {
        // We are entering the context of the nested name specifier, so try to
        // match the nested name specifier to either a primary class template
        // or a class template partial specialization.
        if (ClassTemplateDecl *ClassTemplate
              = dyn_cast_or_null<ClassTemplateDecl>(
                            SpecType->getTemplateName().getAsTemplateDecl())) {
          QualType ContextType
            = Context.getCanonicalType(QualType(SpecType, 0));

          // If the type of the nested name specifier is the same as the
          // injected class name of the named class template, we're entering
          // into that class template definition.
          QualType Injected
            = ClassTemplate->getInjectedClassNameSpecialization();
          if (Context.hasSameType(Injected, ContextType))
            return ClassTemplate->getTemplatedDecl();

          // If the type of the nested name specifier is the same as the
          // type of one of the class template's class template partial
          // specializations, we're entering into the definition of that
          // class template partial specialization.
          if (ClassTemplatePartialSpecializationDecl *PartialSpec
                = ClassTemplate->findPartialSpecialization(ContextType)) {
            // A declaration of the partial specialization must be visible.
            // We can always recover here, because this only happens when we're
            // entering the context, and that can't happen in a SFINAE context.
            assert(!isSFINAEContext() &&
                   "partial specialization scope specifier in SFINAE context?");
            if (!hasVisibleDeclaration(PartialSpec))
              diagnoseMissingImport(SS.getLastQualifierNameLoc(), PartialSpec,
                                    MissingImportKind::PartialSpecialization,
                                    /*Recover*/true);
            return PartialSpec;
          }
        }
      } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
        // The nested name specifier refers to a member of a class template.
        return RecordT->getDecl();
      }
    }

    return nullptr;
  }

  switch (NNS->getKind()) {
  case NestedNameSpecifier::Identifier:
    llvm_unreachable("Dependent nested-name-specifier has no DeclContext");

  case NestedNameSpecifier::Namespace:
    return NNS->getAsNamespace();

  case NestedNameSpecifier::NamespaceAlias:
    return NNS->getAsNamespaceAlias()->getNamespace();

  case NestedNameSpecifier::TypeSpec:
  case NestedNameSpecifier::TypeSpecWithTemplate: {
    const TagType *Tag = NNS->getAsType()->getAs<TagType>();
    assert(Tag && "Non-tag type in nested-name-specifier");
    return Tag->getDecl();
  }

  case NestedNameSpecifier::Global:
    return Context.getTranslationUnitDecl();

  case NestedNameSpecifier::Super:
    return NNS->getAsRecordDecl();
  }

  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
}

bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
  if (!SS.isSet() || SS.isInvalid())
    return false;

  return SS.getScopeRep()->isDependent();
}

/// If the given nested name specifier refers to the current
/// instantiation, return the declaration that corresponds to that
/// current instantiation (C++0x [temp.dep.type]p1).
///
/// \param NNS a dependent nested name specifier.
CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
  assert(getLangOpts().CPlusPlus && "Only callable in C++");
  assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");

  if (!NNS->getAsType())
    return nullptr;

  QualType T = QualType(NNS->getAsType(), 0);
  return ::getCurrentInstantiationOf(T, CurContext);
}

/// Require that the context specified by SS be complete.
///
/// If SS refers to a type, this routine checks whether the type is
/// complete enough (or can be made complete enough) for name lookup
/// into the DeclContext. A type that is not yet completed can be
/// considered "complete enough" if it is a class/struct/union/enum
/// that is currently being defined. Or, if we have a type that names
/// a class template specialization that is not a complete type, we
/// will attempt to instantiate that class template.
bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
                                      DeclContext *DC) {
  assert(DC && "given null context");

  TagDecl *tag = dyn_cast<TagDecl>(DC);

  // If this is a dependent type, then we consider it complete.
  // FIXME: This is wrong; we should require a (visible) definition to
  // exist in this case too.
  if (!tag || tag->isDependentContext())
    return false;

  // Grab the tag definition, if there is one.
  QualType type = Context.getTypeDeclType(tag);
  tag = type->getAsTagDecl();

  // If we're currently defining this type, then lookup into the
  // type is okay: don't complain that it isn't complete yet.
  if (tag->isBeingDefined())
    return false;

  SourceLocation loc = SS.getLastQualifierNameLoc();
  if (loc.isInvalid()) loc = SS.getRange().getBegin();

