Cuda.cpp 34.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
//===--- Cuda.cpp - Cuda Tool and ToolChain Implementations -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "Cuda.h"
#include "CommonArgs.h"
#include "InputInfo.h"
#include "clang/Basic/Cuda.h"
#include "clang/Config/config.h"
#include "clang/Driver/Compilation.h"
#include "clang/Driver/Distro.h"
#include "clang/Driver/Driver.h"
#include "clang/Driver/DriverDiagnostic.h"
#include "clang/Driver/Options.h"
#include "llvm/Option/ArgList.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/TargetParser.h"
#include "llvm/Support/VirtualFileSystem.h"
#include <system_error>

using namespace clang::driver;
using namespace clang::driver::toolchains;
using namespace clang::driver::tools;
using namespace clang;
using namespace llvm::opt;

// Parses the contents of version.txt in an CUDA installation.  It should
// contain one line of the from e.g. "CUDA Version 7.5.2".
void CudaInstallationDetector::ParseCudaVersionFile(llvm::StringRef V) {
  Version = CudaVersion::UNKNOWN;
  if (!V.startswith("CUDA Version "))
    return;
  V = V.substr(strlen("CUDA Version "));
  SmallVector<StringRef,4> VersionParts;
  V.split(VersionParts, '.');
  if (VersionParts.size() < 2)
    return;
  DetectedVersion = join_items(".", VersionParts[0], VersionParts[1]);
  Version = CudaStringToVersion(DetectedVersion);
  if (Version != CudaVersion::UNKNOWN) {
    // TODO(tra): remove the warning once we have all features of 10.2 and 11.0
    // implemented.
    DetectedVersionIsNotSupported = Version > CudaVersion::LATEST_SUPPORTED;
    return;
  }

  Version = CudaVersion::LATEST_SUPPORTED;
  DetectedVersionIsNotSupported = true;
}

void CudaInstallationDetector::WarnIfUnsupportedVersion() {
  if (DetectedVersionIsNotSupported)
    D.Diag(diag::warn_drv_unknown_cuda_version)
        << DetectedVersion
        << CudaVersionToString(CudaVersion::LATEST_SUPPORTED);
}

CudaInstallationDetector::CudaInstallationDetector(
    const Driver &D, const llvm::Triple &HostTriple,
    const llvm::opt::ArgList &Args)
    : D(D) {
  struct Candidate {
    std::string Path;
    bool StrictChecking;

    Candidate(std::string Path, bool StrictChecking = false)
        : Path(Path), StrictChecking(StrictChecking) {}
  };
  SmallVector<Candidate, 4> Candidates;

  // In decreasing order so we prefer newer versions to older versions.
  std::initializer_list<const char *> Versions = {"8.0", "7.5", "7.0"};
  auto &FS = D.getVFS();

  if (Args.hasArg(clang::driver::options::OPT_cuda_path_EQ)) {
    Candidates.emplace_back(
        Args.getLastArgValue(clang::driver::options::OPT_cuda_path_EQ).str());
  } else if (HostTriple.isOSWindows()) {
    for (const char *Ver : Versions)
      Candidates.emplace_back(
          D.SysRoot + "/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v" +
          Ver);
  } else {
    if (!Args.hasArg(clang::driver::options::OPT_cuda_path_ignore_env)) {
      // Try to find ptxas binary. If the executable is located in a directory
      // called 'bin/', its parent directory might be a good guess for a valid
      // CUDA installation.
      // However, some distributions might installs 'ptxas' to /usr/bin. In that
      // case the candidate would be '/usr' which passes the following checks
      // because '/usr/include' exists as well. To avoid this case, we always
      // check for the directory potentially containing files for libdevice,
      // even if the user passes -nocudalib.
      if (llvm::ErrorOr<std::string> ptxas =
              llvm::sys::findProgramByName("ptxas")) {
        SmallString<256> ptxasAbsolutePath;
        llvm::sys::fs::real_path(*ptxas, ptxasAbsolutePath);

        StringRef ptxasDir = llvm::sys::path::parent_path(ptxasAbsolutePath);
        if (llvm::sys::path::filename(ptxasDir) == "bin")
          Candidates.emplace_back(
              std::string(llvm::sys::path::parent_path(ptxasDir)),
              /*StrictChecking=*/true);
      }
    }

    Candidates.emplace_back(D.SysRoot + "/usr/local/cuda");
    for (const char *Ver : Versions)
      Candidates.emplace_back(D.SysRoot + "/usr/local/cuda-" + Ver);

    Distro Dist(FS, llvm::Triple(llvm::sys::getProcessTriple()));
    if (Dist.IsDebian() || Dist.IsUbuntu())
      // Special case for Debian to have nvidia-cuda-toolkit work
      // out of the box. More info on http://bugs.debian.org/882505
      Candidates.emplace_back(D.SysRoot + "/usr/lib/cuda");
  }

  bool NoCudaLib = Args.hasArg(options::OPT_nogpulib);

  for (const auto &Candidate : Candidates) {
    InstallPath = Candidate.Path;
    if (InstallPath.empty() || !FS.exists(InstallPath))
      continue;

