CodeGenPGO.cpp
36.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
//===--- CodeGenPGO.cpp - PGO Instrumentation for LLVM CodeGen --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Instrumentation-based profile-guided optimization
//
//===----------------------------------------------------------------------===//
#include "CodeGenPGO.h"
#include "CodeGenFunction.h"
#include "CoverageMappingGen.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/StmtVisitor.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MD5.h"
static llvm::cl::opt<bool>
EnableValueProfiling("enable-value-profiling", llvm::cl::ZeroOrMore,
llvm::cl::desc("Enable value profiling"),
llvm::cl::Hidden, llvm::cl::init(false));
using namespace clang;
using namespace CodeGen;
void CodeGenPGO::setFuncName(StringRef Name,
llvm::GlobalValue::LinkageTypes Linkage) {
llvm::IndexedInstrProfReader *PGOReader = CGM.getPGOReader();
FuncName = llvm::getPGOFuncName(
Name, Linkage, CGM.getCodeGenOpts().MainFileName,
PGOReader ? PGOReader->getVersion() : llvm::IndexedInstrProf::Version);
// If we're generating a profile, create a variable for the name.
if (CGM.getCodeGenOpts().hasProfileClangInstr())
FuncNameVar = llvm::createPGOFuncNameVar(CGM.getModule(), Linkage, FuncName);
}
void CodeGenPGO::setFuncName(llvm::Function *Fn) {
setFuncName(Fn->getName(), Fn->getLinkage());
// Create PGOFuncName meta data.
llvm::createPGOFuncNameMetadata(*Fn, FuncName);
}
/// The version of the PGO hash algorithm.
enum PGOHashVersion : unsigned {
PGO_HASH_V1,
PGO_HASH_V2,
PGO_HASH_V3,
// Keep this set to the latest hash version.
PGO_HASH_LATEST = PGO_HASH_V3
};
namespace {
/// Stable hasher for PGO region counters.
///
/// PGOHash produces a stable hash of a given function's control flow.
///
/// Changing the output of this hash will invalidate all previously generated
/// profiles -- i.e., don't do it.
///
/// \note When this hash does eventually change (years?), we still need to
/// support old hashes. We'll need to pull in the version number from the
/// profile data format and use the matching hash function.
class PGOHash {
uint64_t Working;
unsigned Count;
PGOHashVersion HashVersion;
llvm::MD5 MD5;
static const int NumBitsPerType = 6;
static const unsigned NumTypesPerWord = sizeof(uint64_t) * 8 / NumBitsPerType;
static const unsigned TooBig = 1u << NumBitsPerType;
public:
/// Hash values for AST nodes.
///
/// Distinct values for AST nodes that have region counters attached.
///
/// These values must be stable. All new members must be added at the end,
/// and no members should be removed. Changing the enumeration value for an
/// AST node will affect the hash of every function that contains that node.
enum HashType : unsigned char {
None = 0,
LabelStmt = 1,
WhileStmt,
DoStmt,
ForStmt,
CXXForRangeStmt,
ObjCForCollectionStmt,
SwitchStmt,
CaseStmt,
DefaultStmt,
IfStmt,
CXXTryStmt,
CXXCatchStmt,
ConditionalOperator,
BinaryOperatorLAnd,
BinaryOperatorLOr,
BinaryConditionalOperator,
// The preceding values are available with PGO_HASH_V1.
EndOfScope,
IfThenBranch,
IfElseBranch,
GotoStmt,
IndirectGotoStmt,
BreakStmt,
ContinueStmt,
ReturnStmt,
ThrowExpr,
UnaryOperatorLNot,
BinaryOperatorLT,
BinaryOperatorGT,
BinaryOperatorLE,
BinaryOperatorGE,
BinaryOperatorEQ,
BinaryOperatorNE,
// The preceding values are available since PGO_HASH_V2.
// Keep this last. It's for the static assert that follows.
LastHashType
};
static_assert(LastHashType <= TooBig, "Too many types in HashType");
PGOHash(PGOHashVersion HashVersion)
: Working(0), Count(0), HashVersion(HashVersion), MD5() {}
void combine(HashType Type);
uint64_t finalize();
PGOHashVersion getHashVersion() const { return HashVersion; }
};
const int PGOHash::NumBitsPerType;
const unsigned PGOHash::NumTypesPerWord;
const unsigned PGOHash::TooBig;
/// Get the PGO hash version used in the given indexed profile.
static PGOHashVersion getPGOHashVersion(llvm::IndexedInstrProfReader *PGOReader,
CodeGenModule &CGM) {
if (PGOReader->getVersion() <= 4)
return PGO_HASH_V1;
if (PGOReader->getVersion() <= 5)
return PGO_HASH_V2;
return PGO_HASH_V3;
}
/// A RecursiveASTVisitor that fills a map of statements to PGO counters.
struct MapRegionCounters : public RecursiveASTVisitor<MapRegionCounters> {
using Base = RecursiveASTVisitor<MapRegionCounters>;
/// The next counter value to assign.
unsigned NextCounter;
/// The function hash.
