CGExpr.cpp 210 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Expr nodes as LLVM code.
//
//===----------------------------------------------------------------------===//

#include "CGCXXABI.h"
#include "CGCall.h"
#include "CGCleanup.h"
#include "CGDebugInfo.h"
#include "CGObjCRuntime.h"
#include "CGOpenMPRuntime.h"
#include "CGRecordLayout.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "ConstantEmitter.h"
#include "TargetInfo.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/NSAPI.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Path.h"
#include "llvm/Transforms/Utils/SanitizerStats.h"

#include <string>

using namespace clang;
using namespace CodeGen;

//===--------------------------------------------------------------------===//
//                        Miscellaneous Helper Methods
//===--------------------------------------------------------------------===//

llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
  unsigned addressSpace =
      cast<llvm::PointerType>(value->getType())->getAddressSpace();

  llvm::PointerType *destType = Int8PtrTy;
  if (addressSpace)
    destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);

  if (value->getType() == destType) return value;
  return Builder.CreateBitCast(value, destType);
}

/// CreateTempAlloca - This creates a alloca and inserts it into the entry
/// block.
Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
                                                     CharUnits Align,
                                                     const Twine &Name,
                                                     llvm::Value *ArraySize) {
  auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
  Alloca->setAlignment(Align.getAsAlign());
  return Address(Alloca, Align);
}

/// CreateTempAlloca - This creates a alloca and inserts it into the entry
/// block. The alloca is casted to default address space if necessary.
Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
                                          const Twine &Name,
                                          llvm::Value *ArraySize,
                                          Address *AllocaAddr) {
  auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
  if (AllocaAddr)
    *AllocaAddr = Alloca;
  llvm::Value *V = Alloca.getPointer();
  // Alloca always returns a pointer in alloca address space, which may
  // be different from the type defined by the language. For example,
  // in C++ the auto variables are in the default address space. Therefore
  // cast alloca to the default address space when necessary.
  if (getASTAllocaAddressSpace() != LangAS::Default) {
    auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
    llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
    // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
    // otherwise alloca is inserted at the current insertion point of the
    // builder.
    if (!ArraySize)
      Builder.SetInsertPoint(AllocaInsertPt);
    V = getTargetHooks().performAddrSpaceCast(
        *this, V, getASTAllocaAddressSpace(), LangAS::Default,
        Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
  }

  return Address(V, Align);
}

/// CreateTempAlloca - This creates an alloca and inserts it into the entry
/// block if \p ArraySize is nullptr, otherwise inserts it at the current
/// insertion point of the builder.
llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
                                                    const Twine &Name,
                                                    llvm::Value *ArraySize) {
  if (ArraySize)
    return Builder.CreateAlloca(Ty, ArraySize, Name);
  return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
                              ArraySize, Name, AllocaInsertPt);
}

/// CreateDefaultAlignTempAlloca - This creates an alloca with the
/// default alignment of the corresponding LLVM type, which is *not*
/// guaranteed to be related in any way to the expected alignment of
/// an AST type that might have been lowered to Ty.
Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
                                                      const Twine &Name) {
  CharUnits Align =
    CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
  return CreateTempAlloca(Ty, Align, Name);
}

void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
  auto *Alloca = Var.getPointer();
  assert(isa<llvm::AllocaInst>(Alloca) ||
         (isa<llvm::AddrSpaceCastInst>(Alloca) &&
          isa<llvm::AllocaInst>(
              cast<llvm::AddrSpaceCastInst>(Alloca)->getPointerOperand())));

  auto *Store = new llvm::StoreInst(Init, Alloca, /*volatile*/ false,
                                    Var.getAlignment().getAsAlign());
  llvm::BasicBlock *Block = AllocaInsertPt->getParent();
  Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
}

Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
  CharUnits Align = getContext().getTypeAlignInChars(Ty);
  return CreateTempAlloca(ConvertType(Ty), Align, Name);
}

Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
                                       Address *Alloca) {
  // FIXME: Should we prefer the preferred type alignment here?
  return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
}

Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
                                       const Twine &Name, Address *Alloca) {
  Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
                                    /*ArraySize=*/nullptr, Alloca);

  if (Ty->isConstantMatrixType()) {
    auto *ArrayTy = cast<llvm::ArrayType>(Result.getType()->getElementType());
    auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
                                                ArrayTy->getNumElements());

    Result = Address(
        Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()),
        Result.getAlignment());
  }
  return Result;
}

Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
                                                  const Twine &Name) {
  return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
}

Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
                                                  const Twine &Name) {
  return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
                                  Name);
}

/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
/// expression and compare the result against zero, returning an Int1Ty value.
llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
  PGO.setCurrentStmt(E);
  if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
    llvm::Value *MemPtr = EmitScalarExpr(E);
    return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
  }

  QualType BoolTy = getContext().BoolTy;
  SourceLocation Loc = E->getExprLoc();
  if (!E->getType()->isAnyComplexType())
    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);

  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
                                       Loc);
}

/// EmitIgnoredExpr - Emit code to compute the specified expression,
/// ignoring the result.
void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
  if (E->isRValue())
    return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);

  // Just emit it as an l-value and drop the result.
  EmitLValue(E);
}

/// EmitAnyExpr - Emit code to compute the specified expression which
/// can have any type.  The result is returned as an RValue struct.
/// If this is an aggregate expression, AggSlot indicates where the
/// result should be returned.
RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
                                    AggValueSlot aggSlot,
                                    bool ignoreResult) {
  switch (getEvaluationKind(E->getType())) {
  case TEK_Scalar:
    return RValue::get(EmitScalarExpr(E, ignoreResult));
  case TEK_Complex:
    return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
  case TEK_Aggregate:
    if (!ignoreResult && aggSlot.isIgnored())
      aggSlot = CreateAggTemp(E->getType(), "agg-temp");
    EmitAggExpr(E, aggSlot);
    return aggSlot.asRValue();
  }
  llvm_unreachable("bad evaluation kind");
}

/// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
/// always be accessible even if no aggregate location is provided.
RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
  AggValueSlot AggSlot = AggValueSlot::ignored();

  if (hasAggregateEvaluationKind(E->getType()))
    AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
  return EmitAnyExpr(E, AggSlot);
}

/// EmitAnyExprToMem - Evaluate an expression into a given memory
/// location.
void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
                                       Address Location,
                                       Qualifiers Quals,
                                       bool IsInit) {
  // FIXME: This function should take an LValue as an argument.
  switch (getEvaluationKind(E->getType())) {
  case TEK_Complex:
    EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
                              /*isInit*/ false);
    return;

  case TEK_Aggregate: {
    EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
                                         AggValueSlot::IsDestructed_t(IsInit),
                                         AggValueSlot::DoesNotNeedGCBarriers,
                                         AggValueSlot::IsAliased_t(!IsInit),
                                         AggValueSlot::MayOverlap));
    return;
  }

  case TEK_Scalar: {
    RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
    LValue LV = MakeAddrLValue(Location, E->getType());
    EmitStoreThroughLValue(RV, LV);
    return;
  }
  }
  llvm_unreachable("bad evaluation kind");
}

static void
pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
                     const Expr *E, Address ReferenceTemporary) {
  // Objective-C++ ARC:
  //   If we are binding a reference to a temporary that has ownership, we
  //   need to perform retain/release operations on the temporary.
  //
  // FIXME: This should be looking at E, not M.
  if (auto Lifetime = M->getType().getObjCLifetime()) {
    switch (Lifetime) {
    case Qualifiers::OCL_None:
    case Qualifiers::OCL_ExplicitNone:
      // Carry on to normal cleanup handling.
      break;

    case Qualifiers::OCL_Autoreleasing:
      // Nothing to do; cleaned up by an autorelease pool.
      return;

