CGValue.h 21.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
//===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// These classes implement wrappers around llvm::Value in order to
// fully represent the range of values for C L- and R- values.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_LIB_CODEGEN_CGVALUE_H
#define LLVM_CLANG_LIB_CODEGEN_CGVALUE_H

#include "clang/AST/ASTContext.h"
#include "clang/AST/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/Type.h"
#include "Address.h"
#include "CodeGenTBAA.h"

namespace llvm {
  class Constant;
  class MDNode;
}

namespace clang {
namespace CodeGen {
  class AggValueSlot;
  class CodeGenFunction;
  struct CGBitFieldInfo;

/// RValue - This trivial value class is used to represent the result of an
/// expression that is evaluated.  It can be one of three things: either a
/// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
/// address of an aggregate value in memory.
class RValue {
  enum Flavor { Scalar, Complex, Aggregate };

  // The shift to make to an aggregate's alignment to make it look
  // like a pointer.
  enum { AggAlignShift = 4 };

  // Stores first value and flavor.
  llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1;
  // Stores second value and volatility.
  llvm::PointerIntPair<llvm::Value *, 1, bool> V2;

public:
  bool isScalar() const { return V1.getInt() == Scalar; }
  bool isComplex() const { return V1.getInt() == Complex; }
  bool isAggregate() const { return V1.getInt() == Aggregate; }

  bool isVolatileQualified() const { return V2.getInt(); }

  /// getScalarVal() - Return the Value* of this scalar value.
  llvm::Value *getScalarVal() const {
    assert(isScalar() && "Not a scalar!");
    return V1.getPointer();
  }

  /// getComplexVal - Return the real/imag components of this complex value.
  ///
  std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
    return std::make_pair(V1.getPointer(), V2.getPointer());
  }

  /// getAggregateAddr() - Return the Value* of the address of the aggregate.
  Address getAggregateAddress() const {
    assert(isAggregate() && "Not an aggregate!");
    auto align = reinterpret_cast<uintptr_t>(V2.getPointer()) >> AggAlignShift;
    return Address(V1.getPointer(), CharUnits::fromQuantity(align));
  }
  llvm::Value *getAggregatePointer() const {
    assert(isAggregate() && "Not an aggregate!");
    return V1.getPointer();
  }

  static RValue getIgnored() {
    // FIXME: should we make this a more explicit state?
    return get(nullptr);
  }

  static RValue get(llvm::Value *V) {
    RValue ER;
    ER.V1.setPointer(V);
    ER.V1.setInt(Scalar);
    ER.V2.setInt(false);
    return ER;
  }
  static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
    RValue ER;
    ER.V1.setPointer(V1);
    ER.V2.setPointer(V2);
    ER.V1.setInt(Complex);
    ER.V2.setInt(false);
    return ER;
  }
  static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
    return getComplex(C.first, C.second);
  }
  // FIXME: Aggregate rvalues need to retain information about whether they are
  // volatile or not.  Remove default to find all places that probably get this
  // wrong.
  static RValue getAggregate(Address addr, bool isVolatile = false) {
    RValue ER;
    ER.V1.setPointer(addr.getPointer());
    ER.V1.setInt(Aggregate);

    auto align = static_cast<uintptr_t>(addr.getAlignment().getQuantity());
    ER.V2.setPointer(reinterpret_cast<llvm::Value*>(align << AggAlignShift));
    ER.V2.setInt(isVolatile);
    return ER;
  }
};

/// Does an ARC strong l-value have precise lifetime?
enum ARCPreciseLifetime_t {
  ARCImpreciseLifetime, ARCPreciseLifetime
};

/// The source of the alignment of an l-value; an expression of
/// confidence in the alignment actually matching the estimate.
enum class AlignmentSource {
  /// The l-value was an access to a declared entity or something
  /// equivalently strong, like the address of an array allocated by a
  /// language runtime.
  Decl,

  /// The l-value was considered opaque, so the alignment was
  /// determined from a type, but that type was an explicitly-aligned
  /// typedef.
  AttributedType,

  /// The l-value was considered opaque, so the alignment was
  /// determined from a type.
  Type
};