PGOHash Hash;
/// The map of statements to counters.
llvm::DenseMap<const Stmt *, unsigned> &CounterMap;
MapRegionCounters(PGOHashVersion HashVersion,
llvm::DenseMap<const Stmt *, unsigned> &CounterMap)
: NextCounter(0), Hash(HashVersion), CounterMap(CounterMap) {}
// Blocks and lambdas are handled as separate functions, so we need not
// traverse them in the parent context.
bool TraverseBlockExpr(BlockExpr *BE) { return true; }
bool TraverseLambdaExpr(LambdaExpr *LE) {
// Traverse the captures, but not the body.
for (auto C : zip(LE->captures(), LE->capture_inits()))
TraverseLambdaCapture(LE, &std::get<0>(C), std::get<1>(C));
return true;
}
bool TraverseCapturedStmt(CapturedStmt *CS) { return true; }
bool VisitDecl(const Decl *D) {
switch (D->getKind()) {
default:
break;
case Decl::Function:
case Decl::CXXMethod:
case Decl::CXXConstructor:
case Decl::CXXDestructor:
case Decl::CXXConversion:
case Decl::ObjCMethod:
case Decl::Block:
case Decl::Captured:
CounterMap[D->getBody()] = NextCounter++;
break;
}
return true;
}
/// If \p S gets a fresh counter, update the counter mappings. Return the
/// V1 hash of \p S.
PGOHash::HashType updateCounterMappings(Stmt *S) {
auto Type = getHashType(PGO_HASH_V1, S);
if (Type != PGOHash::None)
CounterMap[S] = NextCounter++;
return Type;
}
/// Include \p S in the function hash.
bool VisitStmt(Stmt *S) {
auto Type = updateCounterMappings(S);
if (Hash.getHashVersion() != PGO_HASH_V1)
Type = getHashType(Hash.getHashVersion(), S);
if (Type != PGOHash::None)
Hash.combine(Type);
return true;
}
bool TraverseIfStmt(IfStmt *If) {
// If we used the V1 hash, use the default traversal.
if (Hash.getHashVersion() == PGO_HASH_V1)
return Base::TraverseIfStmt(If);
// Otherwise, keep track of which branch we're in while traversing.
VisitStmt(If);
for (Stmt *CS : If->children()) {
if (!CS)
continue;
if (CS == If->getThen())
Hash.combine(PGOHash::IfThenBranch);
else if (CS == If->getElse())
Hash.combine(PGOHash::IfElseBranch);
TraverseStmt(CS);
}
Hash.combine(PGOHash::EndOfScope);
return true;
}
// If the statement type \p N is nestable, and its nesting impacts profile
// stability, define a custom traversal which tracks the end of the statement
// in the hash (provided we're not using the V1 hash).
#define DEFINE_NESTABLE_TRAVERSAL(N) \
bool Traverse##N(N *S) { \
Base::Traverse##N(S); \
if (Hash.getHashVersion() != PGO_HASH_V1) \
Hash.combine(PGOHash::EndOfScope); \
return true; \
}
DEFINE_NESTABLE_TRAVERSAL(WhileStmt)
DEFINE_NESTABLE_TRAVERSAL(DoStmt)
DEFINE_NESTABLE_TRAVERSAL(ForStmt)
DEFINE_NESTABLE_TRAVERSAL(CXXForRangeStmt)
DEFINE_NESTABLE_TRAVERSAL(ObjCForCollectionStmt)
DEFINE_NESTABLE_TRAVERSAL(CXXTryStmt)
DEFINE_NESTABLE_TRAVERSAL(CXXCatchStmt)
/// Get version \p HashVersion of the PGO hash for \p S.
