AnalysisBasedWarnings.cpp 83.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
//=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines analysis_warnings::[Policy,Executor].
// Together they are used by Sema to issue warnings based on inexpensive
// static analysis algorithms in libAnalysis.
//
//===----------------------------------------------------------------------===//

#include "clang/Sema/AnalysisBasedWarnings.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/EvaluatedExprVisitor.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ParentMap.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
#include "clang/Analysis/Analyses/Consumed.h"
#include "clang/Analysis/Analyses/ReachableCode.h"
#include "clang/Analysis/Analyses/ThreadSafety.h"
#include "clang/Analysis/Analyses/UninitializedValues.h"
#include "clang/Analysis/AnalysisDeclContext.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/CFGStmtMap.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaInternal.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include <algorithm>
#include <deque>
#include <iterator>

using namespace clang;

//===----------------------------------------------------------------------===//
// Unreachable code analysis.
//===----------------------------------------------------------------------===//

namespace {
  class UnreachableCodeHandler : public reachable_code::Callback {
    Sema &S;
    SourceRange PreviousSilenceableCondVal;

  public:
    UnreachableCodeHandler(Sema &s) : S(s) {}

    void HandleUnreachable(reachable_code::UnreachableKind UK,
                           SourceLocation L,
                           SourceRange SilenceableCondVal,
                           SourceRange R1,
                           SourceRange R2) override {
      // Avoid reporting multiple unreachable code diagnostics that are
      // triggered by the same conditional value.
      if (PreviousSilenceableCondVal.isValid() &&
          SilenceableCondVal.isValid() &&
          PreviousSilenceableCondVal == SilenceableCondVal)
        return;
      PreviousSilenceableCondVal = SilenceableCondVal;

      unsigned diag = diag::warn_unreachable;
      switch (UK) {
        case reachable_code::UK_Break:
          diag = diag::warn_unreachable_break;
          break;
        case reachable_code::UK_Return:
          diag = diag::warn_unreachable_return;
          break;
        case reachable_code::UK_Loop_Increment:
          diag = diag::warn_unreachable_loop_increment;
          break;
        case reachable_code::UK_Other:
          break;
      }

      S.Diag(L, diag) << R1 << R2;

      SourceLocation Open = SilenceableCondVal.getBegin();
      if (Open.isValid()) {
        SourceLocation Close = SilenceableCondVal.getEnd();
        Close = S.getLocForEndOfToken(Close);
        if (Close.isValid()) {
          S.Diag(Open, diag::note_unreachable_silence)
            << FixItHint::CreateInsertion(Open, "/* DISABLES CODE */ (")
            << FixItHint::CreateInsertion(Close, ")");
        }
      }
    }
  };
} // anonymous namespace

/// CheckUnreachable - Check for unreachable code.
static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
  // As a heuristic prune all diagnostics not in the main file.  Currently
  // the majority of warnings in headers are false positives.  These
  // are largely caused by configuration state, e.g. preprocessor
  // defined code, etc.
  //
  // Note that this is also a performance optimization.  Analyzing
  // headers many times can be expensive.
  if (!S.getSourceManager().isInMainFile(AC.getDecl()->getBeginLoc()))
    return;

  UnreachableCodeHandler UC(S);
  reachable_code::FindUnreachableCode(AC, S.getPreprocessor(), UC);
}

namespace {
/// Warn on logical operator errors in CFGBuilder
class LogicalErrorHandler : public CFGCallback {
  Sema &S;

public:
  LogicalErrorHandler(Sema &S) : CFGCallback(), S(S) {}

  static bool HasMacroID(const Expr *E) {
    if (E->getExprLoc().isMacroID())
      return true;

    // Recurse to children.
    for (const Stmt *SubStmt : E->children())
      if (const Expr *SubExpr = dyn_cast_or_null<Expr>(SubStmt))
        if (HasMacroID(SubExpr))
          return true;

    return false;
  }

  void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) override {
    if (HasMacroID(B))
      return;

    SourceRange DiagRange = B->getSourceRange();
    S.Diag(B->getExprLoc(), diag::warn_tautological_overlap_comparison)
        << DiagRange << isAlwaysTrue;
  }

  void compareBitwiseEquality(const BinaryOperator *B,
                              bool isAlwaysTrue) override {
    if (HasMacroID(B))
      return;

    SourceRange DiagRange = B->getSourceRange();
    S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_always)
        << DiagRange << isAlwaysTrue;
  }

  void compareBitwiseOr(const BinaryOperator *B) override {
    if (HasMacroID(B))
      return;

    SourceRange DiagRange = B->getSourceRange();
    S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_or) << DiagRange;
  }

  static bool hasActiveDiagnostics(DiagnosticsEngine &Diags,
                                   SourceLocation Loc) {
    return !Diags.isIgnored(diag::warn_tautological_overlap_comparison, Loc) ||
           !Diags.isIgnored(diag::warn_comparison_bitwise_or, Loc);
  }
};
} // anonymous namespace

//===----------------------------------------------------------------------===//
// Check for infinite self-recursion in functions
//===----------------------------------------------------------------------===//

// Returns true if the function is called anywhere within the CFGBlock.
// For member functions, the additional condition of being call from the
// this pointer is required.
static bool hasRecursiveCallInPath(const FunctionDecl *FD, CFGBlock &Block) {
  // Process all the Stmt's in this block to find any calls to FD.
  for (const auto &B : Block) {
    if (B.getKind() != CFGElement::Statement)
      continue;

    const CallExpr *CE = dyn_cast<CallExpr>(B.getAs<CFGStmt>()->getStmt());
    if (!CE || !CE->getCalleeDecl() ||
        CE->getCalleeDecl()->getCanonicalDecl() != FD)
      continue;

    // Skip function calls which are qualified with a templated class.
    if (const DeclRefExpr *DRE =
            dyn_cast<DeclRefExpr>(CE->getCallee()->IgnoreParenImpCasts())) {
      if (NestedNameSpecifier *NNS = DRE->getQualifier()) {
        if (NNS->getKind() == NestedNameSpecifier::TypeSpec &&
            isa<TemplateSpecializationType>(NNS->getAsType())) {
          continue;
        }
      }
    }

    const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE);
    if (!MCE || isa<CXXThisExpr>(MCE->getImplicitObjectArgument()) ||
        !MCE->getMethodDecl()->isVirtual())
      return true;
  }
  return false;
}

// Returns true if every path from the entry block passes through a call to FD.
static bool checkForRecursiveFunctionCall(const FunctionDecl *FD, CFG *cfg) {
  llvm::SmallPtrSet<CFGBlock *, 16> Visited;
  llvm::SmallVector<CFGBlock *, 16> WorkList;
  // Keep track of whether we found at least one recursive path.
  bool foundRecursion = false;

  const unsigned ExitID = cfg->getExit().getBlockID();

  // Seed the work list with the entry block.
  WorkList.push_back(&cfg->getEntry());

  while (!WorkList.empty()) {
    CFGBlock *Block = WorkList.pop_back_val();

    for (auto I = Block->succ_begin(), E = Block->succ_end(); I != E; ++I) {
      if (CFGBlock *SuccBlock = *I) {
        if (!Visited.insert(SuccBlock).second)
          continue;

        // Found a path to the exit node without a recursive call.
        if (ExitID == SuccBlock->getBlockID())
          return false;

        // If the successor block contains a recursive call, end analysis there.
        if (hasRecursiveCallInPath(FD, *SuccBlock)) {
          foundRecursion = true;
          continue;
        }

        WorkList.push_back(SuccBlock);
      }
    }
  }
  return foundRecursion;
}

static void checkRecursiveFunction(Sema &S, const FunctionDecl *FD,
                                   const Stmt *Body, AnalysisDeclContext &AC) {
  FD = FD->getCanonicalDecl();

  // Only run on non-templated functions and non-templated members of
  // templated classes.
  if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate &&
      FD->getTemplatedKind() != FunctionDecl::TK_MemberSpecialization)
    return;

  CFG *cfg = AC.getCFG();
  if (!cfg) return;

  // If the exit block is unreachable, skip processing the function.
  if (cfg->getExit().pred_empty())
    return;

  // Emit diagnostic if a recursive function call is detected for all paths.
  if (checkForRecursiveFunctionCall(FD, cfg))
    S.Diag(Body->getBeginLoc(), diag::warn_infinite_recursive_function);
}

//===----------------------------------------------------------------------===//
// Check for throw in a non-throwing function.
//===----------------------------------------------------------------------===//

/// Determine whether an exception thrown by E, unwinding from ThrowBlock,
/// can reach ExitBlock.
static bool throwEscapes(Sema &S, const CXXThrowExpr *E, CFGBlock &ThrowBlock,
                         CFG *Body) {
  SmallVector<CFGBlock *, 16> Stack;
  llvm::BitVector Queued(Body->getNumBlockIDs());