  // The type must be complete.
  if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
                          SS.getRange())) {
    SS.SetInvalid(SS.getRange());
    return true;
  }

  // Fixed enum types are complete, but they aren't valid as scopes
  // until we see a definition, so awkwardly pull out this special
  // case.
  auto *EnumD = dyn_cast<EnumDecl>(tag);
  if (!EnumD)
    return false;
  if (EnumD->isCompleteDefinition()) {
    // If we know about the definition but it is not visible, complain.
    NamedDecl *SuggestedDef = nullptr;
    if (!hasVisibleDefinition(EnumD, &SuggestedDef,
                              /*OnlyNeedComplete*/false)) {
      // If the user is going to see an error here, recover by making the
      // definition visible.
      bool TreatAsComplete = !isSFINAEContext();
      diagnoseMissingImport(loc, SuggestedDef, MissingImportKind::Definition,
                            /*Recover*/TreatAsComplete);
      return !TreatAsComplete;
    }
    return false;
  }

  // Try to instantiate the definition, if this is a specialization of an
  // enumeration temploid.
  if (EnumDecl *Pattern = EnumD->getInstantiatedFromMemberEnum()) {
    MemberSpecializationInfo *MSI = EnumD->getMemberSpecializationInfo();
    if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
      if (InstantiateEnum(loc, EnumD, Pattern,
                          getTemplateInstantiationArgs(EnumD),
                          TSK_ImplicitInstantiation)) {
        SS.SetInvalid(SS.getRange());
        return true;
      }
      return false;
    }
  }

  Diag(loc, diag::err_incomplete_nested_name_spec)
    << type << SS.getRange();
  SS.SetInvalid(SS.getRange());
  return true;
}

bool Sema::ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc,
                                        CXXScopeSpec &SS) {
  SS.MakeGlobal(Context, CCLoc);
  return false;
}

bool Sema::ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
                                    SourceLocation ColonColonLoc,
                                    CXXScopeSpec &SS) {
  CXXRecordDecl *RD = nullptr;
  for (Scope *S = getCurScope(); S; S = S->getParent()) {
    if (S->isFunctionScope()) {
      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(S->getEntity()))
        RD = MD->getParent();
      break;
    }
    if (S->isClassScope()) {
      RD = cast<CXXRecordDecl>(S->getEntity());
      break;
    }
  }

  if (!RD) {
    Diag(SuperLoc, diag::err_invalid_super_scope);
    return true;
  } else if (RD->isLambda()) {
    Diag(SuperLoc, diag::err_super_in_lambda_unsupported);
    return true;
  } else if (RD->getNumBases() == 0) {
    Diag(SuperLoc, diag::err_no_base_classes) << RD->getName();
    return true;
  }

  SS.MakeSuper(Context, RD, SuperLoc, ColonColonLoc);
  return false;
}

/// Determines whether the given declaration is an valid acceptable
/// result for name lookup of a nested-name-specifier.
/// \param SD Declaration checked for nested-name-specifier.
/// \param IsExtension If not null and the declaration is accepted as an
/// extension, the pointed variable is assigned true.
bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD,
                                           bool *IsExtension) {
  if (!SD)
    return false;

  SD = SD->getUnderlyingDecl();

  // Namespace and namespace aliases are fine.
  if (isa<NamespaceDecl>(SD))
    return true;

  if (!isa<TypeDecl>(SD))
    return false;

  // Determine whether we have a class (or, in C++11, an enum) or
  // a typedef thereof. If so, build the nested-name-specifier.
  QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
  if (T->isDependentType())
    return true;
  if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
    if (TD->getUnderlyingType()->isRecordType())
      return true;
    if (TD->getUnderlyingType()->isEnumeralType()) {
      if (Context.getLangOpts().CPlusPlus11)
        return true;
      if (IsExtension)
        *IsExtension = true;
    }
  } else if (isa<RecordDecl>(SD)) {
    return true;
  } else if (isa<EnumDecl>(SD)) {
    if (Context.getLangOpts().CPlusPlus11)
      return true;
    if (IsExtension)
      *IsExtension = true;
  }

  return false;
}

/// If the given nested-name-specifier begins with a bare identifier
/// (e.g., Base::), perform name lookup for that identifier as a
/// nested-name-specifier within the given scope, and return the result of that
/// name lookup.
NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
  if (!S || !NNS)
    return nullptr;

  while (NNS->getPrefix())
    NNS = NNS->getPrefix();

  if (NNS->getKind() != NestedNameSpecifier::Identifier)
    return nullptr;

  LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
                     LookupNestedNameSpecifierName);
  LookupName(Found, S);
  assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");

  if (!Found.isSingleResult())
    return nullptr;

  NamedDecl *Result = Found.getFoundDecl();
  if (isAcceptableNestedNameSpecifier(Result))
    return Result;

  return nullptr;
}

bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
                                        NestedNameSpecInfo &IdInfo) {
  QualType ObjectType = GetTypeFromParser(IdInfo.ObjectType);
  LookupResult Found(*this, IdInfo.Identifier, IdInfo.IdentifierLoc,
                     LookupNestedNameSpecifierName);

  // Determine where to perform name lookup
  DeclContext *LookupCtx = nullptr;
  bool isDependent = false;
  if (!ObjectType.isNull()) {
    // This nested-name-specifier occurs in a member access expression, e.g.,
    // x->B::f, and we are looking into the type of the object.
    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
    LookupCtx = computeDeclContext(ObjectType);
    isDependent = ObjectType->isDependentType();
  } else if (SS.isSet()) {
    // This nested-name-specifier occurs after another nested-name-specifier,
    // so long into the context associated with the prior nested-name-specifier.
    LookupCtx = computeDeclContext(SS, false);
    isDependent = isDependentScopeSpecifier(SS);
    Found.setContextRange(SS.getRange());
  }

  if (LookupCtx) {
    // Perform "qualified" name lookup into the declaration context we
    // computed, which is either the type of the base of a member access
    // expression or the declaration context associated with a prior
    // nested-name-specifier.

    // The declaration context must be complete.
    if (!LookupCtx->isDependentContext() &&
        RequireCompleteDeclContext(SS, LookupCtx))
      return false;

    LookupQualifiedName(Found, LookupCtx);
  } else if (isDependent) {
    return false;
  } else {
    LookupName(Found, S);
  }
  Found.suppressDiagnostics();

  return Found.getAsSingle<NamespaceDecl>();
}

namespace {

// Callback to only accept typo corrections that can be a valid C++ member
// intializer: either a non-static field member or a base class.
class NestedNameSpecifierValidatorCCC final
    : public CorrectionCandidateCallback {
public:
  explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
      : SRef(SRef) {}

  bool ValidateCandidate(const TypoCorrection &candidate) override {
    return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
  }

  std::unique_ptr<CorrectionCandidateCallback> clone() override {
    return std::make_unique<NestedNameSpecifierValidatorCCC>(*this);
  }

 private:
  Sema &SRef;
};

}

/// Build a new nested-name-specifier for "identifier::", as described
/// by ActOnCXXNestedNameSpecifier.
///
/// \param S Scope in which the nested-name-specifier occurs.
/// \param IdInfo Parser information about an identifier in the
///        nested-name-spec.
/// \param EnteringContext If true, enter the context specified by the
///        nested-name-specifier.
/// \param SS Optional nested name specifier preceding the identifier.
/// \param ScopeLookupResult Provides the result of name lookup within the
///        scope of the nested-name-specifier that was computed at template
///        definition time.
/// \param ErrorRecoveryLookup Specifies if the method is called to improve
///        error recovery and what kind of recovery is performed.
/// \param IsCorrectedToColon If not null, suggestion of replace '::' -> ':'
///        are allowed.  The bool value pointed by this parameter is set to
///       'true' if the identifier is treated as if it was followed by ':',
///        not '::'.
/// \param OnlyNamespace If true, only considers namespaces in lookup.
///
/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
/// that it contains an extra parameter \p ScopeLookupResult, which provides
/// the result of name lookup within the scope of the nested-name-specifier
/// that was computed at template definition time.
///
/// If ErrorRecoveryLookup is true, then this call is used to improve error
/// recovery.  This means that it should not emit diagnostics, it should
/// just return true on failure.  It also means it should only return a valid
/// scope if it *knows* that the result is correct.  It should not return in a
/// dependent context, for example. Nor will it extend \p SS with the scope
/// specifier.
bool Sema::BuildCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo,
                                       bool EnteringContext, CXXScopeSpec &SS,
                                       NamedDecl *ScopeLookupResult,
                                       bool ErrorRecoveryLookup,
                                       bool *IsCorrectedToColon,
                                       bool OnlyNamespace) {
  if (IdInfo.Identifier->isEditorPlaceholder())
    return true;
  LookupResult Found(*this, IdInfo.Identifier, IdInfo.IdentifierLoc,
                     OnlyNamespace ? LookupNamespaceName
                                   : LookupNestedNameSpecifierName);
  QualType ObjectType = GetTypeFromParser(IdInfo.ObjectType);