PGOHash::HashType getHashType(PGOHashVersion HashVersion, const Stmt *S) {
switch (S->getStmtClass()) {
default:
break;
case Stmt::LabelStmtClass:
return PGOHash::LabelStmt;
case Stmt::WhileStmtClass:
return PGOHash::WhileStmt;
case Stmt::DoStmtClass:
return PGOHash::DoStmt;
case Stmt::ForStmtClass:
return PGOHash::ForStmt;
case Stmt::CXXForRangeStmtClass:
return PGOHash::CXXForRangeStmt;
case Stmt::ObjCForCollectionStmtClass:
return PGOHash::ObjCForCollectionStmt;
case Stmt::SwitchStmtClass:
return PGOHash::SwitchStmt;
case Stmt::CaseStmtClass:
return PGOHash::CaseStmt;
case Stmt::DefaultStmtClass:
return PGOHash::DefaultStmt;
case Stmt::IfStmtClass:
return PGOHash::IfStmt;
case Stmt::CXXTryStmtClass:
return PGOHash::CXXTryStmt;
case Stmt::CXXCatchStmtClass:
return PGOHash::CXXCatchStmt;
case Stmt::ConditionalOperatorClass:
return PGOHash::ConditionalOperator;
case Stmt::BinaryConditionalOperatorClass:
return PGOHash::BinaryConditionalOperator;
case Stmt::BinaryOperatorClass: {
const BinaryOperator *BO = cast<BinaryOperator>(S);
if (BO->getOpcode() == BO_LAnd)
return PGOHash::BinaryOperatorLAnd;
if (BO->getOpcode() == BO_LOr)
return PGOHash::BinaryOperatorLOr;
if (HashVersion >= PGO_HASH_V2) {
switch (BO->getOpcode()) {
default:
break;
case BO_LT:
return PGOHash::BinaryOperatorLT;
case BO_GT:
return PGOHash::BinaryOperatorGT;
case BO_LE:
return PGOHash::BinaryOperatorLE;
case BO_GE:
return PGOHash::BinaryOperatorGE;
case BO_EQ:
return PGOHash::BinaryOperatorEQ;
case BO_NE:
return PGOHash::BinaryOperatorNE;
}
}
break;
}
}
if (HashVersion >= PGO_HASH_V2) {
switch (S->getStmtClass()) {
default:
break;
case Stmt::GotoStmtClass:
return PGOHash::GotoStmt;
case Stmt::IndirectGotoStmtClass:
return PGOHash::IndirectGotoStmt;
case Stmt::BreakStmtClass:
return PGOHash::BreakStmt;
case Stmt::ContinueStmtClass:
return PGOHash::ContinueStmt;
case Stmt::ReturnStmtClass:
return PGOHash::ReturnStmt;
case Stmt::CXXThrowExprClass:
return PGOHash::ThrowExpr;
case Stmt::UnaryOperatorClass: {
const UnaryOperator *UO = cast<UnaryOperator>(S);
if (UO->getOpcode() == UO_LNot)
return PGOHash::UnaryOperatorLNot;
break;
}
}
}
return PGOHash::None;
}
};
/// A StmtVisitor that propagates the raw counts through the AST and
/// records the count at statements where the value may change.
struct ComputeRegionCounts : public ConstStmtVisitor<ComputeRegionCounts> {
/// PGO state.
CodeGenPGO &PGO;
/// A flag that is set when the current count should be recorded on the
/// next statement, such as at the exit of a loop.
bool RecordNextStmtCount;
/// The count at the current location in the traversal.
uint64_t CurrentCount;
/// The map of statements to count values.
llvm::DenseMap<const Stmt *, uint64_t> &CountMap;
/// BreakContinueStack - Keep counts of breaks and continues inside loops.
struct BreakContinue {
uint64_t BreakCount;
uint64_t ContinueCount;
BreakContinue() : BreakCount(0), ContinueCount(0) {}
};
SmallVector<BreakContinue, 8> BreakContinueStack;
ComputeRegionCounts(llvm::DenseMap<const Stmt *, uint64_t> &CountMap,
CodeGenPGO &PGO)
: PGO(PGO), RecordNextStmtCount(false), CountMap(CountMap) {}
void RecordStmtCount(const Stmt *S) {
if (RecordNextStmtCount) {
CountMap[S] = CurrentCount;
RecordNextStmtCount = false;
}
}
/// Set and return the current count.
uint64_t setCount(uint64_t Count) {
CurrentCount = Count;
return Count;
}
void VisitStmt(const Stmt *S) {
RecordStmtCount(S);
for (const Stmt *Child : S->children())
if (Child)
this->Visit(Child);
}
void VisitFunctionDecl(const FunctionDecl *D) {
// Counter tracks entry to the function body.
uint64_t BodyCount = setCount(PGO.getRegionCount(D->getBody()));
CountMap[D->getBody()] = BodyCount;
Visit(D->getBody());
}
// Skip lambda expressions. We visit these as FunctionDecls when we're
// generating them and aren't interested in the body when generating a
// parent context.
void VisitLambdaExpr(const LambdaExpr *LE) {}
void VisitCapturedDecl(const CapturedDecl *D) {
// Counter tracks entry to the capture body.
uint64_t BodyCount = setCount(PGO.getRegionCount(D->getBody()));
CountMap[D->getBody()] = BodyCount;
Visit(D->getBody());
}
void VisitObjCMethodDecl(const ObjCMethodDecl *D) {
// Counter tracks entry to the method body.
uint64_t BodyCount = setCount(PGO.getRegionCount(D->getBody()));
CountMap[D->getBody()] = BodyCount;
Visit(D->getBody());
}
void VisitBlockDecl(const BlockDecl *D) {
// Counter tracks entry to the block body.
uint64_t BodyCount = setCount(PGO.getRegionCount(D->getBody()));
CountMap[D->getBody()] = BodyCount;
Visit(D->getBody());
}
void VisitReturnStmt(const ReturnStmt *S) {
RecordStmtCount(S);
if (S->getRetValue())
Visit(S->getRetValue());
CurrentCount = 0;
RecordNextStmtCount = true;
}
void VisitCXXThrowExpr(const CXXThrowExpr *E) {
RecordStmtCount(E);
if (E->getSubExpr())
Visit(E->getSubExpr());
CurrentCount = 0;
RecordNextStmtCount = true;
}
void VisitGotoStmt(const GotoStmt *S) {
RecordStmtCount(S);
CurrentCount = 0;
RecordNextStmtCount = true;
}
void VisitLabelStmt(const LabelStmt *S) {
RecordNextStmtCount = false;
// Counter tracks the block following the label.