    BinPath = InstallPath + "/bin";
    IncludePath = InstallPath + "/include";
    LibDevicePath = InstallPath + "/nvvm/libdevice";

    if (!(FS.exists(IncludePath) && FS.exists(BinPath)))
      continue;
    bool CheckLibDevice = (!NoCudaLib || Candidate.StrictChecking);
    if (CheckLibDevice && !FS.exists(LibDevicePath))
      continue;

    // On Linux, we have both lib and lib64 directories, and we need to choose
    // based on our triple.  On MacOS, we have only a lib directory.
    //
    // It's sufficient for our purposes to be flexible: If both lib and lib64
    // exist, we choose whichever one matches our triple.  Otherwise, if only
    // lib exists, we use it.
    if (HostTriple.isArch64Bit() && FS.exists(InstallPath + "/lib64"))
      LibPath = InstallPath + "/lib64";
    else if (FS.exists(InstallPath + "/lib"))
      LibPath = InstallPath + "/lib";
    else
      continue;

    llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> VersionFile =
        FS.getBufferForFile(InstallPath + "/version.txt");
    if (!VersionFile) {
      // CUDA 7.0 doesn't have a version.txt, so guess that's our version if
      // version.txt isn't present.
      Version = CudaVersion::CUDA_70;
    } else {
      ParseCudaVersionFile((*VersionFile)->getBuffer());
    }

    if (Version >= CudaVersion::CUDA_90) {
      // CUDA-9+ uses single libdevice file for all GPU variants.
      std::string FilePath = LibDevicePath + "/libdevice.10.bc";
      if (FS.exists(FilePath)) {
        for (int Arch = (int)CudaArch::SM_30, E = (int)CudaArch::LAST; Arch < E;
             ++Arch) {
          CudaArch GpuArch = static_cast<CudaArch>(Arch);
          if (!IsNVIDIAGpuArch(GpuArch))
            continue;
          std::string GpuArchName(CudaArchToString(GpuArch));
          LibDeviceMap[GpuArchName] = FilePath;
        }
      }
    } else {
      std::error_code EC;
      for (llvm::vfs::directory_iterator LI = FS.dir_begin(LibDevicePath, EC),
                                         LE;
           !EC && LI != LE; LI = LI.increment(EC)) {
        StringRef FilePath = LI->path();
        StringRef FileName = llvm::sys::path::filename(FilePath);
        // Process all bitcode filenames that look like
        // libdevice.compute_XX.YY.bc
        const StringRef LibDeviceName = "libdevice.";
        if (!(FileName.startswith(LibDeviceName) && FileName.endswith(".bc")))
          continue;
        StringRef GpuArch = FileName.slice(
            LibDeviceName.size(), FileName.find('.', LibDeviceName.size()));
        LibDeviceMap[GpuArch] = FilePath.str();
        // Insert map entries for specific devices with this compute
        // capability. NVCC's choice of the libdevice library version is
        // rather peculiar and depends on the CUDA version.
        if (GpuArch == "compute_20") {
          LibDeviceMap["sm_20"] = std::string(FilePath);
          LibDeviceMap["sm_21"] = std::string(FilePath);
          LibDeviceMap["sm_32"] = std::string(FilePath);
        } else if (GpuArch == "compute_30") {
          LibDeviceMap["sm_30"] = std::string(FilePath);
          if (Version < CudaVersion::CUDA_80) {
            LibDeviceMap["sm_50"] = std::string(FilePath);
            LibDeviceMap["sm_52"] = std::string(FilePath);
            LibDeviceMap["sm_53"] = std::string(FilePath);
          }
          LibDeviceMap["sm_60"] = std::string(FilePath);
          LibDeviceMap["sm_61"] = std::string(FilePath);
          LibDeviceMap["sm_62"] = std::string(FilePath);
        } else if (GpuArch == "compute_35") {
          LibDeviceMap["sm_35"] = std::string(FilePath);
          LibDeviceMap["sm_37"] = std::string(FilePath);
        } else if (GpuArch == "compute_50") {
          if (Version >= CudaVersion::CUDA_80) {
            LibDeviceMap["sm_50"] = std::string(FilePath);
            LibDeviceMap["sm_52"] = std::string(FilePath);
            LibDeviceMap["sm_53"] = std::string(FilePath);
          }
        }
      }
    }

    // Check that we have found at least one libdevice that we can link in if
    // -nocudalib hasn't been specified.
    if (LibDeviceMap.empty() && !NoCudaLib)
      continue;