  // Determine where to perform name lookup
  DeclContext *LookupCtx = nullptr;
  bool isDependent = false;
  if (IsCorrectedToColon)
    *IsCorrectedToColon = false;
  if (!ObjectType.isNull()) {
    // This nested-name-specifier occurs in a member access expression, e.g.,
    // x->B::f, and we are looking into the type of the object.
    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
    LookupCtx = computeDeclContext(ObjectType);
    isDependent = ObjectType->isDependentType();
  } else if (SS.isSet()) {
    // This nested-name-specifier occurs after another nested-name-specifier,
    // so look into the context associated with the prior nested-name-specifier.
    LookupCtx = computeDeclContext(SS, EnteringContext);
    isDependent = isDependentScopeSpecifier(SS);
    Found.setContextRange(SS.getRange());
  }

  bool ObjectTypeSearchedInScope = false;
  if (LookupCtx) {
    // Perform "qualified" name lookup into the declaration context we
    // computed, which is either the type of the base of a member access
    // expression or the declaration context associated with a prior
    // nested-name-specifier.

    // The declaration context must be complete.
    if (!LookupCtx->isDependentContext() &&
        RequireCompleteDeclContext(SS, LookupCtx))
      return true;

    LookupQualifiedName(Found, LookupCtx);

    if (!ObjectType.isNull() && Found.empty()) {
      // C++ [basic.lookup.classref]p4:
      //   If the id-expression in a class member access is a qualified-id of
      //   the form
      //
      //        class-name-or-namespace-name::...
      //
      //   the class-name-or-namespace-name following the . or -> operator is
      //   looked up both in the context of the entire postfix-expression and in
      //   the scope of the class of the object expression. If the name is found
      //   only in the scope of the class of the object expression, the name
      //   shall refer to a class-name. If the name is found only in the
      //   context of the entire postfix-expression, the name shall refer to a
      //   class-name or namespace-name. [...]
      //
      // Qualified name lookup into a class will not find a namespace-name,
      // so we do not need to diagnose that case specifically. However,
      // this qualified name lookup may find nothing. In that case, perform
      // unqualified name lookup in the given scope (if available) or
      // reconstruct the result from when name lookup was performed at template
      // definition time.
      if (S)
        LookupName(Found, S);
      else if (ScopeLookupResult)
        Found.addDecl(ScopeLookupResult);

      ObjectTypeSearchedInScope = true;
    }
  } else if (!isDependent) {
    // Perform unqualified name lookup in the current scope.
    LookupName(Found, S);
  }

  if (Found.isAmbiguous())
    return true;

  // If we performed lookup into a dependent context and did not find anything,
  // that's fine: just build a dependent nested-name-specifier.
  if (Found.empty() && isDependent &&
      !(LookupCtx && LookupCtx->isRecord() &&
        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
         !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
    // Don't speculate if we're just trying to improve error recovery.
    if (ErrorRecoveryLookup)
      return true;

    // We were not able to compute the declaration context for a dependent
    // base object type or prior nested-name-specifier, so this
    // nested-name-specifier refers to an unknown specialization. Just build
    // a dependent nested-name-specifier.
    SS.Extend(Context, IdInfo.Identifier, IdInfo.IdentifierLoc, IdInfo.CCLoc);
    return false;
  }