uint64_t BlockCount = setCount(PGO.getRegionCount(S));
CountMap[S] = BlockCount;
Visit(S->getSubStmt());
}
void VisitBreakStmt(const BreakStmt *S) {
RecordStmtCount(S);
assert(!BreakContinueStack.empty() && "break not in a loop or switch!");
BreakContinueStack.back().BreakCount += CurrentCount;
CurrentCount = 0;
RecordNextStmtCount = true;
}
void VisitContinueStmt(const ContinueStmt *S) {
RecordStmtCount(S);
assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
BreakContinueStack.back().ContinueCount += CurrentCount;
CurrentCount = 0;
RecordNextStmtCount = true;
}
void VisitWhileStmt(const WhileStmt *S) {
RecordStmtCount(S);
uint64_t ParentCount = CurrentCount;
BreakContinueStack.push_back(BreakContinue());
// Visit the body region first so the break/continue adjustments can be
// included when visiting the condition.
uint64_t BodyCount = setCount(PGO.getRegionCount(S));
CountMap[S->getBody()] = CurrentCount;
Visit(S->getBody());
uint64_t BackedgeCount = CurrentCount;
// ...then go back and propagate counts through the condition. The count
// at the start of the condition is the sum of the incoming edges,
// the backedge from the end of the loop body, and the edges from
// continue statements.
BreakContinue BC = BreakContinueStack.pop_back_val();
uint64_t CondCount =
setCount(ParentCount + BackedgeCount + BC.ContinueCount);
CountMap[S->getCond()] = CondCount;
Visit(S->getCond());
setCount(BC.BreakCount + CondCount - BodyCount);
RecordNextStmtCount = true;
}
void VisitDoStmt(const DoStmt *S) {
RecordStmtCount(S);
uint64_t LoopCount = PGO.getRegionCount(S);
BreakContinueStack.push_back(BreakContinue());
// The count doesn't include the fallthrough from the parent scope. Add it.
uint64_t BodyCount = setCount(LoopCount + CurrentCount);
CountMap[S->getBody()] = BodyCount;
Visit(S->getBody());
uint64_t BackedgeCount = CurrentCount;
BreakContinue BC = BreakContinueStack.pop_back_val();
// The count at the start of the condition is equal to the count at the
// end of the body, plus any continues.
uint64_t CondCount = setCount(BackedgeCount + BC.ContinueCount);
CountMap[S->getCond()] = CondCount;
Visit(S->getCond());
setCount(BC.BreakCount + CondCount - LoopCount);
RecordNextStmtCount = true;
}
void VisitForStmt(const ForStmt *S) {
RecordStmtCount(S);
if (S->getInit())
Visit(S->getInit());
uint64_t ParentCount = CurrentCount;
BreakContinueStack.push_back(BreakContinue());
// Visit the body region first. (This is basically the same as a while
// loop; see further comments in VisitWhileStmt.)
uint64_t BodyCount = setCount(PGO.getRegionCount(S));
CountMap[S->getBody()] = BodyCount;
Visit(S->getBody());
uint64_t BackedgeCount = CurrentCount;
BreakContinue BC = BreakContinueStack.pop_back_val();
// The increment is essentially part of the body but it needs to include
// the count for all the continue statements.
if (S->getInc()) {
uint64_t IncCount = setCount(BackedgeCount + BC.ContinueCount);
CountMap[S->getInc()] = IncCount;
Visit(S->getInc());
}
// ...then go back and propagate counts through the condition.
uint64_t CondCount =
setCount(ParentCount + BackedgeCount + BC.ContinueCount);
if (S->getCond()) {
CountMap[S->getCond()] = CondCount;
Visit(S->getCond());
}
setCount(BC.BreakCount + CondCount - BodyCount);
RecordNextStmtCount = true;
}
void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
RecordStmtCount(S);
if (S->getInit())
Visit(S->getInit());
Visit(S->getLoopVarStmt());
Visit(S->getRangeStmt());
Visit(S->getBeginStmt());
Visit(S->getEndStmt());
uint64_t ParentCount = CurrentCount;
BreakContinueStack.push_back(BreakContinue());
// Visit the body region first. (This is basically the same as a while
// loop; see further comments in VisitWhileStmt.)
uint64_t BodyCount = setCount(PGO.getRegionCount(S));
CountMap[S->getBody()] = BodyCount;
Visit(S->getBody());
uint64_t BackedgeCount = CurrentCount;
BreakContinue BC = BreakContinueStack.pop_back_val();
// The increment is essentially part of the body but it needs to include
// the count for all the continue statements.
uint64_t IncCount = setCount(BackedgeCount + BC.ContinueCount);
CountMap[S->getInc()] = IncCount;
Visit(S->getInc());
// ...then go back and propagate counts through the condition.