  Stack.push_back(&ThrowBlock);
  Queued[ThrowBlock.getBlockID()] = true;

  while (!Stack.empty()) {
    CFGBlock &UnwindBlock = *Stack.back();
    Stack.pop_back();

    for (auto &Succ : UnwindBlock.succs()) {
      if (!Succ.isReachable() || Queued[Succ->getBlockID()])
        continue;

      if (Succ->getBlockID() == Body->getExit().getBlockID())
        return true;

      if (auto *Catch =
              dyn_cast_or_null<CXXCatchStmt>(Succ->getLabel())) {
        QualType Caught = Catch->getCaughtType();
        if (Caught.isNull() || // catch (...) catches everything
            !E->getSubExpr() || // throw; is considered cuaght by any handler
            S.handlerCanCatch(Caught, E->getSubExpr()->getType()))
          // Exception doesn't escape via this path.
          break;
      } else {
        Stack.push_back(Succ);
        Queued[Succ->getBlockID()] = true;
      }
    }
  }

  return false;
}

static void visitReachableThrows(
    CFG *BodyCFG,
    llvm::function_ref<void(const CXXThrowExpr *, CFGBlock &)> Visit) {
  llvm::BitVector Reachable(BodyCFG->getNumBlockIDs());
  clang::reachable_code::ScanReachableFromBlock(&BodyCFG->getEntry(), Reachable);
  for (CFGBlock *B : *BodyCFG) {
    if (!Reachable[B->getBlockID()])
      continue;
    for (CFGElement &E : *B) {
      Optional<CFGStmt> S = E.getAs<CFGStmt>();
      if (!S)
        continue;
      if (auto *Throw = dyn_cast<CXXThrowExpr>(S->getStmt()))
        Visit(Throw, *B);
    }
  }
}

static void EmitDiagForCXXThrowInNonThrowingFunc(Sema &S, SourceLocation OpLoc,
                                                 const FunctionDecl *FD) {
  if (!S.getSourceManager().isInSystemHeader(OpLoc) &&
      FD->getTypeSourceInfo()) {
    S.Diag(OpLoc, diag::warn_throw_in_noexcept_func) << FD;
    if (S.getLangOpts().CPlusPlus11 &&
        (isa<CXXDestructorDecl>(FD) ||
         FD->getDeclName().getCXXOverloadedOperator() == OO_Delete ||
         FD->getDeclName().getCXXOverloadedOperator() == OO_Array_Delete)) {
      if (const auto *Ty = FD->getTypeSourceInfo()->getType()->
                                         getAs<FunctionProtoType>())
        S.Diag(FD->getLocation(), diag::note_throw_in_dtor)
            << !isa<CXXDestructorDecl>(FD) << !Ty->hasExceptionSpec()
            << FD->getExceptionSpecSourceRange();
    } else
      S.Diag(FD->getLocation(), diag::note_throw_in_function)
          << FD->getExceptionSpecSourceRange();
  }
}

static void checkThrowInNonThrowingFunc(Sema &S, const FunctionDecl *FD,
                                        AnalysisDeclContext &AC) {
  CFG *BodyCFG = AC.getCFG();
  if (!BodyCFG)
    return;
  if (BodyCFG->getExit().pred_empty())
    return;
  visitReachableThrows(BodyCFG, [&](const CXXThrowExpr *Throw, CFGBlock &Block) {
    if (throwEscapes(S, Throw, Block, BodyCFG))
      EmitDiagForCXXThrowInNonThrowingFunc(S, Throw->getThrowLoc(), FD);
  });
}

static bool isNoexcept(const FunctionDecl *FD) {
  const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
  if (FPT->isNothrow() || FD->hasAttr<NoThrowAttr>())
    return true;
  return false;
}

//===----------------------------------------------------------------------===//
// Check for missing return value.
//===----------------------------------------------------------------------===//

enum ControlFlowKind {
  UnknownFallThrough,
  NeverFallThrough,
  MaybeFallThrough,
  AlwaysFallThrough,
  NeverFallThroughOrReturn
};

/// CheckFallThrough - Check that we don't fall off the end of a
/// Statement that should return a value.
///
/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
/// MaybeFallThrough iff we might or might not fall off the end,
/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
/// return.  We assume NeverFallThrough iff we never fall off the end of the
/// statement but we may return.  We assume that functions not marked noreturn
/// will return.
static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
  CFG *cfg = AC.getCFG();
  if (!cfg) return UnknownFallThrough;

  // The CFG leaves in dead things, and we don't want the dead code paths to
  // confuse us, so we mark all live things first.
  llvm::BitVector live(cfg->getNumBlockIDs());
  unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
                                                          live);

  bool AddEHEdges = AC.getAddEHEdges();
  if (!AddEHEdges && count != cfg->getNumBlockIDs())
    // When there are things remaining dead, and we didn't add EH edges
    // from CallExprs to the catch clauses, we have to go back and
    // mark them as live.
    for (const auto *B : *cfg) {
      if (!live[B->getBlockID()]) {
        if (B->pred_begin() == B->pred_end()) {
          const Stmt *Term = B->getTerminatorStmt();
          if (Term && isa<CXXTryStmt>(Term))
            // When not adding EH edges from calls, catch clauses
            // can otherwise seem dead.  Avoid noting them as dead.
            count += reachable_code::ScanReachableFromBlock(B, live);
          continue;
        }
      }
    }

  // Now we know what is live, we check the live precessors of the exit block
  // and look for fall through paths, being careful to ignore normal returns,
  // and exceptional paths.
  bool HasLiveReturn = false;
  bool HasFakeEdge = false;
  bool HasPlainEdge = false;
  bool HasAbnormalEdge = false;

  // Ignore default cases that aren't likely to be reachable because all
  // enums in a switch(X) have explicit case statements.
  CFGBlock::FilterOptions FO;
  FO.IgnoreDefaultsWithCoveredEnums = 1;

  for (CFGBlock::filtered_pred_iterator I =
           cfg->getExit().filtered_pred_start_end(FO);
       I.hasMore(); ++I) {
    const CFGBlock &B = **I;
    if (!live[B.getBlockID()])
      continue;

    // Skip blocks which contain an element marked as no-return. They don't
    // represent actually viable edges into the exit block, so mark them as
    // abnormal.
    if (B.hasNoReturnElement()) {
      HasAbnormalEdge = true;
      continue;
    }

    // Destructors can appear after the 'return' in the CFG.  This is
    // normal.  We need to look pass the destructors for the return
    // statement (if it exists).
    CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();

    for ( ; ri != re ; ++ri)
      if (ri->getAs<CFGStmt>())
        break;

    // No more CFGElements in the block?
    if (ri == re) {
      const Stmt *Term = B.getTerminatorStmt();
      if (Term && isa<CXXTryStmt>(Term)) {
        HasAbnormalEdge = true;
        continue;
      }
      // A labeled empty statement, or the entry block...
      HasPlainEdge = true;
      continue;
    }

    CFGStmt CS = ri->castAs<CFGStmt>();
    const Stmt *S = CS.getStmt();
    if (isa<ReturnStmt>(S) || isa<CoreturnStmt>(S)) {
      HasLiveReturn = true;
      continue;
    }
    if (isa<ObjCAtThrowStmt>(S)) {
      HasFakeEdge = true;
      continue;
    }
    if (isa<CXXThrowExpr>(S)) {
      HasFakeEdge = true;
      continue;
    }
    if (isa<MSAsmStmt>(S)) {
      // TODO: Verify this is correct.
      HasFakeEdge = true;
      HasLiveReturn = true;
      continue;
    }
    if (isa<CXXTryStmt>(S)) {
      HasAbnormalEdge = true;
      continue;
    }
    if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
        == B.succ_end()) {
      HasAbnormalEdge = true;
      continue;
    }

    HasPlainEdge = true;
  }
  if (!HasPlainEdge) {
    if (HasLiveReturn)
      return NeverFallThrough;
    return NeverFallThroughOrReturn;
  }
  if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
    return MaybeFallThrough;
  // This says AlwaysFallThrough for calls to functions that are not marked
  // noreturn, that don't return.  If people would like this warning to be more
  // accurate, such functions should be marked as noreturn.
  return AlwaysFallThrough;
}

namespace {

struct CheckFallThroughDiagnostics {
  unsigned diag_MaybeFallThrough_HasNoReturn;
  unsigned diag_MaybeFallThrough_ReturnsNonVoid;
  unsigned diag_AlwaysFallThrough_HasNoReturn;
  unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
  unsigned diag_NeverFallThroughOrReturn;
  enum { Function, Block, Lambda, Coroutine } funMode;
  SourceLocation FuncLoc;

  static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
    CheckFallThroughDiagnostics D;
    D.FuncLoc = Func->getLocation();
    D.diag_MaybeFallThrough_HasNoReturn =
      diag::warn_falloff_noreturn_function;
    D.diag_MaybeFallThrough_ReturnsNonVoid =
      diag::warn_maybe_falloff_nonvoid_function;
    D.diag_AlwaysFallThrough_HasNoReturn =
      diag::warn_falloff_noreturn_function;
    D.diag_AlwaysFallThrough_ReturnsNonVoid =
      diag::warn_falloff_nonvoid_function;

    // Don't suggest that virtual functions be marked "noreturn", since they
    // might be overridden by non-noreturn functions.
    bool isVirtualMethod = false;
    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
      isVirtualMethod = Method->isVirtual();

    // Don't suggest that template instantiations be marked "noreturn"
    bool isTemplateInstantiation = false;
    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
      isTemplateInstantiation = Function->isTemplateInstantiation();

    if (!isVirtualMethod && !isTemplateInstantiation)
      D.diag_NeverFallThroughOrReturn =
        diag::warn_suggest_noreturn_function;
    else
      D.diag_NeverFallThroughOrReturn = 0;