    case Qualifiers::OCL_Strong:
    case Qualifiers::OCL_Weak:
      switch (StorageDuration Duration = M->getStorageDuration()) {
      case SD_Static:
        // Note: we intentionally do not register a cleanup to release
        // the object on program termination.
        return;

      case SD_Thread:
        // FIXME: We should probably register a cleanup in this case.
        return;

      case SD_Automatic:
      case SD_FullExpression:
        CodeGenFunction::Destroyer *Destroy;
        CleanupKind CleanupKind;
        if (Lifetime == Qualifiers::OCL_Strong) {
          const ValueDecl *VD = M->getExtendingDecl();
          bool Precise =
              VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
          CleanupKind = CGF.getARCCleanupKind();
          Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
                            : &CodeGenFunction::destroyARCStrongImprecise;
        } else {
          // __weak objects always get EH cleanups; otherwise, exceptions
          // could cause really nasty crashes instead of mere leaks.
          CleanupKind = NormalAndEHCleanup;
          Destroy = &CodeGenFunction::destroyARCWeak;
        }
        if (Duration == SD_FullExpression)
          CGF.pushDestroy(CleanupKind, ReferenceTemporary,
                          M->getType(), *Destroy,
                          CleanupKind & EHCleanup);
        else
          CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
                                          M->getType(),
                                          *Destroy, CleanupKind & EHCleanup);
        return;

      case SD_Dynamic:
        llvm_unreachable("temporary cannot have dynamic storage duration");
      }
      llvm_unreachable("unknown storage duration");
    }
  }

  CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
  if (const RecordType *RT =
          E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
    // Get the destructor for the reference temporary.
    auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
    if (!ClassDecl->hasTrivialDestructor())
      ReferenceTemporaryDtor = ClassDecl->getDestructor();
  }

  if (!ReferenceTemporaryDtor)
    return;

  // Call the destructor for the temporary.
  switch (M->getStorageDuration()) {
  case SD_Static:
  case SD_Thread: {
    llvm::FunctionCallee CleanupFn;
    llvm::Constant *CleanupArg;
    if (E->getType()->isArrayType()) {
      CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
          ReferenceTemporary, E->getType(),
          CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
          dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
      CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
    } else {
      CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
          GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
      CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
    }
    CGF.CGM.getCXXABI().registerGlobalDtor(
        CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
    break;
  }

  case SD_FullExpression:
    CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
                    CodeGenFunction::destroyCXXObject,
                    CGF.getLangOpts().Exceptions);
    break;

  case SD_Automatic:
    CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
                                    ReferenceTemporary, E->getType(),
                                    CodeGenFunction::destroyCXXObject,
                                    CGF.getLangOpts().Exceptions);
    break;

  case SD_Dynamic:
    llvm_unreachable("temporary cannot have dynamic storage duration");
  }
}

static Address createReferenceTemporary(CodeGenFunction &CGF,
                                        const MaterializeTemporaryExpr *M,
                                        const Expr *Inner,
                                        Address *Alloca = nullptr) {
  auto &TCG = CGF.getTargetHooks();
  switch (M->getStorageDuration()) {
  case SD_FullExpression:
  case SD_Automatic: {
    // If we have a constant temporary array or record try to promote it into a
    // constant global under the same rules a normal constant would've been
    // promoted. This is easier on the optimizer and generally emits fewer
    // instructions.
    QualType Ty = Inner->getType();
    if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
        (Ty->isArrayType() || Ty->isRecordType()) &&
        CGF.CGM.isTypeConstant(Ty, true))
      if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
        if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
          auto AS = AddrSpace.getValue();
          auto *GV = new llvm::GlobalVariable(
              CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
              llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
              llvm::GlobalValue::NotThreadLocal,
              CGF.getContext().getTargetAddressSpace(AS));
          CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
          GV->setAlignment(alignment.getAsAlign());
          llvm::Constant *C = GV;
          if (AS != LangAS::Default)
            C = TCG.performAddrSpaceCast(
                CGF.CGM, GV, AS, LangAS::Default,
                GV->getValueType()->getPointerTo(
                    CGF.getContext().getTargetAddressSpace(LangAS::Default)));
          // FIXME: Should we put the new global into a COMDAT?
          return Address(C, alignment);
        }
      }
    return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
  }
  case SD_Thread:
  case SD_Static:
    return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);

  case SD_Dynamic:
    llvm_unreachable("temporary can't have dynamic storage duration");
  }
  llvm_unreachable("unknown storage duration");
}