/// Given that the base address has the given alignment source, what's
/// our confidence in the alignment of the field?
static inline AlignmentSource getFieldAlignmentSource(AlignmentSource Source) {
  // For now, we don't distinguish fields of opaque pointers from
  // top-level declarations, but maybe we should.
  return AlignmentSource::Decl;
}

class LValueBaseInfo {
  AlignmentSource AlignSource;

public:
  explicit LValueBaseInfo(AlignmentSource Source = AlignmentSource::Type)
    : AlignSource(Source) {}
  AlignmentSource getAlignmentSource() const { return AlignSource; }
  void setAlignmentSource(AlignmentSource Source) { AlignSource = Source; }

  void mergeForCast(const LValueBaseInfo &Info) {
    setAlignmentSource(Info.getAlignmentSource());
  }
};

/// LValue - This represents an lvalue references.  Because C/C++ allow
/// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
/// bitrange.
class LValue {
  enum {
    Simple,       // This is a normal l-value, use getAddress().
    VectorElt,    // This is a vector element l-value (V[i]), use getVector*
    BitField,     // This is a bitfield l-value, use getBitfield*.
    ExtVectorElt, // This is an extended vector subset, use getExtVectorComp
    GlobalReg,    // This is a register l-value, use getGlobalReg()
    MatrixElt     // This is a matrix element, use getVector*
  } LVType;

  llvm::Value *V;

  union {
    // Index into a vector subscript: V[i]
    llvm::Value *VectorIdx;

    // ExtVector element subset: V.xyx
    llvm::Constant *VectorElts;

    // BitField start bit and size
    const CGBitFieldInfo *BitFieldInfo;
  };

  QualType Type;

  // 'const' is unused here
  Qualifiers Quals;

  // The alignment to use when accessing this lvalue.  (For vector elements,
  // this is the alignment of the whole vector.)
  unsigned Alignment;

  // objective-c's ivar
  bool Ivar:1;

  // objective-c's ivar is an array
  bool ObjIsArray:1;

  // LValue is non-gc'able for any reason, including being a parameter or local
  // variable.
  bool NonGC: 1;

  // Lvalue is a global reference of an objective-c object
  bool GlobalObjCRef : 1;

  // Lvalue is a thread local reference
  bool ThreadLocalRef : 1;

  // Lvalue has ARC imprecise lifetime.  We store this inverted to try
  // to make the default bitfield pattern all-zeroes.
  bool ImpreciseLifetime : 1;

  // This flag shows if a nontemporal load/stores should be used when accessing
  // this lvalue.
  bool Nontemporal : 1;

  LValueBaseInfo BaseInfo;
  TBAAAccessInfo TBAAInfo;

  Expr *BaseIvarExp;

private:
  void Initialize(QualType Type, Qualifiers Quals, CharUnits Alignment,
                  LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
    assert((!Alignment.isZero() || Type->isIncompleteType()) &&
           "initializing l-value with zero alignment!");
    this->Type = Type;
    this->Quals = Quals;
    const unsigned MaxAlign = 1U << 31;
    this->Alignment = Alignment.getQuantity() <= MaxAlign
                          ? Alignment.getQuantity()
                          : MaxAlign;
    assert(this->Alignment == Alignment.getQuantity() &&
           "Alignment exceeds allowed max!");
    this->BaseInfo = BaseInfo;
    this->TBAAInfo = TBAAInfo;

    // Initialize Objective-C flags.
    this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false;
    this->ImpreciseLifetime = false;
    this->Nontemporal = false;
    this->ThreadLocalRef = false;
    this->BaseIvarExp = nullptr;
  }

public:
  bool isSimple() const { return LVType == Simple; }
  bool isVectorElt() const { return LVType == VectorElt; }
  bool isBitField() const { return LVType == BitField; }
  bool isExtVectorElt() const { return LVType == ExtVectorElt; }
  bool isGlobalReg() const { return LVType == GlobalReg; }
  bool isMatrixElt() const { return LVType == MatrixElt; }

  bool isVolatileQualified() const { return Quals.hasVolatile(); }
  bool isRestrictQualified() const { return Quals.hasRestrict(); }
  unsigned getVRQualifiers() const {
    return Quals.getCVRQualifiers() & ~Qualifiers::Const;
  }

  QualType getType() const { return Type; }

  Qualifiers::ObjCLifetime getObjCLifetime() const {
    return Quals.getObjCLifetime();
  }

  bool isObjCIvar() const { return Ivar; }
  void setObjCIvar(bool Value) { Ivar = Value; }

  bool isObjCArray() const { return ObjIsArray; }
  void setObjCArray(bool Value) { ObjIsArray = Value; }

  bool isNonGC () const { return NonGC; }
  void setNonGC(bool Value) { NonGC = Value; }

  bool isGlobalObjCRef() const { return GlobalObjCRef; }
  void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; }

  bool isThreadLocalRef() const { return ThreadLocalRef; }
  void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;}