    IsValid = true;
    break;
  }
}

void CudaInstallationDetector::AddCudaIncludeArgs(
    const ArgList &DriverArgs, ArgStringList &CC1Args) const {
  if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) {
    // Add cuda_wrappers/* to our system include path.  This lets us wrap
    // standard library headers.
    SmallString<128> P(D.ResourceDir);
    llvm::sys::path::append(P, "include");
    llvm::sys::path::append(P, "cuda_wrappers");
    CC1Args.push_back("-internal-isystem");
    CC1Args.push_back(DriverArgs.MakeArgString(P));
  }

  if (DriverArgs.hasArg(options::OPT_nogpuinc))
    return;

  if (!isValid()) {
    D.Diag(diag::err_drv_no_cuda_installation);
    return;
  }

  CC1Args.push_back("-internal-isystem");
  CC1Args.push_back(DriverArgs.MakeArgString(getIncludePath()));
  CC1Args.push_back("-include");
  CC1Args.push_back("__clang_cuda_runtime_wrapper.h");
}

void CudaInstallationDetector::CheckCudaVersionSupportsArch(
    CudaArch Arch) const {
  if (Arch == CudaArch::UNKNOWN || Version == CudaVersion::UNKNOWN ||
      ArchsWithBadVersion[(int)Arch])
    return;

  auto MinVersion = MinVersionForCudaArch(Arch);
  auto MaxVersion = MaxVersionForCudaArch(Arch);
  if (Version < MinVersion || Version > MaxVersion) {
    ArchsWithBadVersion[(int)Arch] = true;
    D.Diag(diag::err_drv_cuda_version_unsupported)
        << CudaArchToString(Arch) << CudaVersionToString(MinVersion)
        << CudaVersionToString(MaxVersion) << InstallPath
        << CudaVersionToString(Version);
  }
}

void CudaInstallationDetector::print(raw_ostream &OS) const {
  if (isValid())
    OS << "Found CUDA installation: " << InstallPath << ", version "
       << CudaVersionToString(Version) << "\n";
}

namespace {
/// Debug info level for the NVPTX devices. We may need to emit different debug
/// info level for the host and for the device itselfi. This type controls
/// emission of the debug info for the devices. It either prohibits disable info
/// emission completely, or emits debug directives only, or emits same debug
/// info as for the host.
enum DeviceDebugInfoLevel {
  DisableDebugInfo,        /// Do not emit debug info for the devices.
  DebugDirectivesOnly,     /// Emit only debug directives.
  EmitSameDebugInfoAsHost, /// Use the same debug info level just like for the
                           /// host.
};
} // anonymous namespace

/// Define debug info level for the NVPTX devices. If the debug info for both
/// the host and device are disabled (-g0/-ggdb0 or no debug options at all). If
/// only debug directives are requested for the both host and device
/// (-gline-directvies-only), or the debug info only for the device is disabled
/// (optimization is on and --cuda-noopt-device-debug was not specified), the
/// debug directves only must be emitted for the device. Otherwise, use the same
/// debug info level just like for the host (with the limitations of only
/// supported DWARF2 standard).
static DeviceDebugInfoLevel mustEmitDebugInfo(const ArgList &Args) {
  const Arg *A = Args.getLastArg(options::OPT_O_Group);
  bool IsDebugEnabled = !A || A->getOption().matches(options::OPT_O0) ||
                        Args.hasFlag(options::OPT_cuda_noopt_device_debug,
                                     options::OPT_no_cuda_noopt_device_debug,
                                     /*Default=*/false);
  if (const Arg *A = Args.getLastArg(options::OPT_g_Group)) {
    const Option &Opt = A->getOption();
    if (Opt.matches(options::OPT_gN_Group)) {
      if (Opt.matches(options::OPT_g0) || Opt.matches(options::OPT_ggdb0))
        return DisableDebugInfo;
      if (Opt.matches(options::OPT_gline_directives_only))
        return DebugDirectivesOnly;
    }
    return IsDebugEnabled ? EmitSameDebugInfoAsHost : DebugDirectivesOnly;
  }
  return DisableDebugInfo;
}

void NVPTX::Assembler::ConstructJob(Compilation &C, const JobAction &JA,
                                    const InputInfo &Output,
                                    const InputInfoList &Inputs,
                                    const ArgList &Args,
                                    const char *LinkingOutput) const {
  const auto &TC =
      static_cast<const toolchains::CudaToolChain &>(getToolChain());
  assert(TC.getTriple().isNVPTX() && "Wrong platform");

  StringRef GPUArchName;
  // If this is an OpenMP action we need to extract the device architecture
  // from the -march=arch option. This option may come from -Xopenmp-target
  // flag or the default value.
  if (JA.isDeviceOffloading(Action::OFK_OpenMP)) {
    GPUArchName = Args.getLastArgValue(options::OPT_march_EQ);
    assert(!GPUArchName.empty() && "Must have an architecture passed in.");
  } else
    GPUArchName = JA.getOffloadingArch();