uint64_t CondCount =
setCount(ParentCount + BackedgeCount + BC.ContinueCount);
CountMap[S->getCond()] = CondCount;
Visit(S->getCond());
setCount(BC.BreakCount + CondCount - BodyCount);
RecordNextStmtCount = true;
}
void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
RecordStmtCount(S);
Visit(S->getElement());
uint64_t ParentCount = CurrentCount;
BreakContinueStack.push_back(BreakContinue());
// Counter tracks the body of the loop.
uint64_t BodyCount = setCount(PGO.getRegionCount(S));
CountMap[S->getBody()] = BodyCount;
Visit(S->getBody());
uint64_t BackedgeCount = CurrentCount;
BreakContinue BC = BreakContinueStack.pop_back_val();
setCount(BC.BreakCount + ParentCount + BackedgeCount + BC.ContinueCount -
BodyCount);
RecordNextStmtCount = true;
}
void VisitSwitchStmt(const SwitchStmt *S) {
RecordStmtCount(S);
if (S->getInit())
Visit(S->getInit());
Visit(S->getCond());
CurrentCount = 0;
BreakContinueStack.push_back(BreakContinue());
Visit(S->getBody());
// If the switch is inside a loop, add the continue counts.
BreakContinue BC = BreakContinueStack.pop_back_val();
if (!BreakContinueStack.empty())
BreakContinueStack.back().ContinueCount += BC.ContinueCount;
// Counter tracks the exit block of the switch.
setCount(PGO.getRegionCount(S));
RecordNextStmtCount = true;
}
void VisitSwitchCase(const SwitchCase *S) {
RecordNextStmtCount = false;
// Counter for this particular case. This counts only jumps from the
// switch header and does not include fallthrough from the case before
// this one.
uint64_t CaseCount = PGO.getRegionCount(S);
setCount(CurrentCount + CaseCount);
// We need the count without fallthrough in the mapping, so it's more useful
// for branch probabilities.
CountMap[S] = CaseCount;
RecordNextStmtCount = true;
Visit(S->getSubStmt());
}
void VisitIfStmt(const IfStmt *S) {
RecordStmtCount(S);
uint64_t ParentCount = CurrentCount;
if (S->getInit())
Visit(S->getInit());
Visit(S->getCond());
// Counter tracks the "then" part of an if statement. The count for
// the "else" part, if it exists, will be calculated from this counter.
uint64_t ThenCount = setCount(PGO.getRegionCount(S));
CountMap[S->getThen()] = ThenCount;
Visit(S->getThen());
uint64_t OutCount = CurrentCount;
uint64_t ElseCount = ParentCount - ThenCount;
if (S->getElse()) {
setCount(ElseCount);
CountMap[S->getElse()] = ElseCount;
Visit(S->getElse());
OutCount += CurrentCount;
} else
OutCount += ElseCount;
setCount(OutCount);
RecordNextStmtCount = true;
}
void VisitCXXTryStmt(const CXXTryStmt *S) {
RecordStmtCount(S);
Visit(S->getTryBlock());
for (unsigned I = 0, E = S->getNumHandlers(); I < E; ++I)
Visit(S->getHandler(I));
// Counter tracks the continuation block of the try statement.
setCount(PGO.getRegionCount(S));
RecordNextStmtCount = true;
}
void VisitCXXCatchStmt(const CXXCatchStmt *S) {
RecordNextStmtCount = false;
// Counter tracks the catch statement's handler block.
uint64_t CatchCount = setCount(PGO.getRegionCount(S));
CountMap[S] = CatchCount;
Visit(S->getHandlerBlock());
}
void VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
RecordStmtCount(E);
uint64_t ParentCount = CurrentCount;
Visit(E->getCond());
// Counter tracks the "true" part of a conditional operator. The
// count in the "false" part will be calculated from this counter.
uint64_t TrueCount = setCount(PGO.getRegionCount(E));
CountMap[E->getTrueExpr()] = TrueCount;
Visit(E->getTrueExpr());
uint64_t OutCount = CurrentCount;
uint64_t FalseCount = setCount(ParentCount - TrueCount);
CountMap[E->getFalseExpr()] = FalseCount;
Visit(E->getFalseExpr());
OutCount += CurrentCount;
setCount(OutCount);
RecordNextStmtCount = true;
}
void VisitBinLAnd(const BinaryOperator *E) {
RecordStmtCount(E);
uint64_t ParentCount = CurrentCount;
Visit(E->getLHS());
// Counter tracks the right hand side of a logical and operator.
uint64_t RHSCount = setCount(PGO.getRegionCount(E));
CountMap[E->getRHS()] = RHSCount;
Visit(E->getRHS());
setCount(ParentCount + RHSCount - CurrentCount);
RecordNextStmtCount = true;
}
void VisitBinLOr(const BinaryOperator *E) {
RecordStmtCount(E);
uint64_t ParentCount = CurrentCount;
Visit(E->getLHS());
// Counter tracks the right hand side of a logical or operator.