  ARCPreciseLifetime_t isARCPreciseLifetime() const {
    return ARCPreciseLifetime_t(!ImpreciseLifetime);
  }
  void setARCPreciseLifetime(ARCPreciseLifetime_t value) {
    ImpreciseLifetime = (value == ARCImpreciseLifetime);
  }
  bool isNontemporal() const { return Nontemporal; }
  void setNontemporal(bool Value) { Nontemporal = Value; }

  bool isObjCWeak() const {
    return Quals.getObjCGCAttr() == Qualifiers::Weak;
  }
  bool isObjCStrong() const {
    return Quals.getObjCGCAttr() == Qualifiers::Strong;
  }

  bool isVolatile() const {
    return Quals.hasVolatile();
  }

  Expr *getBaseIvarExp() const { return BaseIvarExp; }
  void setBaseIvarExp(Expr *V) { BaseIvarExp = V; }

  TBAAAccessInfo getTBAAInfo() const { return TBAAInfo; }
  void setTBAAInfo(TBAAAccessInfo Info) { TBAAInfo = Info; }

  const Qualifiers &getQuals() const { return Quals; }
  Qualifiers &getQuals() { return Quals; }

  LangAS getAddressSpace() const { return Quals.getAddressSpace(); }

  CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); }
  void setAlignment(CharUnits A) { Alignment = A.getQuantity(); }

  LValueBaseInfo getBaseInfo() const { return BaseInfo; }
  void setBaseInfo(LValueBaseInfo Info) { BaseInfo = Info; }

  // simple lvalue
  llvm::Value *getPointer(CodeGenFunction &CGF) const {
    assert(isSimple());
    return V;
  }
  Address getAddress(CodeGenFunction &CGF) const {
    return Address(getPointer(CGF), getAlignment());
  }
  void setAddress(Address address) {
    assert(isSimple());
    V = address.getPointer();
    Alignment = address.getAlignment().getQuantity();
  }

  // vector elt lvalue
  Address getVectorAddress() const {
    return Address(getVectorPointer(), getAlignment());
  }
  llvm::Value *getVectorPointer() const {
    assert(isVectorElt());
    return V;
  }
  llvm::Value *getVectorIdx() const {
    assert(isVectorElt());
    return VectorIdx;
  }

  Address getMatrixAddress() const {
    return Address(getMatrixPointer(), getAlignment());
  }
  llvm::Value *getMatrixPointer() const {
    assert(isMatrixElt());
    return V;
  }
  llvm::Value *getMatrixIdx() const {
    assert(isMatrixElt());
    return VectorIdx;
  }

  // extended vector elements.
  Address getExtVectorAddress() const {
    return Address(getExtVectorPointer(), getAlignment());
  }
  llvm::Value *getExtVectorPointer() const {
    assert(isExtVectorElt());
    return V;
  }
  llvm::Constant *getExtVectorElts() const {
    assert(isExtVectorElt());
    return VectorElts;
  }

  // bitfield lvalue
  Address getBitFieldAddress() const {
    return Address(getBitFieldPointer(), getAlignment());
  }
  llvm::Value *getBitFieldPointer() const { assert(isBitField()); return V; }
  const CGBitFieldInfo &getBitFieldInfo() const {
    assert(isBitField());
    return *BitFieldInfo;
  }

  // global register lvalue
  llvm::Value *getGlobalReg() const { assert(isGlobalReg()); return V; }

  static LValue MakeAddr(Address address, QualType type, ASTContext &Context,
                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
    Qualifiers qs = type.getQualifiers();
    qs.setObjCGCAttr(Context.getObjCGCAttrKind(type));

    LValue R;
    R.LVType = Simple;
    assert(address.getPointer()->getType()->isPointerTy());
    R.V = address.getPointer();
    R.Initialize(type, qs, address.getAlignment(), BaseInfo, TBAAInfo);
    return R;
  }

  static LValue MakeVectorElt(Address vecAddress, llvm::Value *Idx,
                              QualType type, LValueBaseInfo BaseInfo,
                              TBAAAccessInfo TBAAInfo) {
    LValue R;
    R.LVType = VectorElt;
    R.V = vecAddress.getPointer();
    R.VectorIdx = Idx;
    R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(),
                 BaseInfo, TBAAInfo);
    return R;
  }

  static LValue MakeExtVectorElt(Address vecAddress, llvm::Constant *Elts,
                                 QualType type, LValueBaseInfo BaseInfo,
                                 TBAAAccessInfo TBAAInfo) {
    LValue R;
    R.LVType = ExtVectorElt;
    R.V = vecAddress.getPointer();
    R.VectorElts = Elts;
    R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(),
                 BaseInfo, TBAAInfo);
    return R;
  }