  if (Found.empty() && !ErrorRecoveryLookup) {
    // If identifier is not found as class-name-or-namespace-name, but is found
    // as other entity, don't look for typos.
    LookupResult R(*this, Found.getLookupNameInfo(), LookupOrdinaryName);
    if (LookupCtx)
      LookupQualifiedName(R, LookupCtx);
    else if (S && !isDependent)
      LookupName(R, S);
    if (!R.empty()) {
      // Don't diagnose problems with this speculative lookup.
      R.suppressDiagnostics();
      // The identifier is found in ordinary lookup. If correction to colon is
      // allowed, suggest replacement to ':'.
      if (IsCorrectedToColon) {
        *IsCorrectedToColon = true;
        Diag(IdInfo.CCLoc, diag::err_nested_name_spec_is_not_class)
            << IdInfo.Identifier << getLangOpts().CPlusPlus
            << FixItHint::CreateReplacement(IdInfo.CCLoc, ":");
        if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
          Diag(ND->getLocation(), diag::note_declared_at);
        return true;
      }
      // Replacement '::' -> ':' is not allowed, just issue respective error.
      Diag(R.getNameLoc(), OnlyNamespace
                               ? unsigned(diag::err_expected_namespace_name)
                               : unsigned(diag::err_expected_class_or_namespace))
          << IdInfo.Identifier << getLangOpts().CPlusPlus;
      if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
        Diag(ND->getLocation(), diag::note_entity_declared_at)
            << IdInfo.Identifier;
      return true;
    }
  }

  if (Found.empty() && !ErrorRecoveryLookup && !getLangOpts().MSVCCompat) {
    // We haven't found anything, and we're not recovering from a
    // different kind of error, so look for typos.
    DeclarationName Name = Found.getLookupName();
    Found.clear();
    NestedNameSpecifierValidatorCCC CCC(*this);
    if (TypoCorrection Corrected = CorrectTypo(
            Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS, CCC,
            CTK_ErrorRecovery, LookupCtx, EnteringContext)) {
      if (LookupCtx) {
        bool DroppedSpecifier =
            Corrected.WillReplaceSpecifier() &&
            Name.getAsString() == Corrected.getAsString(getLangOpts());
        if (DroppedSpecifier)
          SS.clear();
        diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
                                  << Name << LookupCtx << DroppedSpecifier
                                  << SS.getRange());
      } else
        diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest)
                                  << Name);

      if (Corrected.getCorrectionSpecifier())
        SS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
                       SourceRange(Found.getNameLoc()));

      if (NamedDecl *ND = Corrected.getFoundDecl())
        Found.addDecl(ND);
      Found.setLookupName(Corrected.getCorrection());
    } else {
      Found.setLookupName(IdInfo.Identifier);
    }
  }

  NamedDecl *SD =
      Found.isSingleResult() ? Found.getRepresentativeDecl() : nullptr;
  bool IsExtension = false;
  bool AcceptSpec = isAcceptableNestedNameSpecifier(SD, &IsExtension);
  if (!AcceptSpec && IsExtension) {
    AcceptSpec = true;
    Diag(IdInfo.IdentifierLoc, diag::ext_nested_name_spec_is_enum);
  }
  if (AcceptSpec) {
    if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
        !getLangOpts().CPlusPlus11) {
      // C++03 [basic.lookup.classref]p4:
      //   [...] If the name is found in both contexts, the
      //   class-name-or-namespace-name shall refer to the same entity.
      //
      // We already found the name in the scope of the object. Now, look
      // into the current scope (the scope of the postfix-expression) to
      // see if we can find the same name there. As above, if there is no
      // scope, reconstruct the result from the template instantiation itself.
      //
      // Note that C++11 does *not* perform this redundant lookup.
      NamedDecl *OuterDecl;
      if (S) {
        LookupResult FoundOuter(*this, IdInfo.Identifier, IdInfo.IdentifierLoc,
                                LookupNestedNameSpecifierName);
        LookupName(FoundOuter, S);
        OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
      } else
        OuterDecl = ScopeLookupResult;

      if (isAcceptableNestedNameSpecifier(OuterDecl) &&
          OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
          (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
           !Context.hasSameType(
                            Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
                               Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
        if (ErrorRecoveryLookup)
          return true;

         Diag(IdInfo.IdentifierLoc,
              diag::err_nested_name_member_ref_lookup_ambiguous)
           << IdInfo.Identifier;
         Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
           << ObjectType;
         Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);

         // Fall through so that we'll pick the name we found in the object
         // type, since that's probably what the user wanted anyway.
       }
    }

    if (auto *TD = dyn_cast_or_null<TypedefNameDecl>(SD))
      MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);

    // If we're just performing this lookup for error-recovery purposes,
    // don't extend the nested-name-specifier. Just return now.
    if (ErrorRecoveryLookup)
      return false;