    D.funMode = Function;
    return D;
  }

  static CheckFallThroughDiagnostics MakeForCoroutine(const Decl *Func) {
    CheckFallThroughDiagnostics D;
    D.FuncLoc = Func->getLocation();
    D.diag_MaybeFallThrough_HasNoReturn = 0;
    D.diag_MaybeFallThrough_ReturnsNonVoid =
        diag::warn_maybe_falloff_nonvoid_coroutine;
    D.diag_AlwaysFallThrough_HasNoReturn = 0;
    D.diag_AlwaysFallThrough_ReturnsNonVoid =
        diag::warn_falloff_nonvoid_coroutine;
    D.funMode = Coroutine;
    return D;
  }

  static CheckFallThroughDiagnostics MakeForBlock() {
    CheckFallThroughDiagnostics D;
    D.diag_MaybeFallThrough_HasNoReturn =
      diag::err_noreturn_block_has_return_expr;
    D.diag_MaybeFallThrough_ReturnsNonVoid =
      diag::err_maybe_falloff_nonvoid_block;
    D.diag_AlwaysFallThrough_HasNoReturn =
      diag::err_noreturn_block_has_return_expr;
    D.diag_AlwaysFallThrough_ReturnsNonVoid =
      diag::err_falloff_nonvoid_block;
    D.diag_NeverFallThroughOrReturn = 0;
    D.funMode = Block;
    return D;
  }

  static CheckFallThroughDiagnostics MakeForLambda() {
    CheckFallThroughDiagnostics D;
    D.diag_MaybeFallThrough_HasNoReturn =
      diag::err_noreturn_lambda_has_return_expr;
    D.diag_MaybeFallThrough_ReturnsNonVoid =
      diag::warn_maybe_falloff_nonvoid_lambda;
    D.diag_AlwaysFallThrough_HasNoReturn =
      diag::err_noreturn_lambda_has_return_expr;
    D.diag_AlwaysFallThrough_ReturnsNonVoid =
      diag::warn_falloff_nonvoid_lambda;
    D.diag_NeverFallThroughOrReturn = 0;
    D.funMode = Lambda;
    return D;
  }

  bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
                        bool HasNoReturn) const {
    if (funMode == Function) {
      return (ReturnsVoid ||
              D.isIgnored(diag::warn_maybe_falloff_nonvoid_function,
                          FuncLoc)) &&
             (!HasNoReturn ||
              D.isIgnored(diag::warn_noreturn_function_has_return_expr,
                          FuncLoc)) &&
             (!ReturnsVoid ||
              D.isIgnored(diag::warn_suggest_noreturn_block, FuncLoc));
    }
    if (funMode == Coroutine) {
      return (ReturnsVoid ||
              D.isIgnored(diag::warn_maybe_falloff_nonvoid_function, FuncLoc) ||
              D.isIgnored(diag::warn_maybe_falloff_nonvoid_coroutine,
                          FuncLoc)) &&
             (!HasNoReturn);
    }
    // For blocks / lambdas.
    return ReturnsVoid && !HasNoReturn;
  }
};

} // anonymous namespace

/// CheckFallThroughForBody - Check that we don't fall off the end of a
/// function that should return a value.  Check that we don't fall off the end
/// of a noreturn function.  We assume that functions and blocks not marked
/// noreturn will return.
static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
                                    QualType BlockType,
                                    const CheckFallThroughDiagnostics &CD,
                                    AnalysisDeclContext &AC,
                                    sema::FunctionScopeInfo *FSI) {

  bool ReturnsVoid = false;
  bool HasNoReturn = false;
  bool IsCoroutine = FSI->isCoroutine();

  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
    if (const auto *CBody = dyn_cast<CoroutineBodyStmt>(Body))
      ReturnsVoid = CBody->getFallthroughHandler() != nullptr;
    else
      ReturnsVoid = FD->getReturnType()->isVoidType();
    HasNoReturn = FD->isNoReturn();
  }
  else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
    ReturnsVoid = MD->getReturnType()->isVoidType();
    HasNoReturn = MD->hasAttr<NoReturnAttr>();
  }
  else if (isa<BlockDecl>(D)) {
    if (const FunctionType *FT =
          BlockType->getPointeeType()->getAs<FunctionType>()) {
      if (FT->getReturnType()->isVoidType())
        ReturnsVoid = true;
      if (FT->getNoReturnAttr())
        HasNoReturn = true;
    }
  }

  DiagnosticsEngine &Diags = S.getDiagnostics();

  // Short circuit for compilation speed.
  if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
      return;
  SourceLocation LBrace = Body->getBeginLoc(), RBrace = Body->getEndLoc();
  auto EmitDiag = [&](SourceLocation Loc, unsigned DiagID) {
    if (IsCoroutine)
      S.Diag(Loc, DiagID) << FSI->CoroutinePromise->getType();
    else
      S.Diag(Loc, DiagID);
  };

  // cpu_dispatch functions permit empty function bodies for ICC compatibility.
  if (D->getAsFunction() && D->getAsFunction()->isCPUDispatchMultiVersion())
    return;

  // Either in a function body compound statement, or a function-try-block.
  switch (CheckFallThrough(AC)) {
    case UnknownFallThrough:
      break;

    case MaybeFallThrough:
      if (HasNoReturn)
        EmitDiag(RBrace, CD.diag_MaybeFallThrough_HasNoReturn);
      else if (!ReturnsVoid)
        EmitDiag(RBrace, CD.diag_MaybeFallThrough_ReturnsNonVoid);
      break;
    case AlwaysFallThrough:
      if (HasNoReturn)
        EmitDiag(RBrace, CD.diag_AlwaysFallThrough_HasNoReturn);
      else if (!ReturnsVoid)
        EmitDiag(RBrace, CD.diag_AlwaysFallThrough_ReturnsNonVoid);
      break;
    case NeverFallThroughOrReturn:
      if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
          S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 0 << FD;
        } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
          S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 1 << MD;
        } else {
          S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn);
        }
      }
      break;
    case NeverFallThrough:
      break;
  }
}

//===----------------------------------------------------------------------===//
// -Wuninitialized
//===----------------------------------------------------------------------===//

namespace {
/// ContainsReference - A visitor class to search for references to
/// a particular declaration (the needle) within any evaluated component of an
/// expression (recursively).
class ContainsReference : public ConstEvaluatedExprVisitor<ContainsReference> {
  bool FoundReference;
  const DeclRefExpr *Needle;

public:
  typedef ConstEvaluatedExprVisitor<ContainsReference> Inherited;

  ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
    : Inherited(Context), FoundReference(false), Needle(Needle) {}

  void VisitExpr(const Expr *E) {
    // Stop evaluating if we already have a reference.
    if (FoundReference)
      return;

    Inherited::VisitExpr(E);
  }

  void VisitDeclRefExpr(const DeclRefExpr *E) {
    if (E == Needle)
      FoundReference = true;
    else
      Inherited::VisitDeclRefExpr(E);
  }

  bool doesContainReference() const { return FoundReference; }
};
} // anonymous namespace

static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
  QualType VariableTy = VD->getType().getCanonicalType();
  if (VariableTy->isBlockPointerType() &&
      !VD->hasAttr<BlocksAttr>()) {
    S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization)
        << VD->getDeclName()
        << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
    return true;
  }

  // Don't issue a fixit if there is already an initializer.
  if (VD->getInit())
    return false;

  // Don't suggest a fixit inside macros.
  if (VD->getEndLoc().isMacroID())
    return false;

  SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());

  // Suggest possible initialization (if any).
  std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
  if (Init.empty())
    return false;

  S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
    << FixItHint::CreateInsertion(Loc, Init);
  return true;
}

/// Create a fixit to remove an if-like statement, on the assumption that its
/// condition is CondVal.
static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
                          const Stmt *Else, bool CondVal,
                          FixItHint &Fixit1, FixItHint &Fixit2) {
  if (CondVal) {
    // If condition is always true, remove all but the 'then'.
    Fixit1 = FixItHint::CreateRemoval(
        CharSourceRange::getCharRange(If->getBeginLoc(), Then->getBeginLoc()));
    if (Else) {
      SourceLocation ElseKwLoc = S.getLocForEndOfToken(Then->getEndLoc());
      Fixit2 =
          FixItHint::CreateRemoval(SourceRange(ElseKwLoc, Else->getEndLoc()));
    }
  } else {
    // If condition is always false, remove all but the 'else'.
    if (Else)
      Fixit1 = FixItHint::CreateRemoval(CharSourceRange::getCharRange(
          If->getBeginLoc(), Else->getBeginLoc()));
    else
      Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
  }
}

/// DiagUninitUse -- Helper function to produce a diagnostic for an
/// uninitialized use of a variable.
static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
                          bool IsCapturedByBlock) {
  bool Diagnosed = false;

  switch (Use.getKind()) {
  case UninitUse::Always:
    S.Diag(Use.getUser()->getBeginLoc(), diag::warn_uninit_var)
        << VD->getDeclName() << IsCapturedByBlock
        << Use.getUser()->getSourceRange();
    return;

  case UninitUse::AfterDecl:
  case UninitUse::AfterCall:
    S.Diag(VD->getLocation(), diag::warn_sometimes_uninit_var)
      << VD->getDeclName() << IsCapturedByBlock
      << (Use.getKind() == UninitUse::AfterDecl ? 4 : 5)
      << const_cast<DeclContext*>(VD->getLexicalDeclContext())
      << VD->getSourceRange();
    S.Diag(Use.getUser()->getBeginLoc(), diag::note_uninit_var_use)
        << IsCapturedByBlock << Use.getUser()->getSourceRange();
    return;

  case UninitUse::Maybe:
  case UninitUse::Sometimes:
    // Carry on to report sometimes-uninitialized branches, if possible,
    // or a 'may be used uninitialized' diagnostic otherwise.
    break;
  }

  // Diagnose each branch which leads to a sometimes-uninitialized use.
  for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
       I != E; ++I) {
    assert(Use.getKind() == UninitUse::Sometimes);

    const Expr *User = Use.getUser();
    const Stmt *Term = I->Terminator;

    // Information used when building the diagnostic.
    unsigned DiagKind;
    StringRef Str;
    SourceRange Range;

    // FixIts to suppress the diagnostic by removing the dead condition.
    // For all binary terminators, branch 0 is taken if the condition is true,
    // and branch 1 is taken if the condition is false.
    int RemoveDiagKind = -1;
    const char *FixitStr =
        S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
                                  : (I->Output ? "1" : "0");
    FixItHint Fixit1, Fixit2;

    switch (Term ? Term->getStmtClass() : Stmt::DeclStmtClass) {
    default:
      // Don't know how to report this. Just fall back to 'may be used
      // uninitialized'. FIXME: Can this happen?
      continue;