  /// Create a new object to represent a bit-field access.
  ///
  /// \param Addr - The base address of the bit-field sequence this
  /// bit-field refers to.
  /// \param Info - The information describing how to perform the bit-field
  /// access.
  static LValue MakeBitfield(Address Addr, const CGBitFieldInfo &Info,
                             QualType type, LValueBaseInfo BaseInfo,
                             TBAAAccessInfo TBAAInfo) {
    LValue R;
    R.LVType = BitField;
    R.V = Addr.getPointer();
    R.BitFieldInfo = &Info;
    R.Initialize(type, type.getQualifiers(), Addr.getAlignment(), BaseInfo,
                 TBAAInfo);
    return R;
  }

  static LValue MakeGlobalReg(Address Reg, QualType type) {
    LValue R;
    R.LVType = GlobalReg;
    R.V = Reg.getPointer();
    R.Initialize(type, type.getQualifiers(), Reg.getAlignment(),
                 LValueBaseInfo(AlignmentSource::Decl), TBAAAccessInfo());
    return R;
  }

  static LValue MakeMatrixElt(Address matAddress, llvm::Value *Idx,
                              QualType type, LValueBaseInfo BaseInfo,
                              TBAAAccessInfo TBAAInfo) {
    LValue R;
    R.LVType = MatrixElt;
    R.V = matAddress.getPointer();
    R.VectorIdx = Idx;
    R.Initialize(type, type.getQualifiers(), matAddress.getAlignment(),
                 BaseInfo, TBAAInfo);
    return R;
  }

  RValue asAggregateRValue(CodeGenFunction &CGF) const {
    return RValue::getAggregate(getAddress(CGF), isVolatileQualified());
  }
};

/// An aggregate value slot.
class AggValueSlot {
  /// The address.
  llvm::Value *Addr;

  // Qualifiers
  Qualifiers Quals;

  unsigned Alignment;

  /// DestructedFlag - This is set to true if some external code is
  /// responsible for setting up a destructor for the slot.  Otherwise
  /// the code which constructs it should push the appropriate cleanup.
  bool DestructedFlag : 1;

  /// ObjCGCFlag - This is set to true if writing to the memory in the
  /// slot might require calling an appropriate Objective-C GC
  /// barrier.  The exact interaction here is unnecessarily mysterious.
  bool ObjCGCFlag : 1;

  /// ZeroedFlag - This is set to true if the memory in the slot is
  /// known to be zero before the assignment into it.  This means that
  /// zero fields don't need to be set.
  bool ZeroedFlag : 1;

  /// AliasedFlag - This is set to true if the slot might be aliased
  /// and it's not undefined behavior to access it through such an
  /// alias.  Note that it's always undefined behavior to access a C++
  /// object that's under construction through an alias derived from
  /// outside the construction process.
  ///
  /// This flag controls whether calls that produce the aggregate
  /// value may be evaluated directly into the slot, or whether they
  /// must be evaluated into an unaliased temporary and then memcpy'ed
  /// over.  Since it's invalid in general to memcpy a non-POD C++
  /// object, it's important that this flag never be set when
  /// evaluating an expression which constructs such an object.
  bool AliasedFlag : 1;

  /// This is set to true if the tail padding of this slot might overlap
  /// another object that may have already been initialized (and whose
  /// value must be preserved by this initialization). If so, we may only
  /// store up to the dsize of the type. Otherwise we can widen stores to
  /// the size of the type.
  bool OverlapFlag : 1;

  /// If is set to true, sanitizer checks are already generated for this address
  /// or not required. For instance, if this address represents an object
  /// created in 'new' expression, sanitizer checks for memory is made as a part
  /// of 'operator new' emission and object constructor should not generate
  /// them.
  bool SanitizerCheckedFlag : 1;

public:
  enum IsAliased_t { IsNotAliased, IsAliased };
  enum IsDestructed_t { IsNotDestructed, IsDestructed };
  enum IsZeroed_t { IsNotZeroed, IsZeroed };
  enum Overlap_t { DoesNotOverlap, MayOverlap };
  enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers };
  enum IsSanitizerChecked_t { IsNotSanitizerChecked, IsSanitizerChecked };