  // Obtain architecture from the action.
  CudaArch gpu_arch = StringToCudaArch(GPUArchName);
  assert(gpu_arch != CudaArch::UNKNOWN &&
         "Device action expected to have an architecture.");

  // Check that our installation's ptxas supports gpu_arch.
  if (!Args.hasArg(options::OPT_no_cuda_version_check)) {
    TC.CudaInstallation.CheckCudaVersionSupportsArch(gpu_arch);
  }

  ArgStringList CmdArgs;
  CmdArgs.push_back(TC.getTriple().isArch64Bit() ? "-m64" : "-m32");
  DeviceDebugInfoLevel DIKind = mustEmitDebugInfo(Args);
  if (DIKind == EmitSameDebugInfoAsHost) {
    // ptxas does not accept -g option if optimization is enabled, so
    // we ignore the compiler's -O* options if we want debug info.
    CmdArgs.push_back("-g");
    CmdArgs.push_back("--dont-merge-basicblocks");
    CmdArgs.push_back("--return-at-end");
  } else if (Arg *A = Args.getLastArg(options::OPT_O_Group)) {
    // Map the -O we received to -O{0,1,2,3}.
    //
    // TODO: Perhaps we should map host -O2 to ptxas -O3. -O3 is ptxas's
    // default, so it may correspond more closely to the spirit of clang -O2.

    // -O3 seems like the least-bad option when -Osomething is specified to
    // clang but it isn't handled below.
    StringRef OOpt = "3";
    if (A->getOption().matches(options::OPT_O4) ||
        A->getOption().matches(options::OPT_Ofast))
      OOpt = "3";
    else if (A->getOption().matches(options::OPT_O0))
      OOpt = "0";
    else if (A->getOption().matches(options::OPT_O)) {
      // -Os, -Oz, and -O(anything else) map to -O2, for lack of better options.
      OOpt = llvm::StringSwitch<const char *>(A->getValue())
                 .Case("1", "1")
                 .Case("2", "2")
                 .Case("3", "3")
                 .Case("s", "2")
                 .Case("z", "2")
                 .Default("2");
    }
    CmdArgs.push_back(Args.MakeArgString(llvm::Twine("-O") + OOpt));
  } else {
    // If no -O was passed, pass -O0 to ptxas -- no opt flag should correspond
    // to no optimizations, but ptxas's default is -O3.
    CmdArgs.push_back("-O0");
  }
  if (DIKind == DebugDirectivesOnly)
    CmdArgs.push_back("-lineinfo");

  // Pass -v to ptxas if it was passed to the driver.
  if (Args.hasArg(options::OPT_v))
    CmdArgs.push_back("-v");

  CmdArgs.push_back("--gpu-name");
  CmdArgs.push_back(Args.MakeArgString(CudaArchToString(gpu_arch)));
  CmdArgs.push_back("--output-file");
  CmdArgs.push_back(Args.MakeArgString(TC.getInputFilename(Output)));
  for (const auto& II : Inputs)
    CmdArgs.push_back(Args.MakeArgString(II.getFilename()));

  for (const auto& A : Args.getAllArgValues(options::OPT_Xcuda_ptxas))
    CmdArgs.push_back(Args.MakeArgString(A));

  bool Relocatable = false;
  if (JA.isOffloading(Action::OFK_OpenMP))
    // In OpenMP we need to generate relocatable code.
    Relocatable = Args.hasFlag(options::OPT_fopenmp_relocatable_target,
                               options::OPT_fnoopenmp_relocatable_target,
                               /*Default=*/true);
  else if (JA.isOffloading(Action::OFK_Cuda))
    Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
                               options::OPT_fno_gpu_rdc, /*Default=*/false);

  if (Relocatable)
    CmdArgs.push_back("-c");

  const char *Exec;
  if (Arg *A = Args.getLastArg(options::OPT_ptxas_path_EQ))
    Exec = A->getValue();
  else
    Exec = Args.MakeArgString(TC.GetProgramPath("ptxas"));
  C.addCommand(std::make_unique<Command>(
      JA, *this,
      ResponseFileSupport{ResponseFileSupport::RF_Full, llvm::sys::WEM_UTF8,
                          "--options-file"},
      Exec, CmdArgs, Inputs));
}

static bool shouldIncludePTX(const ArgList &Args, const char *gpu_arch) {
  bool includePTX = true;
  for (Arg *A : Args) {
    if (!(A->getOption().matches(options::OPT_cuda_include_ptx_EQ) ||
          A->getOption().matches(options::OPT_no_cuda_include_ptx_EQ)))
      continue;
    A->claim();
    const StringRef ArchStr = A->getValue();
    if (ArchStr == "all" || ArchStr == gpu_arch) {
      includePTX = A->getOption().matches(options::OPT_cuda_include_ptx_EQ);
      continue;
    }
  }
  return includePTX;
}