uint64_t RHSCount = setCount(PGO.getRegionCount(E));
CountMap[E->getRHS()] = RHSCount;
Visit(E->getRHS());
setCount(ParentCount + RHSCount - CurrentCount);
RecordNextStmtCount = true;
}
};
} // end anonymous namespace
void PGOHash::combine(HashType Type) {
// Check that we never combine 0 and only have six bits.
assert(Type && "Hash is invalid: unexpected type 0");
assert(unsigned(Type) < TooBig && "Hash is invalid: too many types");
// Pass through MD5 if enough work has built up.
if (Count && Count % NumTypesPerWord == 0) {
using namespace llvm::support;
uint64_t Swapped = endian::byte_swap<uint64_t, little>(Working);
MD5.update(llvm::makeArrayRef((uint8_t *)&Swapped, sizeof(Swapped)));
Working = 0;
}
// Accumulate the current type.
++Count;
Working = Working << NumBitsPerType | Type;
}
uint64_t PGOHash::finalize() {
// Use Working as the hash directly if we never used MD5.
if (Count <= NumTypesPerWord)
// No need to byte swap here, since none of the math was endian-dependent.
// This number will be byte-swapped as required on endianness transitions,
// so we will see the same value on the other side.
return Working;
// Check for remaining work in Working.
if (Working) {
// Keep the buggy behavior from v1 and v2 for backward-compatibility. This
// is buggy because it converts a uint64_t into an array of uint8_t.
if (HashVersion < PGO_HASH_V3) {
MD5.update({(uint8_t)Working});
} else {
using namespace llvm::support;
uint64_t Swapped = endian::byte_swap<uint64_t, little>(Working);
MD5.update(llvm::makeArrayRef((uint8_t *)&Swapped, sizeof(Swapped)));
}
}
// Finalize the MD5 and return the hash.
llvm::MD5::MD5Result Result;
MD5.final(Result);
return Result.low();
}
void CodeGenPGO::assignRegionCounters(GlobalDecl GD, llvm::Function *Fn) {
const Decl *D = GD.getDecl();
if (!D->hasBody())
return;
// Skip CUDA/HIP kernel launch stub functions.
if (CGM.getLangOpts().CUDA && !CGM.getLangOpts().CUDAIsDevice &&
D->hasAttr<CUDAGlobalAttr>())
return;
bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
llvm::IndexedInstrProfReader *PGOReader = CGM.getPGOReader();
if (!InstrumentRegions && !PGOReader)
return;
if (D->isImplicit())
return;
// Constructors and destructors may be represented by several functions in IR.
// If so, instrument only base variant, others are implemented by delegation
// to the base one, it would be counted twice otherwise.
if (CGM.getTarget().getCXXABI().hasConstructorVariants()) {
if (const auto *CCD = dyn_cast<CXXConstructorDecl>(D))
if (GD.getCtorType() != Ctor_Base &&
CodeGenFunction::IsConstructorDelegationValid(CCD))
return;
}
if (isa<CXXDestructorDecl>(D) && GD.getDtorType() != Dtor_Base)
return;
CGM.ClearUnusedCoverageMapping(D);
setFuncName(Fn);
mapRegionCounters(D);
if (CGM.getCodeGenOpts().CoverageMapping)
emitCounterRegionMapping(D);
if (PGOReader) {
SourceManager &SM = CGM.getContext().getSourceManager();
loadRegionCounts(PGOReader, SM.isInMainFile(D->getLocation()));
computeRegionCounts(D);
applyFunctionAttributes(PGOReader, Fn);
}
}
void CodeGenPGO::mapRegionCounters(const Decl *D) {
// Use the latest hash version when inserting instrumentation, but use the
// version in the indexed profile if we're reading PGO data.
PGOHashVersion HashVersion = PGO_HASH_LATEST;
if (auto *PGOReader = CGM.getPGOReader())
HashVersion = getPGOHashVersion(PGOReader, CGM);
RegionCounterMap.reset(new llvm::DenseMap<const Stmt *, unsigned>);
MapRegionCounters Walker(HashVersion, *RegionCounterMap);
if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
Walker.TraverseDecl(const_cast<FunctionDecl *>(FD));
else if (const ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(D))
Walker.TraverseDecl(const_cast<ObjCMethodDecl *>(MD));
else if (const BlockDecl *BD = dyn_cast_or_null<BlockDecl>(D))
Walker.TraverseDecl(const_cast<BlockDecl *>(BD));
else if (const CapturedDecl *CD = dyn_cast_or_null<CapturedDecl>(D))
Walker.TraverseDecl(const_cast<CapturedDecl *>(CD));
assert(Walker.NextCounter > 0 && "no entry counter mapped for decl");
NumRegionCounters = Walker.NextCounter;
FunctionHash = Walker.Hash.finalize();
}
bool CodeGenPGO::skipRegionMappingForDecl(const Decl *D) {
if (!D->getBody())
return true;
// Skip host-only functions in the CUDA device compilation and device-only
// functions in the host compilation. Just roughly filter them out based on
// the function attributes. If there are effectively host-only or device-only
// ones, their coverage mapping may still be generated.