  /// ignored - Returns an aggregate value slot indicating that the
  /// aggregate value is being ignored.
  static AggValueSlot ignored() {
    return forAddr(Address::invalid(), Qualifiers(), IsNotDestructed,
                   DoesNotNeedGCBarriers, IsNotAliased, DoesNotOverlap);
  }

  /// forAddr - Make a slot for an aggregate value.
  ///
  /// \param quals - The qualifiers that dictate how the slot should
  /// be initialied. Only 'volatile' and the Objective-C lifetime
  /// qualifiers matter.
  ///
  /// \param isDestructed - true if something else is responsible
  ///   for calling destructors on this object
  /// \param needsGC - true if the slot is potentially located
  ///   somewhere that ObjC GC calls should be emitted for
  static AggValueSlot forAddr(Address addr,
                              Qualifiers quals,
                              IsDestructed_t isDestructed,
                              NeedsGCBarriers_t needsGC,
                              IsAliased_t isAliased,
                              Overlap_t mayOverlap,
                              IsZeroed_t isZeroed = IsNotZeroed,
                       IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) {
    AggValueSlot AV;
    if (addr.isValid()) {
      AV.Addr = addr.getPointer();
      AV.Alignment = addr.getAlignment().getQuantity();
    } else {
      AV.Addr = nullptr;
      AV.Alignment = 0;
    }
    AV.Quals = quals;
    AV.DestructedFlag = isDestructed;
    AV.ObjCGCFlag = needsGC;
    AV.ZeroedFlag = isZeroed;
    AV.AliasedFlag = isAliased;
    AV.OverlapFlag = mayOverlap;
    AV.SanitizerCheckedFlag = isChecked;
    return AV;
  }

  static AggValueSlot
  forLValue(const LValue &LV, CodeGenFunction &CGF, IsDestructed_t isDestructed,
            NeedsGCBarriers_t needsGC, IsAliased_t isAliased,
            Overlap_t mayOverlap, IsZeroed_t isZeroed = IsNotZeroed,
            IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) {
    return forAddr(LV.getAddress(CGF), LV.getQuals(), isDestructed, needsGC,
                   isAliased, mayOverlap, isZeroed, isChecked);
  }

  IsDestructed_t isExternallyDestructed() const {
    return IsDestructed_t(DestructedFlag);
  }
  void setExternallyDestructed(bool destructed = true) {
    DestructedFlag = destructed;
  }

  Qualifiers getQualifiers() const { return Quals; }

  bool isVolatile() const {
    return Quals.hasVolatile();
  }

  void setVolatile(bool flag) {
    if (flag)
      Quals.addVolatile();
    else
      Quals.removeVolatile();
  }

  Qualifiers::ObjCLifetime getObjCLifetime() const {
    return Quals.getObjCLifetime();
  }

  NeedsGCBarriers_t requiresGCollection() const {
    return NeedsGCBarriers_t(ObjCGCFlag);
  }

  llvm::Value *getPointer() const {
    return Addr;
  }

  Address getAddress() const {
    return Address(Addr, getAlignment());
  }

  bool isIgnored() const {
    return Addr == nullptr;
  }

  CharUnits getAlignment() const {
    return CharUnits::fromQuantity(Alignment);
  }

  IsAliased_t isPotentiallyAliased() const {
    return IsAliased_t(AliasedFlag);
  }

  Overlap_t mayOverlap() const {
    return Overlap_t(OverlapFlag);
  }

  bool isSanitizerChecked() const {
    return SanitizerCheckedFlag;
  }

  RValue asRValue() const {
    if (isIgnored()) {
      return RValue::getIgnored();
    } else {
      return RValue::getAggregate(getAddress(), isVolatile());
    }
  }

  void setZeroed(bool V = true) { ZeroedFlag = V; }
  IsZeroed_t isZeroed() const {
    return IsZeroed_t(ZeroedFlag);
  }

  /// Get the preferred size to use when storing a value to this slot. This
  /// is the type size unless that might overlap another object, in which
  /// case it's the dsize.
  CharUnits getPreferredSize(ASTContext &Ctx, QualType Type) const {
    return mayOverlap() ? Ctx.getTypeInfoDataSizeInChars(Type).first
                        : Ctx.getTypeSizeInChars(Type);
  }
};

}  // end namespace CodeGen
}  // end namespace clang

#endif