// All inputs to this linker must be from CudaDeviceActions, as we need to look
// at the Inputs' Actions in order to figure out which GPU architecture they
// correspond to.
void NVPTX::Linker::ConstructJob(Compilation &C, const JobAction &JA,
                                 const InputInfo &Output,
                                 const InputInfoList &Inputs,
                                 const ArgList &Args,
                                 const char *LinkingOutput) const {
  const auto &TC =
      static_cast<const toolchains::CudaToolChain &>(getToolChain());
  assert(TC.getTriple().isNVPTX() && "Wrong platform");

  ArgStringList CmdArgs;
  if (TC.CudaInstallation.version() <= CudaVersion::CUDA_100)
    CmdArgs.push_back("--cuda");
  CmdArgs.push_back(TC.getTriple().isArch64Bit() ? "-64" : "-32");
  CmdArgs.push_back(Args.MakeArgString("--create"));
  CmdArgs.push_back(Args.MakeArgString(Output.getFilename()));
  if (mustEmitDebugInfo(Args) == EmitSameDebugInfoAsHost)
    CmdArgs.push_back("-g");

  for (const auto& II : Inputs) {
    auto *A = II.getAction();
    assert(A->getInputs().size() == 1 &&
           "Device offload action is expected to have a single input");
    const char *gpu_arch_str = A->getOffloadingArch();
    assert(gpu_arch_str &&
           "Device action expected to have associated a GPU architecture!");
    CudaArch gpu_arch = StringToCudaArch(gpu_arch_str);

    if (II.getType() == types::TY_PP_Asm &&
        !shouldIncludePTX(Args, gpu_arch_str))
      continue;
    // We need to pass an Arch of the form "sm_XX" for cubin files and
    // "compute_XX" for ptx.
    const char *Arch = (II.getType() == types::TY_PP_Asm)
                           ? CudaArchToVirtualArchString(gpu_arch)
                           : gpu_arch_str;
    CmdArgs.push_back(Args.MakeArgString(llvm::Twine("--image=profile=") +
                                         Arch + ",file=" + II.getFilename()));
  }

  for (const auto& A : Args.getAllArgValues(options::OPT_Xcuda_fatbinary))
    CmdArgs.push_back(Args.MakeArgString(A));

  const char *Exec = Args.MakeArgString(TC.GetProgramPath("fatbinary"));
  C.addCommand(std::make_unique<Command>(
      JA, *this,
      ResponseFileSupport{ResponseFileSupport::RF_Full, llvm::sys::WEM_UTF8,
                          "--options-file"},
      Exec, CmdArgs, Inputs));
}

void NVPTX::OpenMPLinker::ConstructJob(Compilation &C, const JobAction &JA,
                                       const InputInfo &Output,
                                       const InputInfoList &Inputs,
                                       const ArgList &Args,
                                       const char *LinkingOutput) const {
  const auto &TC =
      static_cast<const toolchains::CudaToolChain &>(getToolChain());
  assert(TC.getTriple().isNVPTX() && "Wrong platform");

  ArgStringList CmdArgs;

  // OpenMP uses nvlink to link cubin files. The result will be embedded in the
  // host binary by the host linker.
  assert(!JA.isHostOffloading(Action::OFK_OpenMP) &&
         "CUDA toolchain not expected for an OpenMP host device.");

  if (Output.isFilename()) {
    CmdArgs.push_back("-o");
    CmdArgs.push_back(Output.getFilename());
  } else
    assert(Output.isNothing() && "Invalid output.");
  if (mustEmitDebugInfo(Args) == EmitSameDebugInfoAsHost)
    CmdArgs.push_back("-g");

  if (Args.hasArg(options::OPT_v))
    CmdArgs.push_back("-v");

  StringRef GPUArch =
      Args.getLastArgValue(options::OPT_march_EQ);
  assert(!GPUArch.empty() && "At least one GPU Arch required for ptxas.");

  CmdArgs.push_back("-arch");
  CmdArgs.push_back(Args.MakeArgString(GPUArch));

  // Assume that the directory specified with --libomptarget_nvptx_path
  // contains the static library libomptarget-nvptx.a.
  if (const Arg *A = Args.getLastArg(options::OPT_libomptarget_nvptx_path_EQ))
    CmdArgs.push_back(Args.MakeArgString(Twine("-L") + A->getValue()));

  // Add paths specified in LIBRARY_PATH environment variable as -L options.
  addDirectoryList(Args, CmdArgs, "-L", "LIBRARY_PATH");

  // Add paths for the default clang library path.
  SmallString<256> DefaultLibPath =
      llvm::sys::path::parent_path(TC.getDriver().Dir);
  llvm::sys::path::append(DefaultLibPath, "lib" CLANG_LIBDIR_SUFFIX);
  CmdArgs.push_back(Args.MakeArgString(Twine("-L") + DefaultLibPath));