if (CGM.getLangOpts().CUDA &&
((CGM.getLangOpts().CUDAIsDevice && !D->hasAttr<CUDADeviceAttr>() &&
!D->hasAttr<CUDAGlobalAttr>()) ||
(!CGM.getLangOpts().CUDAIsDevice &&
(D->hasAttr<CUDAGlobalAttr>() ||
(!D->hasAttr<CUDAHostAttr>() && D->hasAttr<CUDADeviceAttr>())))))
return true;
// Don't map the functions in system headers.
const auto &SM = CGM.getContext().getSourceManager();
auto Loc = D->getBody()->getBeginLoc();
return SM.isInSystemHeader(Loc);
}
void CodeGenPGO::emitCounterRegionMapping(const Decl *D) {
if (skipRegionMappingForDecl(D))
return;
std::string CoverageMapping;
llvm::raw_string_ostream OS(CoverageMapping);
CoverageMappingGen MappingGen(*CGM.getCoverageMapping(),
CGM.getContext().getSourceManager(),
CGM.getLangOpts(), RegionCounterMap.get());
MappingGen.emitCounterMapping(D, OS);
OS.flush();
if (CoverageMapping.empty())
return;
CGM.getCoverageMapping()->addFunctionMappingRecord(
FuncNameVar, FuncName, FunctionHash, CoverageMapping);
}
void
CodeGenPGO::emitEmptyCounterMapping(const Decl *D, StringRef Name,
llvm::GlobalValue::LinkageTypes Linkage) {
if (skipRegionMappingForDecl(D))
return;
std::string CoverageMapping;
llvm::raw_string_ostream OS(CoverageMapping);
CoverageMappingGen MappingGen(*CGM.getCoverageMapping(),
CGM.getContext().getSourceManager(),
CGM.getLangOpts());
MappingGen.emitEmptyMapping(D, OS);
OS.flush();
if (CoverageMapping.empty())
return;
setFuncName(Name, Linkage);
CGM.getCoverageMapping()->addFunctionMappingRecord(
FuncNameVar, FuncName, FunctionHash, CoverageMapping, false);
}
void CodeGenPGO::computeRegionCounts(const Decl *D) {
StmtCountMap.reset(new llvm::DenseMap<const Stmt *, uint64_t>);
ComputeRegionCounts Walker(*StmtCountMap, *this);
if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
Walker.VisitFunctionDecl(FD);
else if (const ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(D))
Walker.VisitObjCMethodDecl(MD);
else if (const BlockDecl *BD = dyn_cast_or_null<BlockDecl>(D))
Walker.VisitBlockDecl(BD);
else if (const CapturedDecl *CD = dyn_cast_or_null<CapturedDecl>(D))
Walker.VisitCapturedDecl(const_cast<CapturedDecl *>(CD));
}
void
CodeGenPGO::applyFunctionAttributes(llvm::IndexedInstrProfReader *PGOReader,
llvm::Function *Fn) {
if (!haveRegionCounts())
return;
uint64_t FunctionCount = getRegionCount(nullptr);
Fn->setEntryCount(FunctionCount);
}
void CodeGenPGO::emitCounterIncrement(CGBuilderTy &Builder, const Stmt *S,
llvm::Value *StepV) {
if (!CGM.getCodeGenOpts().hasProfileClangInstr() || !RegionCounterMap)
return;
if (!Builder.GetInsertBlock())
return;
unsigned Counter = (*RegionCounterMap)[S];
auto *I8PtrTy = llvm::Type::getInt8PtrTy(CGM.getLLVMContext());
llvm::Value *Args[] = {llvm::ConstantExpr::getBitCast(FuncNameVar, I8PtrTy),
Builder.getInt64(FunctionHash),
Builder.getInt32(NumRegionCounters),
Builder.getInt32(Counter), StepV};
if (!StepV)
Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::instrprof_increment),
makeArrayRef(Args, 4));
else
Builder.CreateCall(
CGM.getIntrinsic(llvm::Intrinsic::instrprof_increment_step),
makeArrayRef(Args));
}
// This method either inserts a call to the profile run-time during
// instrumentation or puts profile data into metadata for PGO use.
void CodeGenPGO::valueProfile(CGBuilderTy &Builder, uint32_t ValueKind,
llvm::Instruction *ValueSite, llvm::Value *ValuePtr) {
if (!EnableValueProfiling)
return;
if (!ValuePtr || !ValueSite || !Builder.GetInsertBlock())
return;
if (isa<llvm::Constant>(ValuePtr))
return;
bool InstrumentValueSites = CGM.getCodeGenOpts().hasProfileClangInstr();
if (InstrumentValueSites && RegionCounterMap) {
auto BuilderInsertPoint = Builder.saveIP();
Builder.SetInsertPoint(ValueSite);
llvm::Value *Args[5] = {
llvm::ConstantExpr::getBitCast(FuncNameVar, Builder.getInt8PtrTy()),
Builder.getInt64(FunctionHash),
Builder.CreatePtrToInt(ValuePtr, Builder.getInt64Ty()),
Builder.getInt32(ValueKind),
Builder.getInt32(NumValueSites[ValueKind]++)
};
Builder.CreateCall(
CGM.getIntrinsic(llvm::Intrinsic::instrprof_value_profile), Args);
Builder.restoreIP(BuilderInsertPoint);
return;
}
llvm::IndexedInstrProfReader *PGOReader = CGM.getPGOReader();
if (PGOReader && haveRegionCounts()) {
// We record the top most called three functions at each call site.