    // The use of a nested name specifier may trigger deprecation warnings.
    DiagnoseUseOfDecl(SD, IdInfo.CCLoc);

    if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
      SS.Extend(Context, Namespace, IdInfo.IdentifierLoc, IdInfo.CCLoc);
      return false;
    }

    if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
      SS.Extend(Context, Alias, IdInfo.IdentifierLoc, IdInfo.CCLoc);
      return false;
    }

    QualType T =
        Context.getTypeDeclType(cast<TypeDecl>(SD->getUnderlyingDecl()));
    TypeLocBuilder TLB;
    if (isa<InjectedClassNameType>(T)) {
      InjectedClassNameTypeLoc InjectedTL
        = TLB.push<InjectedClassNameTypeLoc>(T);
      InjectedTL.setNameLoc(IdInfo.IdentifierLoc);
    } else if (isa<RecordType>(T)) {
      RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
      RecordTL.setNameLoc(IdInfo.IdentifierLoc);
    } else if (isa<TypedefType>(T)) {
      TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
      TypedefTL.setNameLoc(IdInfo.IdentifierLoc);
    } else if (isa<EnumType>(T)) {
      EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
      EnumTL.setNameLoc(IdInfo.IdentifierLoc);
    } else if (isa<TemplateTypeParmType>(T)) {
      TemplateTypeParmTypeLoc TemplateTypeTL
        = TLB.push<TemplateTypeParmTypeLoc>(T);
      TemplateTypeTL.setNameLoc(IdInfo.IdentifierLoc);
    } else if (isa<UnresolvedUsingType>(T)) {
      UnresolvedUsingTypeLoc UnresolvedTL
        = TLB.push<UnresolvedUsingTypeLoc>(T);
      UnresolvedTL.setNameLoc(IdInfo.IdentifierLoc);
    } else if (isa<SubstTemplateTypeParmType>(T)) {
      SubstTemplateTypeParmTypeLoc TL
        = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
      TL.setNameLoc(IdInfo.IdentifierLoc);
    } else if (isa<SubstTemplateTypeParmPackType>(T)) {
      SubstTemplateTypeParmPackTypeLoc TL
        = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
      TL.setNameLoc(IdInfo.IdentifierLoc);
    } else {
      llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
    }

    if (T->isEnumeralType())
      Diag(IdInfo.IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);

    SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
              IdInfo.CCLoc);
    return false;
  }

  // Otherwise, we have an error case.  If we don't want diagnostics, just
  // return an error now.
  if (ErrorRecoveryLookup)
    return true;

  // If we didn't find anything during our lookup, try again with
  // ordinary name lookup, which can help us produce better error
  // messages.
  if (Found.empty()) {
    Found.clear(LookupOrdinaryName);
    LookupName(Found, S);
  }

  // In Microsoft mode, if we are within a templated function and we can't
  // resolve Identifier, then extend the SS with Identifier. This will have
  // the effect of resolving Identifier during template instantiation.
  // The goal is to be able to resolve a function call whose
  // nested-name-specifier is located inside a dependent base class.
  // Example:
  //
  // class C {
  // public:
  //    static void foo2() {  }
  // };
  // template <class T> class A { public: typedef C D; };
  //
  // template <class T> class B : public A<T> {
  // public:
  //   void foo() { D::foo2(); }
  // };
  if (getLangOpts().MSVCCompat) {
    DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
    if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
      CXXRecordDecl *ContainingClass = dyn_cast<CXXRecordDecl>(DC->getParent());
      if (ContainingClass && ContainingClass->hasAnyDependentBases()) {
        Diag(IdInfo.IdentifierLoc,
             diag::ext_undeclared_unqual_id_with_dependent_base)
            << IdInfo.Identifier << ContainingClass;
        SS.Extend(Context, IdInfo.Identifier, IdInfo.IdentifierLoc,
                  IdInfo.CCLoc);
        return false;
      }
    }
  }

  if (!Found.empty()) {
    if (TypeDecl *TD = Found.getAsSingle<TypeDecl>())
      Diag(IdInfo.IdentifierLoc, diag::err_expected_class_or_namespace)
          << Context.getTypeDeclType(TD) << getLangOpts().CPlusPlus;
    else {
      Diag(IdInfo.IdentifierLoc, diag::err_expected_class_or_namespace)
          << IdInfo.Identifier << getLangOpts().CPlusPlus;
      if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
        Diag(ND->getLocation(), diag::note_entity_declared_at)
            << IdInfo.Identifier;
    }
  } else if (SS.isSet())
    Diag(IdInfo.IdentifierLoc, diag::err_no_member) << IdInfo.Identifier
        << LookupCtx << SS.getRange();
  else
    Diag(IdInfo.IdentifierLoc, diag::err_undeclared_var_use)
        << IdInfo.Identifier;