    // "condition is true / condition is false".
    case Stmt::IfStmtClass: {
      const IfStmt *IS = cast<IfStmt>(Term);
      DiagKind = 0;
      Str = "if";
      Range = IS->getCond()->getSourceRange();
      RemoveDiagKind = 0;
      CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
                    I->Output, Fixit1, Fixit2);
      break;
    }
    case Stmt::ConditionalOperatorClass: {
      const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
      DiagKind = 0;
      Str = "?:";
      Range = CO->getCond()->getSourceRange();
      RemoveDiagKind = 0;
      CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
                    I->Output, Fixit1, Fixit2);
      break;
    }
    case Stmt::BinaryOperatorClass: {
      const BinaryOperator *BO = cast<BinaryOperator>(Term);
      if (!BO->isLogicalOp())
        continue;
      DiagKind = 0;
      Str = BO->getOpcodeStr();
      Range = BO->getLHS()->getSourceRange();
      RemoveDiagKind = 0;
      if ((BO->getOpcode() == BO_LAnd && I->Output) ||
          (BO->getOpcode() == BO_LOr && !I->Output))
        // true && y -> y, false || y -> y.
        Fixit1 = FixItHint::CreateRemoval(
            SourceRange(BO->getBeginLoc(), BO->getOperatorLoc()));
      else
        // false && y -> false, true || y -> true.
        Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
      break;
    }

    // "loop is entered / loop is exited".
    case Stmt::WhileStmtClass:
      DiagKind = 1;
      Str = "while";
      Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
      RemoveDiagKind = 1;
      Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
      break;
    case Stmt::ForStmtClass:
      DiagKind = 1;
      Str = "for";
      Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
      RemoveDiagKind = 1;
      if (I->Output)
        Fixit1 = FixItHint::CreateRemoval(Range);
      else
        Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
      break;
    case Stmt::CXXForRangeStmtClass:
      if (I->Output == 1) {
        // The use occurs if a range-based for loop's body never executes.
        // That may be impossible, and there's no syntactic fix for this,
        // so treat it as a 'may be uninitialized' case.
        continue;
      }
      DiagKind = 1;
      Str = "for";
      Range = cast<CXXForRangeStmt>(Term)->getRangeInit()->getSourceRange();
      break;

    // "condition is true / loop is exited".
    case Stmt::DoStmtClass:
      DiagKind = 2;
      Str = "do";
      Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
      RemoveDiagKind = 1;
      Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
      break;

    // "switch case is taken".
    case Stmt::CaseStmtClass:
      DiagKind = 3;
      Str = "case";
      Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
      break;
    case Stmt::DefaultStmtClass:
      DiagKind = 3;
      Str = "default";
      Range = cast<DefaultStmt>(Term)->getDefaultLoc();
      break;
    }

    S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
      << VD->getDeclName() << IsCapturedByBlock << DiagKind
      << Str << I->Output << Range;
    S.Diag(User->getBeginLoc(), diag::note_uninit_var_use)
        << IsCapturedByBlock << User->getSourceRange();
    if (RemoveDiagKind != -1)
      S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
        << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;

    Diagnosed = true;
  }

  if (!Diagnosed)
    S.Diag(Use.getUser()->getBeginLoc(), diag::warn_maybe_uninit_var)
        << VD->getDeclName() << IsCapturedByBlock
        << Use.getUser()->getSourceRange();
}

/// Diagnose uninitialized const reference usages.
static bool DiagnoseUninitializedConstRefUse(Sema &S, const VarDecl *VD,
                                             const UninitUse &Use) {
  S.Diag(Use.getUser()->getBeginLoc(), diag::warn_uninit_const_reference)
      << VD->getDeclName() << Use.getUser()->getSourceRange();
  return true;
}

/// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
/// uninitialized variable. This manages the different forms of diagnostic
/// emitted for particular types of uses. Returns true if the use was diagnosed
/// as a warning. If a particular use is one we omit warnings for, returns
/// false.
static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
                                     const UninitUse &Use,
                                     bool alwaysReportSelfInit = false) {
  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
    // Inspect the initializer of the variable declaration which is
    // being referenced prior to its initialization. We emit
    // specialized diagnostics for self-initialization, and we
    // specifically avoid warning about self references which take the
    // form of:
    //
    //   int x = x;
    //
    // This is used to indicate to GCC that 'x' is intentionally left
    // uninitialized. Proven code paths which access 'x' in
    // an uninitialized state after this will still warn.
    if (const Expr *Initializer = VD->getInit()) {
      if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
        return false;

      ContainsReference CR(S.Context, DRE);
      CR.Visit(Initializer);
      if (CR.doesContainReference()) {
        S.Diag(DRE->getBeginLoc(), diag::warn_uninit_self_reference_in_init)
            << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
        return true;
      }
    }

    DiagUninitUse(S, VD, Use, false);
  } else {
    const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
    if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
      S.Diag(BE->getBeginLoc(),
             diag::warn_uninit_byref_blockvar_captured_by_block)
          << VD->getDeclName()
          << VD->getType().getQualifiers().hasObjCLifetime();
    else
      DiagUninitUse(S, VD, Use, true);
  }

  // Report where the variable was declared when the use wasn't within
  // the initializer of that declaration & we didn't already suggest
  // an initialization fixit.
  if (!SuggestInitializationFixit(S, VD))
    S.Diag(VD->getBeginLoc(), diag::note_var_declared_here)
        << VD->getDeclName();

  return true;
}

namespace {
  class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
  public:
    FallthroughMapper(Sema &S)
      : FoundSwitchStatements(false),
        S(S) {
    }

    bool foundSwitchStatements() const { return FoundSwitchStatements; }

    void markFallthroughVisited(const AttributedStmt *Stmt) {
      bool Found = FallthroughStmts.erase(Stmt);
      assert(Found);
      (void)Found;
    }

    typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;

    const AttrStmts &getFallthroughStmts() const {
      return FallthroughStmts;
    }

    void fillReachableBlocks(CFG *Cfg) {
      assert(ReachableBlocks.empty() && "ReachableBlocks already filled");
      std::deque<const CFGBlock *> BlockQueue;

      ReachableBlocks.insert(&Cfg->getEntry());
      BlockQueue.push_back(&Cfg->getEntry());
      // Mark all case blocks reachable to avoid problems with switching on
      // constants, covered enums, etc.
      // These blocks can contain fall-through annotations, and we don't want to
      // issue a warn_fallthrough_attr_unreachable for them.
      for (const auto *B : *Cfg) {
        const Stmt *L = B->getLabel();
        if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B).second)
          BlockQueue.push_back(B);
      }

      while (!BlockQueue.empty()) {
        const CFGBlock *P = BlockQueue.front();
        BlockQueue.pop_front();
        for (CFGBlock::const_succ_iterator I = P->succ_begin(),
                                           E = P->succ_end();
             I != E; ++I) {
          if (*I && ReachableBlocks.insert(*I).second)
            BlockQueue.push_back(*I);
        }
      }
    }

    bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt,
                                   bool IsTemplateInstantiation) {
      assert(!ReachableBlocks.empty() && "ReachableBlocks empty");

      int UnannotatedCnt = 0;
      AnnotatedCnt = 0;

      std::deque<const CFGBlock*> BlockQueue(B.pred_begin(), B.pred_end());
      while (!BlockQueue.empty()) {
        const CFGBlock *P = BlockQueue.front();
        BlockQueue.pop_front();
        if (!P) continue;

        const Stmt *Term = P->getTerminatorStmt();
        if (Term && isa<SwitchStmt>(Term))
          continue; // Switch statement, good.

        const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
        if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
          continue; // Previous case label has no statements, good.

        const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel());
        if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end())
          continue; // Case label is preceded with a normal label, good.

        if (!ReachableBlocks.count(P)) {
          for (CFGBlock::const_reverse_iterator ElemIt = P->rbegin(),
                                                ElemEnd = P->rend();
               ElemIt != ElemEnd; ++ElemIt) {
            if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) {
              if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
                // Don't issue a warning for an unreachable fallthrough
                // attribute in template instantiations as it may not be
                // unreachable in all instantiations of the template.
                if (!IsTemplateInstantiation)
                  S.Diag(AS->getBeginLoc(),
                         diag::warn_fallthrough_attr_unreachable);
                markFallthroughVisited(AS);
                ++AnnotatedCnt;
                break;
              }
              // Don't care about other unreachable statements.
            }
          }
          // If there are no unreachable statements, this may be a special
          // case in CFG:
          // case X: {
          //    A a;  // A has a destructor.
          //    break;
          // }
          // // <<<< This place is represented by a 'hanging' CFG block.
          // case Y:
          continue;
        }

        const Stmt *LastStmt = getLastStmt(*P);
        if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
          markFallthroughVisited(AS);
          ++AnnotatedCnt;
          continue; // Fallthrough annotation, good.
        }

        if (!LastStmt) { // This block contains no executable statements.
          // Traverse its predecessors.
          std::copy(P->pred_begin(), P->pred_end(),
                    std::back_inserter(BlockQueue));
          continue;
        }

        ++UnannotatedCnt;
      }
      return !!UnannotatedCnt;
    }

    // RecursiveASTVisitor setup.
    bool shouldWalkTypesOfTypeLocs() const { return false; }

    bool VisitAttributedStmt(AttributedStmt *S) {
      if (asFallThroughAttr(S))
        FallthroughStmts.insert(S);
      return true;
    }

    bool VisitSwitchStmt(SwitchStmt *S) {
      FoundSwitchStatements = true;
      return true;
    }

    // We don't want to traverse local type declarations. We analyze their
    // methods separately.
    bool TraverseDecl(Decl *D) { return true; }

    // We analyze lambda bodies separately. Skip them here.
    bool TraverseLambdaExpr(LambdaExpr *LE) {
      // Traverse the captures, but not the body.
      for (const auto C : zip(LE->captures(), LE->capture_inits()))
        TraverseLambdaCapture(LE, &std::get<0>(C), std::get<1>(C));
      return true;
    }

  private:

    static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
      if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
        if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
          return AS;
      }
      return nullptr;
    }

    static const Stmt *getLastStmt(const CFGBlock &B) {
      if (const Stmt *Term = B.getTerminatorStmt())
        return Term;
      for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(),
                                            ElemEnd = B.rend();
                                            ElemIt != ElemEnd; ++ElemIt) {
        if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>())
          return CS->getStmt();
      }
      // Workaround to detect a statement thrown out by CFGBuilder:
      //   case X: {} case Y:
      //   case X: ; case Y:
      if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
        if (!isa<SwitchCase>(SW->getSubStmt()))
          return SW->getSubStmt();

      return nullptr;
    }

    bool FoundSwitchStatements;
    AttrStmts FallthroughStmts;
    Sema &S;
    llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks;
  };
} // anonymous namespace

static StringRef getFallthroughAttrSpelling(Preprocessor &PP,
                                            SourceLocation Loc) {
  TokenValue FallthroughTokens[] = {
    tok::l_square, tok::l_square,
    PP.getIdentifierInfo("fallthrough"),
    tok::r_square, tok::r_square
  };