// Profile metadata contains "VP" string identifying this metadata
// as value profiling data, then a uint32_t value for the value profiling
// kind, a uint64_t value for the total number of times the call is
// executed, followed by the function hash and execution count (uint64_t)
// pairs for each function.
if (NumValueSites[ValueKind] >= ProfRecord->getNumValueSites(ValueKind))
return;
llvm::annotateValueSite(CGM.getModule(), *ValueSite, *ProfRecord,
(llvm::InstrProfValueKind)ValueKind,
NumValueSites[ValueKind]);
NumValueSites[ValueKind]++;
}
}
void CodeGenPGO::loadRegionCounts(llvm::IndexedInstrProfReader *PGOReader,
bool IsInMainFile) {
CGM.getPGOStats().addVisited(IsInMainFile);
RegionCounts.clear();
llvm::Expected<llvm::InstrProfRecord> RecordExpected =
PGOReader->getInstrProfRecord(FuncName, FunctionHash);
if (auto E = RecordExpected.takeError()) {
auto IPE = llvm::InstrProfError::take(std::move(E));
if (IPE == llvm::instrprof_error::unknown_function)
CGM.getPGOStats().addMissing(IsInMainFile);
else if (IPE == llvm::instrprof_error::hash_mismatch)
CGM.getPGOStats().addMismatched(IsInMainFile);
else if (IPE == llvm::instrprof_error::malformed)
// TODO: Consider a more specific warning for this case.
CGM.getPGOStats().addMismatched(IsInMainFile);
return;
}
ProfRecord =
std::make_unique<llvm::InstrProfRecord>(std::move(RecordExpected.get()));
RegionCounts = ProfRecord->Counts;
}
/// Calculate what to divide by to scale weights.
///
/// Given the maximum weight, calculate a divisor that will scale all the
/// weights to strictly less than UINT32_MAX.
static uint64_t calculateWeightScale(uint64_t MaxWeight) {
return MaxWeight < UINT32_MAX ? 1 : MaxWeight / UINT32_MAX + 1;
}
/// Scale an individual branch weight (and add 1).
///
/// Scale a 64-bit weight down to 32-bits using \c Scale.
///
/// According to Laplace's Rule of Succession, it is better to compute the
/// weight based on the count plus 1, so universally add 1 to the value.
///
/// \pre \c Scale was calculated by \a calculateWeightScale() with a weight no
/// greater than \c Weight.
static uint32_t scaleBranchWeight(uint64_t Weight, uint64_t Scale) {
assert(Scale && "scale by 0?");
uint64_t Scaled = Weight / Scale + 1;
assert(Scaled <= UINT32_MAX && "overflow 32-bits");
return Scaled;
}
llvm::MDNode *CodeGenFunction::createProfileWeights(uint64_t TrueCount,
uint64_t FalseCount) {
// Check for empty weights.
if (!TrueCount && !FalseCount)
return nullptr;
// Calculate how to scale down to 32-bits.
uint64_t Scale = calculateWeightScale(std::max(TrueCount, FalseCount));
llvm::MDBuilder MDHelper(CGM.getLLVMContext());
return MDHelper.createBranchWeights(scaleBranchWeight(TrueCount, Scale),
scaleBranchWeight(FalseCount, Scale));
}
llvm::MDNode *
CodeGenFunction::createProfileWeights(ArrayRef<uint64_t> Weights) {
// We need at least two elements to create meaningful weights.
if (Weights.size() < 2)
return nullptr;
// Check for empty weights.
uint64_t MaxWeight = *std::max_element(Weights.begin(), Weights.end());
if (MaxWeight == 0)
return nullptr;
// Calculate how to scale down to 32-bits.
uint64_t Scale = calculateWeightScale(MaxWeight);
SmallVector<uint32_t, 16> ScaledWeights;
ScaledWeights.reserve(Weights.size());
for (uint64_t W : Weights)
ScaledWeights.push_back(scaleBranchWeight(W, Scale));
llvm::MDBuilder MDHelper(CGM.getLLVMContext());
return MDHelper.createBranchWeights(ScaledWeights);
}
llvm::MDNode *CodeGenFunction::createProfileWeightsForLoop(const Stmt *Cond,
uint64_t LoopCount) {
if (!PGO.haveRegionCounts())
return nullptr;
Optional<uint64_t> CondCount = PGO.getStmtCount(Cond);
if (!CondCount || *CondCount == 0)
return nullptr;
return createProfileWeights(LoopCount,
std::max(*CondCount, LoopCount) - LoopCount);
}