  // Add linking against library implementing OpenMP calls on NVPTX target.
  CmdArgs.push_back("-lomptarget-nvptx");

  for (const auto &II : Inputs) {
    if (II.getType() == types::TY_LLVM_IR ||
        II.getType() == types::TY_LTO_IR ||
        II.getType() == types::TY_LTO_BC ||
        II.getType() == types::TY_LLVM_BC) {
      C.getDriver().Diag(diag::err_drv_no_linker_llvm_support)
          << getToolChain().getTripleString();
      continue;
    }

    // Currently, we only pass the input files to the linker, we do not pass
    // any libraries that may be valid only for the host.
    if (!II.isFilename())
      continue;

    const char *CubinF = C.addTempFile(
        C.getArgs().MakeArgString(getToolChain().getInputFilename(II)));

    CmdArgs.push_back(CubinF);
  }

  const char *Exec =
      Args.MakeArgString(getToolChain().GetProgramPath("nvlink"));
  C.addCommand(std::make_unique<Command>(
      JA, *this,
      ResponseFileSupport{ResponseFileSupport::RF_Full, llvm::sys::WEM_UTF8,
                          "--options-file"},
      Exec, CmdArgs, Inputs));
}

/// CUDA toolchain.  Our assembler is ptxas, and our "linker" is fatbinary,
/// which isn't properly a linker but nonetheless performs the step of stitching
/// together object files from the assembler into a single blob.

CudaToolChain::CudaToolChain(const Driver &D, const llvm::Triple &Triple,
                             const ToolChain &HostTC, const ArgList &Args,
                             const Action::OffloadKind OK)
    : ToolChain(D, Triple, Args), HostTC(HostTC),
      CudaInstallation(D, HostTC.getTriple(), Args), OK(OK) {
  if (CudaInstallation.isValid()) {
    CudaInstallation.WarnIfUnsupportedVersion();
    getProgramPaths().push_back(std::string(CudaInstallation.getBinPath()));
  }
  // Lookup binaries into the driver directory, this is used to
  // discover the clang-offload-bundler executable.
  getProgramPaths().push_back(getDriver().Dir);
}

std::string CudaToolChain::getInputFilename(const InputInfo &Input) const {
  // Only object files are changed, for example assembly files keep their .s
  // extensions. CUDA also continues to use .o as they don't use nvlink but
  // fatbinary.
  if (!(OK == Action::OFK_OpenMP && Input.getType() == types::TY_Object))
    return ToolChain::getInputFilename(Input);

  // Replace extension for object files with cubin because nvlink relies on
  // these particular file names.
  SmallString<256> Filename(ToolChain::getInputFilename(Input));
  llvm::sys::path::replace_extension(Filename, "cubin");
  return std::string(Filename.str());
}

void CudaToolChain::addClangTargetOptions(
    const llvm::opt::ArgList &DriverArgs,
    llvm::opt::ArgStringList &CC1Args,
    Action::OffloadKind DeviceOffloadingKind) const {
  HostTC.addClangTargetOptions(DriverArgs, CC1Args, DeviceOffloadingKind);

  StringRef GpuArch = DriverArgs.getLastArgValue(options::OPT_march_EQ);
  assert(!GpuArch.empty() && "Must have an explicit GPU arch.");
  assert((DeviceOffloadingKind == Action::OFK_OpenMP ||
          DeviceOffloadingKind == Action::OFK_Cuda) &&
         "Only OpenMP or CUDA offloading kinds are supported for NVIDIA GPUs.");

  if (DeviceOffloadingKind == Action::OFK_Cuda) {
    CC1Args.push_back("-fcuda-is-device");

    if (DriverArgs.hasFlag(options::OPT_fcuda_approx_transcendentals,
                           options::OPT_fno_cuda_approx_transcendentals, false))
      CC1Args.push_back("-fcuda-approx-transcendentals");

    if (DriverArgs.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
                           false))
      CC1Args.push_back("-fgpu-rdc");
  }

  if (DriverArgs.hasArg(options::OPT_nogpulib))
    return;

  std::string LibDeviceFile = CudaInstallation.getLibDeviceFile(GpuArch);

  if (LibDeviceFile.empty()) {
    if (DeviceOffloadingKind == Action::OFK_OpenMP &&
        DriverArgs.hasArg(options::OPT_S))
      return;

    getDriver().Diag(diag::err_drv_no_cuda_libdevice) << GpuArch;
    return;
  }

  CC1Args.push_back("-mlink-builtin-bitcode");
  CC1Args.push_back(DriverArgs.MakeArgString(LibDeviceFile));