  TokenValue ClangFallthroughTokens[] = {
    tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"),
    tok::coloncolon, PP.getIdentifierInfo("fallthrough"),
    tok::r_square, tok::r_square
  };

  bool PreferClangAttr = !PP.getLangOpts().CPlusPlus17 && !PP.getLangOpts().C2x;

  StringRef MacroName;
  if (PreferClangAttr)
    MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens);
  if (MacroName.empty())
    MacroName = PP.getLastMacroWithSpelling(Loc, FallthroughTokens);
  if (MacroName.empty() && !PreferClangAttr)
    MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens);
  if (MacroName.empty()) {
    if (!PreferClangAttr)
      MacroName = "[[fallthrough]]";
    else if (PP.getLangOpts().CPlusPlus)
      MacroName = "[[clang::fallthrough]]";
    else
      MacroName = "__attribute__((fallthrough))";
  }
  return MacroName;
}

static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
                                            bool PerFunction) {
  FallthroughMapper FM(S);
  FM.TraverseStmt(AC.getBody());

  if (!FM.foundSwitchStatements())
    return;

  if (PerFunction && FM.getFallthroughStmts().empty())
    return;

  CFG *Cfg = AC.getCFG();

  if (!Cfg)
    return;

  FM.fillReachableBlocks(Cfg);

  for (const CFGBlock *B : llvm::reverse(*Cfg)) {
    const Stmt *Label = B->getLabel();

    if (!Label || !isa<SwitchCase>(Label))
      continue;

    int AnnotatedCnt;

    bool IsTemplateInstantiation = false;
    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(AC.getDecl()))
      IsTemplateInstantiation = Function->isTemplateInstantiation();
    if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt,
                                      IsTemplateInstantiation))
      continue;

    S.Diag(Label->getBeginLoc(),
           PerFunction ? diag::warn_unannotated_fallthrough_per_function
                       : diag::warn_unannotated_fallthrough);

    if (!AnnotatedCnt) {
      SourceLocation L = Label->getBeginLoc();
      if (L.isMacroID())
        continue;

      const Stmt *Term = B->getTerminatorStmt();
      // Skip empty cases.
      while (B->empty() && !Term && B->succ_size() == 1) {
        B = *B->succ_begin();
        Term = B->getTerminatorStmt();
      }
      if (!(B->empty() && Term && isa<BreakStmt>(Term))) {
        Preprocessor &PP = S.getPreprocessor();
        StringRef AnnotationSpelling = getFallthroughAttrSpelling(PP, L);
        SmallString<64> TextToInsert(AnnotationSpelling);
        TextToInsert += "; ";
        S.Diag(L, diag::note_insert_fallthrough_fixit)
            << AnnotationSpelling
            << FixItHint::CreateInsertion(L, TextToInsert);
      }
      S.Diag(L, diag::note_insert_break_fixit)
          << FixItHint::CreateInsertion(L, "break; ");
    }
  }

  for (const auto *F : FM.getFallthroughStmts())
    S.Diag(F->getBeginLoc(), diag::err_fallthrough_attr_invalid_placement);
}

static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM,
                     const Stmt *S) {
  assert(S);

  do {
    switch (S->getStmtClass()) {
    case Stmt::ForStmtClass:
    case Stmt::WhileStmtClass:
    case Stmt::CXXForRangeStmtClass:
    case Stmt::ObjCForCollectionStmtClass:
      return true;
    case Stmt::DoStmtClass: {
      Expr::EvalResult Result;
      if (!cast<DoStmt>(S)->getCond()->EvaluateAsInt(Result, Ctx))
        return true;
      return Result.Val.getInt().getBoolValue();
    }
    default:
      break;
    }
  } while ((S = PM.getParent(S)));

  return false;
}

static void diagnoseRepeatedUseOfWeak(Sema &S,
                                      const sema::FunctionScopeInfo *CurFn,
                                      const Decl *D,
                                      const ParentMap &PM) {
  typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy;
  typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap;
  typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector;
  typedef std::pair<const Stmt *, WeakObjectUseMap::const_iterator>
  StmtUsesPair;

  ASTContext &Ctx = S.getASTContext();

  const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses();

  // Extract all weak objects that are referenced more than once.
  SmallVector<StmtUsesPair, 8> UsesByStmt;
  for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end();
       I != E; ++I) {
    const WeakUseVector &Uses = I->second;

    // Find the first read of the weak object.
    WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
    for ( ; UI != UE; ++UI) {
      if (UI->isUnsafe())
        break;
    }

    // If there were only writes to this object, don't warn.
    if (UI == UE)
      continue;

    // If there was only one read, followed by any number of writes, and the
    // read is not within a loop, don't warn. Additionally, don't warn in a
    // loop if the base object is a local variable -- local variables are often
    // changed in loops.
    if (UI == Uses.begin()) {
      WeakUseVector::const_iterator UI2 = UI;
      for (++UI2; UI2 != UE; ++UI2)
        if (UI2->isUnsafe())
          break;

      if (UI2 == UE) {
        if (!isInLoop(Ctx, PM, UI->getUseExpr()))
          continue;

        const WeakObjectProfileTy &Profile = I->first;
        if (!Profile.isExactProfile())
          continue;

        const NamedDecl *Base = Profile.getBase();
        if (!Base)
          Base = Profile.getProperty();
        assert(Base && "A profile always has a base or property.");

        if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base))
          if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base))
            continue;
      }
    }

    UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I));
  }

  if (UsesByStmt.empty())
    return;

  // Sort by first use so that we emit the warnings in a deterministic order.
  SourceManager &SM = S.getSourceManager();
  llvm::sort(UsesByStmt,
             [&SM](const StmtUsesPair &LHS, const StmtUsesPair &RHS) {
               return SM.isBeforeInTranslationUnit(LHS.first->getBeginLoc(),
                                                   RHS.first->getBeginLoc());
             });

  // Classify the current code body for better warning text.
  // This enum should stay in sync with the cases in
  // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
  // FIXME: Should we use a common classification enum and the same set of
  // possibilities all throughout Sema?
  enum {
    Function,
    Method,
    Block,
    Lambda
  } FunctionKind;

  if (isa<sema::BlockScopeInfo>(CurFn))
    FunctionKind = Block;
  else if (isa<sema::LambdaScopeInfo>(CurFn))
    FunctionKind = Lambda;
  else if (isa<ObjCMethodDecl>(D))
    FunctionKind = Method;
  else
    FunctionKind = Function;

  // Iterate through the sorted problems and emit warnings for each.
  for (const auto &P : UsesByStmt) {
    const Stmt *FirstRead = P.first;
    const WeakObjectProfileTy &Key = P.second->first;
    const WeakUseVector &Uses = P.second->second;

    // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy
    // may not contain enough information to determine that these are different
    // properties. We can only be 100% sure of a repeated use in certain cases,
    // and we adjust the diagnostic kind accordingly so that the less certain
    // case can be turned off if it is too noisy.
    unsigned DiagKind;
    if (Key.isExactProfile())
      DiagKind = diag::warn_arc_repeated_use_of_weak;
    else
      DiagKind = diag::warn_arc_possible_repeated_use_of_weak;

    // Classify the weak object being accessed for better warning text.
    // This enum should stay in sync with the cases in
    // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
    enum {
      Variable,
      Property,
      ImplicitProperty,
      Ivar
    } ObjectKind;

    const NamedDecl *KeyProp = Key.getProperty();
    if (isa<VarDecl>(KeyProp))
      ObjectKind = Variable;
    else if (isa<ObjCPropertyDecl>(KeyProp))
      ObjectKind = Property;
    else if (isa<ObjCMethodDecl>(KeyProp))
      ObjectKind = ImplicitProperty;
    else if (isa<ObjCIvarDecl>(KeyProp))
      ObjectKind = Ivar;
    else
      llvm_unreachable("Unexpected weak object kind!");

    // Do not warn about IBOutlet weak property receivers being set to null
    // since they are typically only used from the main thread.
    if (const ObjCPropertyDecl *Prop = dyn_cast<ObjCPropertyDecl>(KeyProp))
      if (Prop->hasAttr<IBOutletAttr>())
        continue;

    // Show the first time the object was read.
    S.Diag(FirstRead->getBeginLoc(), DiagKind)
        << int(ObjectKind) << KeyProp << int(FunctionKind)
        << FirstRead->getSourceRange();

    // Print all the other accesses as notes.
    for (const auto &Use : Uses) {
      if (Use.getUseExpr() == FirstRead)
        continue;
      S.Diag(Use.getUseExpr()->getBeginLoc(),
             diag::note_arc_weak_also_accessed_here)
          << Use.getUseExpr()->getSourceRange();
    }
  }
}

namespace {
class UninitValsDiagReporter : public UninitVariablesHandler {
  Sema &S;
  typedef SmallVector<UninitUse, 2> UsesVec;
  typedef llvm::PointerIntPair<UsesVec *, 1, bool> MappedType;
  // Prefer using MapVector to DenseMap, so that iteration order will be
  // the same as insertion order. This is needed to obtain a deterministic
  // order of diagnostics when calling flushDiagnostics().
  typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap;
  UsesMap uses;
  UsesMap constRefUses;

public:
  UninitValsDiagReporter(Sema &S) : S(S) {}
  ~UninitValsDiagReporter() override { flushDiagnostics(); }