  return true;
}

bool Sema::ActOnCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo,
                                       bool EnteringContext, CXXScopeSpec &SS,
                                       bool ErrorRecoveryLookup,
                                       bool *IsCorrectedToColon,
                                       bool OnlyNamespace) {
  if (SS.isInvalid())
    return true;

  return BuildCXXNestedNameSpecifier(S, IdInfo, EnteringContext, SS,
                                     /*ScopeLookupResult=*/nullptr, false,
                                     IsCorrectedToColon, OnlyNamespace);
}

bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
                                               const DeclSpec &DS,
                                               SourceLocation ColonColonLoc) {
  if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
    return true;

  assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);

  QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
  if (T.isNull())
    return true;

  if (!T->isDependentType() && !T->getAs<TagType>()) {
    Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class_or_namespace)
      << T << getLangOpts().CPlusPlus;
    return true;
  }

  TypeLocBuilder TLB;
  DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
  DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
  SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
            ColonColonLoc);
  return false;
}

/// IsInvalidUnlessNestedName - This method is used for error recovery
/// purposes to determine whether the specified identifier is only valid as
/// a nested name specifier, for example a namespace name.  It is
/// conservatively correct to always return false from this method.
///
/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
                                     NestedNameSpecInfo &IdInfo,
                                     bool EnteringContext) {
  if (SS.isInvalid())
    return false;

  return !BuildCXXNestedNameSpecifier(S, IdInfo, EnteringContext, SS,
                                      /*ScopeLookupResult=*/nullptr, true);
}

bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
                                       CXXScopeSpec &SS,
                                       SourceLocation TemplateKWLoc,
                                       TemplateTy OpaqueTemplate,
                                       SourceLocation TemplateNameLoc,
                                       SourceLocation LAngleLoc,
                                       ASTTemplateArgsPtr TemplateArgsIn,
                                       SourceLocation RAngleLoc,
                                       SourceLocation CCLoc,
                                       bool EnteringContext) {
  if (SS.isInvalid())
    return true;

  TemplateName Template = OpaqueTemplate.get();

  // Translate the parser's template argument list in our AST format.
  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
  translateTemplateArguments(TemplateArgsIn, TemplateArgs);

  DependentTemplateName *DTN = Template.getAsDependentTemplateName();
  if (DTN && DTN->isIdentifier()) {
    // Handle a dependent template specialization for which we cannot resolve
    // the template name.
    assert(DTN->getQualifier() == SS.getScopeRep());
    QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
                                                          DTN->getQualifier(),
                                                          DTN->getIdentifier(),
                                                                TemplateArgs);

    // Create source-location information for this type.
    TypeLocBuilder Builder;
    DependentTemplateSpecializationTypeLoc SpecTL
      = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
    SpecTL.setElaboratedKeywordLoc(SourceLocation());
    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
    SpecTL.setTemplateNameLoc(TemplateNameLoc);
    SpecTL.setLAngleLoc(LAngleLoc);
    SpecTL.setRAngleLoc(RAngleLoc);
    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());

    SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
              CCLoc);
    return false;
  }

  // If we assumed an undeclared identifier was a template name, try to
  // typo-correct it now.
  if (Template.getAsAssumedTemplateName() &&
      resolveAssumedTemplateNameAsType(S, Template, TemplateNameLoc))
    return true;

  TemplateDecl *TD = Template.getAsTemplateDecl();
  if (Template.getAsOverloadedTemplate() || DTN ||
      isa<FunctionTemplateDecl>(TD) || isa<VarTemplateDecl>(TD)) {
    SourceRange R(TemplateNameLoc, RAngleLoc);
    if (SS.getRange().isValid())
      R.setBegin(SS.getRange().getBegin());

    Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
      << (TD && isa<VarTemplateDecl>(TD)) << Template << R;
    NoteAllFoundTemplates(Template);
    return true;
  }

  // We were able to resolve the template name to an actual template.
  // Build an appropriate nested-name-specifier.
  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
  if (T.isNull())
    return true;