  // New CUDA versions often introduce new instructions that are only supported
  // by new PTX version, so we need to raise PTX level to enable them in NVPTX
  // back-end.
  const char *PtxFeature = nullptr;
  switch (CudaInstallation.version()) {
  case CudaVersion::CUDA_110:
    PtxFeature = "+ptx70";
    break;
  case CudaVersion::CUDA_102:
    PtxFeature = "+ptx65";
    break;
  case CudaVersion::CUDA_101:
    PtxFeature = "+ptx64";
    break;
  case CudaVersion::CUDA_100:
    PtxFeature = "+ptx63";
    break;
  case CudaVersion::CUDA_92:
    PtxFeature = "+ptx61";
    break;
  case CudaVersion::CUDA_91:
    PtxFeature = "+ptx61";
    break;
  case CudaVersion::CUDA_90:
    PtxFeature = "+ptx60";
    break;
  default:
    PtxFeature = "+ptx42";
  }
  CC1Args.append({"-target-feature", PtxFeature});
  if (DriverArgs.hasFlag(options::OPT_fcuda_short_ptr,
                         options::OPT_fno_cuda_short_ptr, false))
    CC1Args.append({"-mllvm", "--nvptx-short-ptr"});

  if (CudaInstallation.version() >= CudaVersion::UNKNOWN)
    CC1Args.push_back(DriverArgs.MakeArgString(
        Twine("-target-sdk-version=") +
        CudaVersionToString(CudaInstallation.version())));

  if (DeviceOffloadingKind == Action::OFK_OpenMP) {
    SmallVector<StringRef, 8> LibraryPaths;
    if (const Arg *A = DriverArgs.getLastArg(options::OPT_libomptarget_nvptx_path_EQ))
      LibraryPaths.push_back(A->getValue());

    // Add user defined library paths from LIBRARY_PATH.
    llvm::Optional<std::string> LibPath =
        llvm::sys::Process::GetEnv("LIBRARY_PATH");
    if (LibPath) {
      SmallVector<StringRef, 8> Frags;
      const char EnvPathSeparatorStr[] = {llvm::sys::EnvPathSeparator, '\0'};
      llvm::SplitString(*LibPath, Frags, EnvPathSeparatorStr);
      for (StringRef Path : Frags)
        LibraryPaths.emplace_back(Path.trim());
    }

    // Add path to lib / lib64 folder.
    SmallString<256> DefaultLibPath =
        llvm::sys::path::parent_path(getDriver().Dir);
    llvm::sys::path::append(DefaultLibPath, Twine("lib") + CLANG_LIBDIR_SUFFIX);
    LibraryPaths.emplace_back(DefaultLibPath.c_str());

    std::string LibOmpTargetName =
      "libomptarget-nvptx-" + GpuArch.str() + ".bc";
    bool FoundBCLibrary = false;
    for (StringRef LibraryPath : LibraryPaths) {
      SmallString<128> LibOmpTargetFile(LibraryPath);
      llvm::sys::path::append(LibOmpTargetFile, LibOmpTargetName);
      if (llvm::sys::fs::exists(LibOmpTargetFile)) {
        CC1Args.push_back("-mlink-builtin-bitcode");
        CC1Args.push_back(DriverArgs.MakeArgString(LibOmpTargetFile));
        FoundBCLibrary = true;
        break;
      }
    }
    if (!FoundBCLibrary)
      getDriver().Diag(diag::warn_drv_omp_offload_target_missingbcruntime)
          << LibOmpTargetName;
  }
}

llvm::DenormalMode CudaToolChain::getDefaultDenormalModeForType(
    const llvm::opt::ArgList &DriverArgs, const JobAction &JA,
    const llvm::fltSemantics *FPType) const {
  if (JA.getOffloadingDeviceKind() == Action::OFK_Cuda) {
    if (FPType && FPType == &llvm::APFloat::IEEEsingle() &&
        DriverArgs.hasFlag(options::OPT_fcuda_flush_denormals_to_zero,
                           options::OPT_fno_cuda_flush_denormals_to_zero,
                           false))
      return llvm::DenormalMode::getPreserveSign();
  }

  assert(JA.getOffloadingDeviceKind() != Action::OFK_Host);
  return llvm::DenormalMode::getIEEE();
}

bool CudaToolChain::supportsDebugInfoOption(const llvm::opt::Arg *A) const {
  const Option &O = A->getOption();
  return (O.matches(options::OPT_gN_Group) &&
          !O.matches(options::OPT_gmodules)) ||
         O.matches(options::OPT_g_Flag) ||
         O.matches(options::OPT_ggdbN_Group) || O.matches(options::OPT_ggdb) ||
         O.matches(options::OPT_gdwarf) || O.matches(options::OPT_gdwarf_2) ||
         O.matches(options::OPT_gdwarf_3) || O.matches(options::OPT_gdwarf_4) ||
         O.matches(options::OPT_gdwarf_5) ||
         O.matches(options::OPT_gcolumn_info);
}