  MappedType &getUses(UsesMap &um, const VarDecl *vd) {
    MappedType &V = um[vd];
    if (!V.getPointer())
      V.setPointer(new UsesVec());
    return V;
  }

  void handleUseOfUninitVariable(const VarDecl *vd,
                                 const UninitUse &use) override {
    getUses(uses, vd).getPointer()->push_back(use);
  }

  void handleConstRefUseOfUninitVariable(const VarDecl *vd,
                                         const UninitUse &use) override {
    getUses(constRefUses, vd).getPointer()->push_back(use);
  }

  void handleSelfInit(const VarDecl *vd) override {
    getUses(uses, vd).setInt(true);
    getUses(constRefUses, vd).setInt(true);
  }

  void flushDiagnostics() {
    for (const auto &P : uses) {
      const VarDecl *vd = P.first;
      const MappedType &V = P.second;

      UsesVec *vec = V.getPointer();
      bool hasSelfInit = V.getInt();

      // Specially handle the case where we have uses of an uninitialized
      // variable, but the root cause is an idiomatic self-init.  We want
      // to report the diagnostic at the self-init since that is the root cause.
      if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
        DiagnoseUninitializedUse(S, vd,
                                 UninitUse(vd->getInit()->IgnoreParenCasts(),
                                           /* isAlwaysUninit */ true),
                                 /* alwaysReportSelfInit */ true);
      else {
        // Sort the uses by their SourceLocations.  While not strictly
        // guaranteed to produce them in line/column order, this will provide
        // a stable ordering.
        llvm::sort(vec->begin(), vec->end(),
                   [](const UninitUse &a, const UninitUse &b) {
          // Prefer a more confident report over a less confident one.
          if (a.getKind() != b.getKind())
            return a.getKind() > b.getKind();
          return a.getUser()->getBeginLoc() < b.getUser()->getBeginLoc();
        });

        for (const auto &U : *vec) {
          // If we have self-init, downgrade all uses to 'may be uninitialized'.
          UninitUse Use = hasSelfInit ? UninitUse(U.getUser(), false) : U;

          if (DiagnoseUninitializedUse(S, vd, Use))
            // Skip further diagnostics for this variable. We try to warn only
            // on the first point at which a variable is used uninitialized.
            break;
        }
      }

      // Release the uses vector.
      delete vec;
    }

    uses.clear();

    // Flush all const reference uses diags.
    for (const auto &P : constRefUses) {
      const VarDecl *vd = P.first;
      const MappedType &V = P.second;

      UsesVec *vec = V.getPointer();
      bool hasSelfInit = V.getInt();

      if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
        DiagnoseUninitializedUse(S, vd,
                                 UninitUse(vd->getInit()->IgnoreParenCasts(),
                                           /* isAlwaysUninit */ true),
                                 /* alwaysReportSelfInit */ true);
      else {
        for (const auto &U : *vec) {
          if (DiagnoseUninitializedConstRefUse(S, vd, U))
            break;
        }
      }

      // Release the uses vector.
      delete vec;
    }

    constRefUses.clear();
  }

private:
  static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
    return std::any_of(vec->begin(), vec->end(), [](const UninitUse &U) {
      return U.getKind() == UninitUse::Always ||
             U.getKind() == UninitUse::AfterCall ||
             U.getKind() == UninitUse::AfterDecl;
    });
  }
};
} // anonymous namespace

namespace clang {
namespace {
typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
typedef std::list<DelayedDiag> DiagList;

struct SortDiagBySourceLocation {
  SourceManager &SM;
  SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}

  bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
    // Although this call will be slow, this is only called when outputting
    // multiple warnings.
    return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
  }
};
} // anonymous namespace
} // namespace clang

//===----------------------------------------------------------------------===//
// -Wthread-safety
//===----------------------------------------------------------------------===//
namespace clang {
namespace threadSafety {
namespace {
class ThreadSafetyReporter : public clang::threadSafety::ThreadSafetyHandler {
  Sema &S;
  DiagList Warnings;
  SourceLocation FunLocation, FunEndLocation;

  const FunctionDecl *CurrentFunction;
  bool Verbose;

  OptionalNotes getNotes() const {
    if (Verbose && CurrentFunction) {
      PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
                                S.PDiag(diag::note_thread_warning_in_fun)
                                    << CurrentFunction);
      return OptionalNotes(1, FNote);
    }
    return OptionalNotes();
  }

  OptionalNotes getNotes(const PartialDiagnosticAt &Note) const {
    OptionalNotes ONS(1, Note);
    if (Verbose && CurrentFunction) {
      PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
                                S.PDiag(diag::note_thread_warning_in_fun)
                                    << CurrentFunction);
      ONS.push_back(std::move(FNote));
    }
    return ONS;
  }

  OptionalNotes getNotes(const PartialDiagnosticAt &Note1,
                         const PartialDiagnosticAt &Note2) const {
    OptionalNotes ONS;
    ONS.push_back(Note1);
    ONS.push_back(Note2);
    if (Verbose && CurrentFunction) {
      PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
                                S.PDiag(diag::note_thread_warning_in_fun)
                                    << CurrentFunction);
      ONS.push_back(std::move(FNote));
    }
    return ONS;
  }

  OptionalNotes makeLockedHereNote(SourceLocation LocLocked, StringRef Kind) {
    return LocLocked.isValid()
               ? getNotes(PartialDiagnosticAt(
                     LocLocked, S.PDiag(diag::note_locked_here) << Kind))
               : getNotes();
  }

  OptionalNotes makeUnlockedHereNote(SourceLocation LocUnlocked,
                                     StringRef Kind) {
    return LocUnlocked.isValid()
               ? getNotes(PartialDiagnosticAt(
                     LocUnlocked, S.PDiag(diag::note_unlocked_here) << Kind))
               : getNotes();
  }

 public:
  ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
    : S(S), FunLocation(FL), FunEndLocation(FEL),
      CurrentFunction(nullptr), Verbose(false) {}

  void setVerbose(bool b) { Verbose = b; }

  /// Emit all buffered diagnostics in order of sourcelocation.
  /// We need to output diagnostics produced while iterating through
  /// the lockset in deterministic order, so this function orders diagnostics
  /// and outputs them.
  void emitDiagnostics() {
    Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
    for (const auto &Diag : Warnings) {
      S.Diag(Diag.first.first, Diag.first.second);
      for (const auto &Note : Diag.second)
        S.Diag(Note.first, Note.second);
    }
  }

  void handleInvalidLockExp(StringRef Kind, SourceLocation Loc) override {
    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_cannot_resolve_lock)
                                         << Loc);
    Warnings.emplace_back(std::move(Warning), getNotes());
  }

  void handleUnmatchedUnlock(StringRef Kind, Name LockName, SourceLocation Loc,
                             SourceLocation LocPreviousUnlock) override {
    if (Loc.isInvalid())
      Loc = FunLocation;
    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_unlock_but_no_lock)
                                         << Kind << LockName);
    Warnings.emplace_back(std::move(Warning),
                          makeUnlockedHereNote(LocPreviousUnlock, Kind));
  }

  void handleIncorrectUnlockKind(StringRef Kind, Name LockName,
                                 LockKind Expected, LockKind Received,
                                 SourceLocation LocLocked,
                                 SourceLocation LocUnlock) override {
    if (LocUnlock.isInvalid())
      LocUnlock = FunLocation;
    PartialDiagnosticAt Warning(
        LocUnlock, S.PDiag(diag::warn_unlock_kind_mismatch)
                       << Kind << LockName << Received << Expected);
    Warnings.emplace_back(std::move(Warning),
                          makeLockedHereNote(LocLocked, Kind));
  }

  void handleDoubleLock(StringRef Kind, Name LockName, SourceLocation LocLocked,
                        SourceLocation LocDoubleLock) override {
    if (LocDoubleLock.isInvalid())
      LocDoubleLock = FunLocation;
    PartialDiagnosticAt Warning(LocDoubleLock, S.PDiag(diag::warn_double_lock)
                                                   << Kind << LockName);
    Warnings.emplace_back(std::move(Warning),
                          makeLockedHereNote(LocLocked, Kind));
  }

  void handleMutexHeldEndOfScope(StringRef Kind, Name LockName,
                                 SourceLocation LocLocked,
                                 SourceLocation LocEndOfScope,
                                 LockErrorKind LEK) override {
    unsigned DiagID = 0;
    switch (LEK) {
      case LEK_LockedSomePredecessors:
        DiagID = diag::warn_lock_some_predecessors;
        break;
      case LEK_LockedSomeLoopIterations:
        DiagID = diag::warn_expecting_lock_held_on_loop;
        break;
      case LEK_LockedAtEndOfFunction:
        DiagID = diag::warn_no_unlock;
        break;
      case LEK_NotLockedAtEndOfFunction:
        DiagID = diag::warn_expecting_locked;
        break;
    }
    if (LocEndOfScope.isInvalid())
      LocEndOfScope = FunEndLocation;

    PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << Kind
                                                               << LockName);
    Warnings.emplace_back(std::move(Warning),
                          makeLockedHereNote(LocLocked, Kind));
  }

  void handleExclusiveAndShared(StringRef Kind, Name LockName,
                                SourceLocation Loc1,
                                SourceLocation Loc2) override {
    PartialDiagnosticAt Warning(Loc1,
                                S.PDiag(diag::warn_lock_exclusive_and_shared)
                                    << Kind << LockName);
    PartialDiagnosticAt Note(Loc2, S.PDiag(diag::note_lock_exclusive_and_shared)
                                       << Kind << LockName);
    Warnings.emplace_back(std::move(Warning), getNotes(Note));
  }

  void handleNoMutexHeld(StringRef Kind, const NamedDecl *D,
                         ProtectedOperationKind POK, AccessKind AK,
                         SourceLocation Loc) override {
    assert((POK == POK_VarAccess || POK == POK_VarDereference) &&
           "Only works for variables");
    unsigned DiagID = POK == POK_VarAccess?
                        diag::warn_variable_requires_any_lock:
                        diag::warn_var_deref_requires_any_lock;
    PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
      << D << getLockKindFromAccessKind(AK));
    Warnings.emplace_back(std::move(Warning), getNotes());
  }

  void handleMutexNotHeld(StringRef Kind, const NamedDecl *D,
                          ProtectedOperationKind POK, Name LockName,
                          LockKind LK, SourceLocation Loc,
                          Name *PossibleMatch) override {
    unsigned DiagID = 0;
    if (PossibleMatch) {
      switch (POK) {
        case POK_VarAccess:
          DiagID = diag::warn_variable_requires_lock_precise;
          break;
        case POK_VarDereference:
          DiagID = diag::warn_var_deref_requires_lock_precise;
          break;
        case POK_FunctionCall:
          DiagID = diag::warn_fun_requires_lock_precise;
          break;
        case POK_PassByRef:
          DiagID = diag::warn_guarded_pass_by_reference;
          break;
        case POK_PtPassByRef:
          DiagID = diag::warn_pt_guarded_pass_by_reference;
          break;
      }
      PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
                                                       << D
                                                       << LockName << LK);
      PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match)
                                        << *PossibleMatch);
      if (Verbose && POK == POK_VarAccess) {
        PartialDiagnosticAt VNote(D->getLocation(),
                                  S.PDiag(diag::note_guarded_by_declared_here)
                                      << D->getDeclName());
        Warnings.emplace_back(std::move(Warning), getNotes(Note, VNote));
      } else
        Warnings.emplace_back(std::move(Warning), getNotes(Note));
    } else {
      switch (POK) {
        case POK_VarAccess:
          DiagID = diag::warn_variable_requires_lock;
          break;
        case POK_VarDereference:
          DiagID = diag::warn_var_deref_requires_lock;
          break;
        case POK_FunctionCall:
          DiagID = diag::warn_fun_requires_lock;
          break;
        case POK_PassByRef:
          DiagID = diag::warn_guarded_pass_by_reference;
          break;
        case POK_PtPassByRef:
          DiagID = diag::warn_pt_guarded_pass_by_reference;
          break;
      }
      PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
                                                       << D
                                                       << LockName << LK);
      if (Verbose && POK == POK_VarAccess) {
        PartialDiagnosticAt Note(D->getLocation(),
                                 S.PDiag(diag::note_guarded_by_declared_here));
        Warnings.emplace_back(std::move(Warning), getNotes(Note));
      } else
        Warnings.emplace_back(std::move(Warning), getNotes());
    }
  }

  void handleNegativeNotHeld(StringRef Kind, Name LockName, Name Neg,
                             SourceLocation Loc) override {
    PartialDiagnosticAt Warning(Loc,
        S.PDiag(diag::warn_acquire_requires_negative_cap)
        << Kind << LockName << Neg);
    Warnings.emplace_back(std::move(Warning), getNotes());
  }

  void handleNegativeNotHeld(const NamedDecl *D, Name LockName,
                             SourceLocation Loc) override {
    PartialDiagnosticAt Warning(
        Loc, S.PDiag(diag::warn_fun_requires_negative_cap) << D << LockName);
    Warnings.emplace_back(std::move(Warning), getNotes());
  }

  void handleFunExcludesLock(StringRef Kind, Name FunName, Name LockName,
                             SourceLocation Loc) override {
    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_fun_excludes_mutex)
                                         << Kind << FunName << LockName);
    Warnings.emplace_back(std::move(Warning), getNotes());
  }

  void handleLockAcquiredBefore(StringRef Kind, Name L1Name, Name L2Name,
                                SourceLocation Loc) override {
    PartialDiagnosticAt Warning(Loc,
      S.PDiag(diag::warn_acquired_before) << Kind << L1Name << L2Name);
    Warnings.emplace_back(std::move(Warning), getNotes());
  }

  void handleBeforeAfterCycle(Name L1Name, SourceLocation Loc) override {
    PartialDiagnosticAt Warning(Loc,
      S.PDiag(diag::warn_acquired_before_after_cycle) << L1Name);
    Warnings.emplace_back(std::move(Warning), getNotes());
  }

  void enterFunction(const FunctionDecl* FD) override {
    CurrentFunction = FD;
  }

  void leaveFunction(const FunctionDecl* FD) override {
    CurrentFunction = nullptr;
  }
};
} // anonymous namespace
} // namespace threadSafety
} // namespace clang

//===----------------------------------------------------------------------===//
// -Wconsumed
//===----------------------------------------------------------------------===//

namespace clang {
namespace consumed {
namespace {
class ConsumedWarningsHandler : public ConsumedWarningsHandlerBase {

  Sema &S;
  DiagList Warnings;

public:

  ConsumedWarningsHandler(Sema &S) : S(S) {}

  void emitDiagnostics() override {
    Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
    for (const auto &Diag : Warnings) {
      S.Diag(Diag.first.first, Diag.first.second);
      for (const auto &Note : Diag.second)
        S.Diag(Note.first, Note.second);
    }
  }

  void warnLoopStateMismatch(SourceLocation Loc,
                             StringRef VariableName) override {
    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_loop_state_mismatch) <<
      VariableName);

    Warnings.emplace_back(std::move(Warning), OptionalNotes());
  }

  void warnParamReturnTypestateMismatch(SourceLocation Loc,
                                        StringRef VariableName,
                                        StringRef ExpectedState,
                                        StringRef ObservedState) override {

    PartialDiagnosticAt Warning(Loc, S.PDiag(
      diag::warn_param_return_typestate_mismatch) << VariableName <<
        ExpectedState << ObservedState);

    Warnings.emplace_back(std::move(Warning), OptionalNotes());
  }

  void warnParamTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
                                  StringRef ObservedState) override {

    PartialDiagnosticAt Warning(Loc, S.PDiag(
      diag::warn_param_typestate_mismatch) << ExpectedState << ObservedState);

    Warnings.emplace_back(std::move(Warning), OptionalNotes());
  }

  void warnReturnTypestateForUnconsumableType(SourceLocation Loc,
                                              StringRef TypeName) override {
    PartialDiagnosticAt Warning(Loc, S.PDiag(
      diag::warn_return_typestate_for_unconsumable_type) << TypeName);

    Warnings.emplace_back(std::move(Warning), OptionalNotes());
  }

  void warnReturnTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
                                   StringRef ObservedState) override {

    PartialDiagnosticAt Warning(Loc, S.PDiag(
      diag::warn_return_typestate_mismatch) << ExpectedState << ObservedState);

    Warnings.emplace_back(std::move(Warning), OptionalNotes());
  }

  void warnUseOfTempInInvalidState(StringRef MethodName, StringRef State,
                                   SourceLocation Loc) override {

    PartialDiagnosticAt Warning(Loc, S.PDiag(
      diag::warn_use_of_temp_in_invalid_state) << MethodName << State);

    Warnings.emplace_back(std::move(Warning), OptionalNotes());
  }

  void warnUseInInvalidState(StringRef MethodName, StringRef VariableName,
                             StringRef State, SourceLocation Loc) override {

    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_in_invalid_state) <<
                                MethodName << VariableName << State);

    Warnings.emplace_back(std::move(Warning), OptionalNotes());
  }
};
} // anonymous namespace
} // namespace consumed
} // namespace clang

//===----------------------------------------------------------------------===//
// AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
//  warnings on a function, method, or block.
//===----------------------------------------------------------------------===//

clang::sema::AnalysisBasedWarnings::Policy::Policy() {
  enableCheckFallThrough = 1;
  enableCheckUnreachable = 0;
  enableThreadSafetyAnalysis = 0;
  enableConsumedAnalysis = 0;
}

static unsigned isEnabled(DiagnosticsEngine &D, unsigned diag) {
  return (unsigned)!D.isIgnored(diag, SourceLocation());
}

clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
  : S(s),
    NumFunctionsAnalyzed(0),
    NumFunctionsWithBadCFGs(0),
    NumCFGBlocks(0),
    MaxCFGBlocksPerFunction(0),
    NumUninitAnalysisFunctions(0),
    NumUninitAnalysisVariables(0),
    MaxUninitAnalysisVariablesPerFunction(0),
    NumUninitAnalysisBlockVisits(0),
    MaxUninitAnalysisBlockVisitsPerFunction(0) {

  using namespace diag;
  DiagnosticsEngine &D = S.getDiagnostics();

  DefaultPolicy.enableCheckUnreachable =
    isEnabled(D, warn_unreachable) ||
    isEnabled(D, warn_unreachable_break) ||
    isEnabled(D, warn_unreachable_return) ||
    isEnabled(D, warn_unreachable_loop_increment);

  DefaultPolicy.enableThreadSafetyAnalysis =
    isEnabled(D, warn_double_lock);

  DefaultPolicy.enableConsumedAnalysis =
    isEnabled(D, warn_use_in_invalid_state);
}

static void flushDiagnostics(Sema &S, const sema::FunctionScopeInfo *fscope) {
  for (const auto &D : fscope->PossiblyUnreachableDiags)
    S.Diag(D.Loc, D.PD);
}

void clang::sema::
AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
                                     sema::FunctionScopeInfo *fscope,
                                     const Decl *D, QualType BlockType) {

  // We avoid doing analysis-based warnings when there are errors for
  // two reasons:
  // (1) The CFGs often can't be constructed (if the body is invalid), so
  //     don't bother trying.
  // (2) The code already has problems; running the analysis just takes more
  //     time.
  DiagnosticsEngine &Diags = S.getDiagnostics();

  // Do not do any analysis if we are going to just ignore them.
  if (Diags.getIgnoreAllWarnings() ||
      (Diags.getSuppressSystemWarnings() &&
       S.SourceMgr.isInSystemHeader(D->getLocation())))
    return;