  // Alias template specializations can produce types which are not valid
  // nested name specifiers.
  if (!T->isDependentType() && !T->getAs<TagType>()) {
    Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
    NoteAllFoundTemplates(Template);
    return true;
  }

  // Provide source-location information for the template specialization type.
  TypeLocBuilder Builder;
  TemplateSpecializationTypeLoc SpecTL
    = Builder.push<TemplateSpecializationTypeLoc>(T);
  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
  SpecTL.setTemplateNameLoc(TemplateNameLoc);
  SpecTL.setLAngleLoc(LAngleLoc);
  SpecTL.setRAngleLoc(RAngleLoc);
  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());


  SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
            CCLoc);
  return false;
}

namespace {
  /// A structure that stores a nested-name-specifier annotation,
  /// including both the nested-name-specifier
  struct NestedNameSpecifierAnnotation {
    NestedNameSpecifier *NNS;
  };
}

void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
  if (SS.isEmpty() || SS.isInvalid())
    return nullptr;

  void *Mem = Context.Allocate(
      (sizeof(NestedNameSpecifierAnnotation) + SS.location_size()),
      alignof(NestedNameSpecifierAnnotation));
  NestedNameSpecifierAnnotation *Annotation
    = new (Mem) NestedNameSpecifierAnnotation;
  Annotation->NNS = SS.getScopeRep();
  memcpy(Annotation + 1, SS.location_data(), SS.location_size());
  return Annotation;
}

void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
                                                SourceRange AnnotationRange,
                                                CXXScopeSpec &SS) {
  if (!AnnotationPtr) {
    SS.SetInvalid(AnnotationRange);
    return;
  }

  NestedNameSpecifierAnnotation *Annotation
    = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
  SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
}

bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");

  // Don't enter a declarator context when the current context is an Objective-C
  // declaration.
  if (isa<ObjCContainerDecl>(CurContext) || isa<ObjCMethodDecl>(CurContext))
    return false;

  NestedNameSpecifier *Qualifier = SS.getScopeRep();

  // There are only two places a well-formed program may qualify a
  // declarator: first, when defining a namespace or class member
  // out-of-line, and second, when naming an explicitly-qualified
  // friend function.  The latter case is governed by
  // C++03 [basic.lookup.unqual]p10:
  //   In a friend declaration naming a member function, a name used
  //   in the function declarator and not part of a template-argument
  //   in a template-id is first looked up in the scope of the member
  //   function's class. If it is not found, or if the name is part of
  //   a template-argument in a template-id, the look up is as
  //   described for unqualified names in the definition of the class
  //   granting friendship.
  // i.e. we don't push a scope unless it's a class member.

  switch (Qualifier->getKind()) {
  case NestedNameSpecifier::Global:
  case NestedNameSpecifier::Namespace:
  case NestedNameSpecifier::NamespaceAlias:
    // These are always namespace scopes.  We never want to enter a
    // namespace scope from anything but a file context.
    return CurContext->getRedeclContext()->isFileContext();

  case NestedNameSpecifier::Identifier:
  case NestedNameSpecifier::TypeSpec:
  case NestedNameSpecifier::TypeSpecWithTemplate:
  case NestedNameSpecifier::Super:
    // These are never namespace scopes.
    return true;
  }

  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
}

/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
/// scope or nested-name-specifier) is parsed, part of a declarator-id.
/// After this method is called, according to [C++ 3.4.3p3], names should be
/// looked up in the declarator-id's scope, until the declarator is parsed and
/// ActOnCXXExitDeclaratorScope is called.
/// The 'SS' should be a non-empty valid CXXScopeSpec.
bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");

  if (SS.isInvalid()) return true;

  DeclContext *DC = computeDeclContext(SS, true);
  if (!DC) return true;

  // Before we enter a declarator's context, we need to make sure that
  // it is a complete declaration context.
  if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
    return true;

  EnterDeclaratorContext(S, DC);

  // Rebuild the nested name specifier for the new scope.
  if (DC->isDependentContext())
    RebuildNestedNameSpecifierInCurrentInstantiation(SS);

  return false;
}

/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
/// Used to indicate that names should revert to being looked up in the
/// defining scope.
void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
  if (SS.isInvalid())
    return;
  assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
         "exiting declarator scope we never really entered");
  ExitDeclaratorContext(S);
}