void CudaToolChain::adjustDebugInfoKind(
    codegenoptions::DebugInfoKind &DebugInfoKind, const ArgList &Args) const {
  switch (mustEmitDebugInfo(Args)) {
  case DisableDebugInfo:
    DebugInfoKind = codegenoptions::NoDebugInfo;
    break;
  case DebugDirectivesOnly:
    DebugInfoKind = codegenoptions::DebugDirectivesOnly;
    break;
  case EmitSameDebugInfoAsHost:
    // Use same debug info level as the host.
    break;
  }
}

void CudaToolChain::AddCudaIncludeArgs(const ArgList &DriverArgs,
                                       ArgStringList &CC1Args) const {
  // Check our CUDA version if we're going to include the CUDA headers.
  if (!DriverArgs.hasArg(options::OPT_nogpuinc) &&
      !DriverArgs.hasArg(options::OPT_no_cuda_version_check)) {
    StringRef Arch = DriverArgs.getLastArgValue(options::OPT_march_EQ);
    assert(!Arch.empty() && "Must have an explicit GPU arch.");
    CudaInstallation.CheckCudaVersionSupportsArch(StringToCudaArch(Arch));
  }
  CudaInstallation.AddCudaIncludeArgs(DriverArgs, CC1Args);
}

llvm::opt::DerivedArgList *
CudaToolChain::TranslateArgs(const llvm::opt::DerivedArgList &Args,
                             StringRef BoundArch,
                             Action::OffloadKind DeviceOffloadKind) const {
  DerivedArgList *DAL =
      HostTC.TranslateArgs(Args, BoundArch, DeviceOffloadKind);
  if (!DAL)
    DAL = new DerivedArgList(Args.getBaseArgs());

  const OptTable &Opts = getDriver().getOpts();

  // For OpenMP device offloading, append derived arguments. Make sure
  // flags are not duplicated.
  // Also append the compute capability.
  if (DeviceOffloadKind == Action::OFK_OpenMP) {
    for (Arg *A : Args) {
      bool IsDuplicate = false;
      for (Arg *DALArg : *DAL) {
        if (A == DALArg) {
          IsDuplicate = true;
          break;
        }
      }
      if (!IsDuplicate)
        DAL->append(A);
    }

    StringRef Arch = DAL->getLastArgValue(options::OPT_march_EQ);
    if (Arch.empty())
      DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_march_EQ),
                        CLANG_OPENMP_NVPTX_DEFAULT_ARCH);

    return DAL;
  }

  for (Arg *A : Args) {
    DAL->append(A);
  }

  if (!BoundArch.empty()) {
    DAL->eraseArg(options::OPT_march_EQ);
    DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_march_EQ), BoundArch);
  }
  return DAL;
}

Tool *CudaToolChain::buildAssembler() const {
  return new tools::NVPTX::Assembler(*this);
}

Tool *CudaToolChain::buildLinker() const {
  if (OK == Action::OFK_OpenMP)
    return new tools::NVPTX::OpenMPLinker(*this);
  return new tools::NVPTX::Linker(*this);
}

void CudaToolChain::addClangWarningOptions(ArgStringList &CC1Args) const {
  HostTC.addClangWarningOptions(CC1Args);
}

ToolChain::CXXStdlibType
CudaToolChain::GetCXXStdlibType(const ArgList &Args) const {
  return HostTC.GetCXXStdlibType(Args);
}

void CudaToolChain::AddClangSystemIncludeArgs(const ArgList &DriverArgs,
                                              ArgStringList &CC1Args) const {
  HostTC.AddClangSystemIncludeArgs(DriverArgs, CC1Args);
}

void CudaToolChain::AddClangCXXStdlibIncludeArgs(const ArgList &Args,
                                                 ArgStringList &CC1Args) const {
  HostTC.AddClangCXXStdlibIncludeArgs(Args, CC1Args);
}

void CudaToolChain::AddIAMCUIncludeArgs(const ArgList &Args,
                                        ArgStringList &CC1Args) const {
  HostTC.AddIAMCUIncludeArgs(Args, CC1Args);
}

SanitizerMask CudaToolChain::getSupportedSanitizers() const {
  // The CudaToolChain only supports sanitizers in the sense that it allows
  // sanitizer arguments on the command line if they are supported by the host
  // toolchain. The CudaToolChain will actually ignore any command line
  // arguments for any of these "supported" sanitizers. That means that no
  // sanitization of device code is actually supported at this time.
  //
  // This behavior is necessary because the host and device toolchains
  // invocations often share the command line, so the device toolchain must
  // tolerate flags meant only for the host toolchain.
  return HostTC.getSupportedSanitizers();
}

VersionTuple CudaToolChain::computeMSVCVersion(const Driver *D,
                                               const ArgList &Args) const {
  return HostTC.computeMSVCVersion(D, Args);
}