  // For code in dependent contexts, we'll do this at instantiation time.
  if (cast<DeclContext>(D)->isDependentContext())
    return;

  if (Diags.hasUncompilableErrorOccurred()) {
    // Flush out any possibly unreachable diagnostics.
    flushDiagnostics(S, fscope);
    return;
  }

  const Stmt *Body = D->getBody();
  assert(Body);

  // Construct the analysis context with the specified CFG build options.
  AnalysisDeclContext AC(/* AnalysisDeclContextManager */ nullptr, D);

  // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
  // explosion for destructors that can result and the compile time hit.
  AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
  AC.getCFGBuildOptions().AddEHEdges = false;
  AC.getCFGBuildOptions().AddInitializers = true;
  AC.getCFGBuildOptions().AddImplicitDtors = true;
  AC.getCFGBuildOptions().AddTemporaryDtors = true;
  AC.getCFGBuildOptions().AddCXXNewAllocator = false;
  AC.getCFGBuildOptions().AddCXXDefaultInitExprInCtors = true;

  // Force that certain expressions appear as CFGElements in the CFG.  This
  // is used to speed up various analyses.
  // FIXME: This isn't the right factoring.  This is here for initial
  // prototyping, but we need a way for analyses to say what expressions they
  // expect to always be CFGElements and then fill in the BuildOptions
  // appropriately.  This is essentially a layering violation.
  if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis ||
      P.enableConsumedAnalysis) {
    // Unreachable code analysis and thread safety require a linearized CFG.
    AC.getCFGBuildOptions().setAllAlwaysAdd();
  }
  else {
    AC.getCFGBuildOptions()
      .setAlwaysAdd(Stmt::BinaryOperatorClass)
      .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
      .setAlwaysAdd(Stmt::BlockExprClass)
      .setAlwaysAdd(Stmt::CStyleCastExprClass)
      .setAlwaysAdd(Stmt::DeclRefExprClass)
      .setAlwaysAdd(Stmt::ImplicitCastExprClass)
      .setAlwaysAdd(Stmt::UnaryOperatorClass)
      .setAlwaysAdd(Stmt::AttributedStmtClass);
  }

  // Install the logical handler.
  llvm::Optional<LogicalErrorHandler> LEH;
  if (LogicalErrorHandler::hasActiveDiagnostics(Diags, D->getBeginLoc())) {
    LEH.emplace(S);
    AC.getCFGBuildOptions().Observer = &*LEH;
  }

  // Emit delayed diagnostics.
  if (!fscope->PossiblyUnreachableDiags.empty()) {
    bool analyzed = false;

    // Register the expressions with the CFGBuilder.
    for (const auto &D : fscope->PossiblyUnreachableDiags) {
      for (const Stmt *S : D.Stmts)
        AC.registerForcedBlockExpression(S);
    }

    if (AC.getCFG()) {
      analyzed = true;
      for (const auto &D : fscope->PossiblyUnreachableDiags) {
        bool AllReachable = true;
        for (const Stmt *S : D.Stmts) {
          const CFGBlock *block = AC.getBlockForRegisteredExpression(S);
          CFGReverseBlockReachabilityAnalysis *cra =
              AC.getCFGReachablityAnalysis();
          // FIXME: We should be able to assert that block is non-null, but
          // the CFG analysis can skip potentially-evaluated expressions in
          // edge cases; see test/Sema/vla-2.c.
          if (block && cra) {
            // Can this block be reached from the entrance?
            if (!cra->isReachable(&AC.getCFG()->getEntry(), block)) {
              AllReachable = false;
              break;
            }
          }
          // If we cannot map to a basic block, assume the statement is
          // reachable.
        }

        if (AllReachable)
          S.Diag(D.Loc, D.PD);
      }
    }

    if (!analyzed)
      flushDiagnostics(S, fscope);
  }

  // Warning: check missing 'return'
  if (P.enableCheckFallThrough) {
    const CheckFallThroughDiagnostics &CD =
        (isa<BlockDecl>(D)
             ? CheckFallThroughDiagnostics::MakeForBlock()
             : (isa<CXXMethodDecl>(D) &&
                cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
                cast<CXXMethodDecl>(D)->getParent()->isLambda())
                   ? CheckFallThroughDiagnostics::MakeForLambda()
                   : (fscope->isCoroutine()
                          ? CheckFallThroughDiagnostics::MakeForCoroutine(D)
                          : CheckFallThroughDiagnostics::MakeForFunction(D)));
    CheckFallThroughForBody(S, D, Body, BlockType, CD, AC, fscope);
  }

  // Warning: check for unreachable code
  if (P.enableCheckUnreachable) {
    // Only check for unreachable code on non-template instantiations.
    // Different template instantiations can effectively change the control-flow
    // and it is very difficult to prove that a snippet of code in a template
    // is unreachable for all instantiations.
    bool isTemplateInstantiation = false;
    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
      isTemplateInstantiation = Function->isTemplateInstantiation();
    if (!isTemplateInstantiation)
      CheckUnreachable(S, AC);
  }

  // Check for thread safety violations
  if (P.enableThreadSafetyAnalysis) {
    SourceLocation FL = AC.getDecl()->getLocation();
    SourceLocation FEL = AC.getDecl()->getEndLoc();
    threadSafety::ThreadSafetyReporter Reporter(S, FL, FEL);
    if (!Diags.isIgnored(diag::warn_thread_safety_beta, D->getBeginLoc()))
      Reporter.setIssueBetaWarnings(true);
    if (!Diags.isIgnored(diag::warn_thread_safety_verbose, D->getBeginLoc()))
      Reporter.setVerbose(true);

    threadSafety::runThreadSafetyAnalysis(AC, Reporter,
                                          &S.ThreadSafetyDeclCache);
    Reporter.emitDiagnostics();
  }

  // Check for violations of consumed properties.
  if (P.enableConsumedAnalysis) {
    consumed::ConsumedWarningsHandler WarningHandler(S);
    consumed::ConsumedAnalyzer Analyzer(WarningHandler);
    Analyzer.run(AC);
  }

  if (!Diags.isIgnored(diag::warn_uninit_var, D->getBeginLoc()) ||
      !Diags.isIgnored(diag::warn_sometimes_uninit_var, D->getBeginLoc()) ||
      !Diags.isIgnored(diag::warn_maybe_uninit_var, D->getBeginLoc()) ||
      !Diags.isIgnored(diag::warn_uninit_const_reference, D->getBeginLoc())) {
    if (CFG *cfg = AC.getCFG()) {
      UninitValsDiagReporter reporter(S);
      UninitVariablesAnalysisStats stats;
      std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
      runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
                                        reporter, stats);

      if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
        ++NumUninitAnalysisFunctions;
        NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
        NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
        MaxUninitAnalysisVariablesPerFunction =
            std::max(MaxUninitAnalysisVariablesPerFunction,
                     stats.NumVariablesAnalyzed);
        MaxUninitAnalysisBlockVisitsPerFunction =
            std::max(MaxUninitAnalysisBlockVisitsPerFunction,
                     stats.NumBlockVisits);
      }
    }
  }

  bool FallThroughDiagFull =
      !Diags.isIgnored(diag::warn_unannotated_fallthrough, D->getBeginLoc());
  bool FallThroughDiagPerFunction = !Diags.isIgnored(
      diag::warn_unannotated_fallthrough_per_function, D->getBeginLoc());
  if (FallThroughDiagFull || FallThroughDiagPerFunction ||
      fscope->HasFallthroughStmt) {
    DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
  }

  if (S.getLangOpts().ObjCWeak &&
      !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, D->getBeginLoc()))
    diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap());


  // Check for infinite self-recursion in functions
  if (!Diags.isIgnored(diag::warn_infinite_recursive_function,
                       D->getBeginLoc())) {
    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
      checkRecursiveFunction(S, FD, Body, AC);
    }
  }

  // Check for throw out of non-throwing function.
  if (!Diags.isIgnored(diag::warn_throw_in_noexcept_func, D->getBeginLoc()))
    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
      if (S.getLangOpts().CPlusPlus && isNoexcept(FD))
        checkThrowInNonThrowingFunc(S, FD, AC);

  // If none of the previous checks caused a CFG build, trigger one here
  // for the logical error handler.
  if (LogicalErrorHandler::hasActiveDiagnostics(Diags, D->getBeginLoc())) {
    AC.getCFG();
  }

  // Collect statistics about the CFG if it was built.
  if (S.CollectStats && AC.isCFGBuilt()) {
    ++NumFunctionsAnalyzed;
    if (CFG *cfg = AC.getCFG()) {
      // If we successfully built a CFG for this context, record some more
      // detail information about it.
      NumCFGBlocks += cfg->getNumBlockIDs();
      MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
                                         cfg->getNumBlockIDs());
    } else {
      ++NumFunctionsWithBadCFGs;
    }
  }
}

void clang::sema::AnalysisBasedWarnings::PrintStats() const {
  llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";

  unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
  unsigned AvgCFGBlocksPerFunction =
      !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
  llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
               << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
               << "  " << NumCFGBlocks << " CFG blocks built.\n"
               << "  " << AvgCFGBlocksPerFunction
               << " average CFG blocks per function.\n"
               << "  " << MaxCFGBlocksPerFunction
               << " max CFG blocks per function.\n";

  unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
      : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
  unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
      : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
  llvm::errs() << NumUninitAnalysisFunctions
               << " functions analyzed for uninitialiazed variables\n"
               << "  " << NumUninitAnalysisVariables << " variables analyzed.\n"
               << "  " << AvgUninitVariablesPerFunction
               << " average variables per function.\n"
               << "  " << MaxUninitAnalysisVariablesPerFunction
               << " max variables per function.\n"
               << "  " << NumUninitAnalysisBlockVisits << " block visits.\n"
               << "  " << AvgUninitBlockVisitsPerFunction
               << " average block visits per function.\n"
               << "  " << MaxUninitAnalysisBlockVisitsPerFunction
               << " max block visits per function.\n";
}