/// Helper method to check if the underlying ABI is AAPCS
static bool isAAPCS(const TargetInfo &TargetInfo) {
  return TargetInfo.getABI().startswith("aapcs");
}

LValue CodeGenFunction::
EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
  const Expr *E = M->getSubExpr();

  assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
          !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
         "Reference should never be pseudo-strong!");

  // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
  // as that will cause the lifetime adjustment to be lost for ARC
  auto ownership = M->getType().getObjCLifetime();
  if (ownership != Qualifiers::OCL_None &&
      ownership != Qualifiers::OCL_ExplicitNone) {
    Address Object = createReferenceTemporary(*this, M, E);
    if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
      Object = Address(llvm::ConstantExpr::getBitCast(Var,
                           ConvertTypeForMem(E->getType())
                             ->getPointerTo(Object.getAddressSpace())),
                       Object.getAlignment());

      // createReferenceTemporary will promote the temporary to a global with a
      // constant initializer if it can.  It can only do this to a value of
      // ARC-manageable type if the value is global and therefore "immune" to
      // ref-counting operations.  Therefore we have no need to emit either a
      // dynamic initialization or a cleanup and we can just return the address
      // of the temporary.
      if (Var->hasInitializer())
        return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);

      Var->setInitializer(CGM.EmitNullConstant(E->getType()));
    }
    LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
                                       AlignmentSource::Decl);

    switch (getEvaluationKind(E->getType())) {
    default: llvm_unreachable("expected scalar or aggregate expression");
    case TEK_Scalar:
      EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
      break;
    case TEK_Aggregate: {
      EmitAggExpr(E, AggValueSlot::forAddr(Object,
                                           E->getType().getQualifiers(),
                                           AggValueSlot::IsDestructed,
                                           AggValueSlot::DoesNotNeedGCBarriers,
                                           AggValueSlot::IsNotAliased,
                                           AggValueSlot::DoesNotOverlap));
      break;
    }
    }

    pushTemporaryCleanup(*this, M, E, Object);
    return RefTempDst;
  }

  SmallVector<const Expr *, 2> CommaLHSs;
  SmallVector<SubobjectAdjustment, 2> Adjustments;
  E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);

  for (const auto &Ignored : CommaLHSs)
    EmitIgnoredExpr(Ignored);

  if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
    if (opaque->getType()->isRecordType()) {
      assert(Adjustments.empty());
      return EmitOpaqueValueLValue(opaque);
    }
  }

  // Create and initialize the reference temporary.
  Address Alloca = Address::invalid();
  Address Object = createReferenceTemporary(*this, M, E, &Alloca);
  if (auto *Var = dyn_cast<llvm::GlobalVariable>(
          Object.getPointer()->stripPointerCasts())) {
    Object = Address(llvm::ConstantExpr::getBitCast(
                         cast<llvm::Constant>(Object.getPointer()),
                         ConvertTypeForMem(E->getType())->getPointerTo()),
                     Object.getAlignment());
    // If the temporary is a global and has a constant initializer or is a
    // constant temporary that we promoted to a global, we may have already
    // initialized it.
    if (!Var->hasInitializer()) {
      Var->setInitializer(CGM.EmitNullConstant(E->getType()));
      EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
    }
  } else {
    switch (M->getStorageDuration()) {
    case SD_Automatic:
      if (auto *Size = EmitLifetimeStart(
              CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
              Alloca.getPointer())) {
        pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
                                                  Alloca, Size);
      }
      break;

    case SD_FullExpression: {
      if (!ShouldEmitLifetimeMarkers)
        break;

      // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
      // marker. Instead, start the lifetime of a conditional temporary earlier
      // so that it's unconditional. Don't do this with sanitizers which need
      // more precise lifetime marks.
      ConditionalEvaluation *OldConditional = nullptr;
      CGBuilderTy::InsertPoint OldIP;
      if (isInConditionalBranch() && !E->getType().isDestructedType() &&
          !SanOpts.has(SanitizerKind::HWAddress) &&
          !SanOpts.has(SanitizerKind::Memory) &&
          !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
        OldConditional = OutermostConditional;
        OutermostConditional = nullptr;

        OldIP = Builder.saveIP();
        llvm::BasicBlock *Block = OldConditional->getStartingBlock();
        Builder.restoreIP(CGBuilderTy::InsertPoint(
            Block, llvm::BasicBlock::iterator(Block->back())));
      }

      if (auto *Size = EmitLifetimeStart(
              CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
              Alloca.getPointer())) {
        pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
                                             Size);
      }

      if (OldConditional) {
        OutermostConditional = OldConditional;
        Builder.restoreIP(OldIP);
      }
      break;
    }

    default:
      break;
    }
    EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
  }
  pushTemporaryCleanup(*this, M, E, Object);

  // Perform derived-to-base casts and/or field accesses, to get from the
  // temporary object we created (and, potentially, for which we extended
  // the lifetime) to the subobject we're binding the reference to.
  for (unsigned I = Adjustments.size(); I != 0; --I) {
    SubobjectAdjustment &Adjustment = Adjustments[I-1];
    switch (Adjustment.Kind) {
    case SubobjectAdjustment::DerivedToBaseAdjustment:
      Object =
          GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
                                Adjustment.DerivedToBase.BasePath->path_begin(),
                                Adjustment.DerivedToBase.BasePath->path_end(),
                                /*NullCheckValue=*/ false, E->getExprLoc());
      break;

    case SubobjectAdjustment::FieldAdjustment: {
      LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
      LV = EmitLValueForField(LV, Adjustment.Field);
      assert(LV.isSimple() &&
             "materialized temporary field is not a simple lvalue");
      Object = LV.getAddress(*this);
      break;
    }

    case SubobjectAdjustment::MemberPointerAdjustment: {
      llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
      Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
                                               Adjustment.Ptr.MPT);
      break;
    }
    }
  }

  return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
}

RValue
CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
  // Emit the expression as an lvalue.
  LValue LV = EmitLValue(E);
  assert(LV.isSimple());
  llvm::Value *Value = LV.getPointer(*this);

  if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
    // C++11 [dcl.ref]p5 (as amended by core issue 453):
    //   If a glvalue to which a reference is directly bound designates neither
    //   an existing object or function of an appropriate type nor a region of
    //   storage of suitable size and alignment to contain an object of the
    //   reference's type, the behavior is undefined.
    QualType Ty = E->getType();
    EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
  }

  return RValue::get(Value);
}


/// getAccessedFieldNo - Given an encoded value and a result number, return the
/// input field number being accessed.
unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
                                             const llvm::Constant *Elts) {
  return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
      ->getZExtValue();
}

/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
                                    llvm::Value *High) {
  llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
  llvm::Value *K47 = Builder.getInt64(47);
  llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
  llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
  llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
  llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
  return Builder.CreateMul(B1, KMul);
}

bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
  return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
         TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
}

bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
  return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
         (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
          TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
}

bool CodeGenFunction::sanitizePerformTypeCheck() const {
  return SanOpts.has(SanitizerKind::Null) |
         SanOpts.has(SanitizerKind::Alignment) |
         SanOpts.has(SanitizerKind::ObjectSize) |
         SanOpts.has(SanitizerKind::Vptr);
}

void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
                                    llvm::Value *Ptr, QualType Ty,
                                    CharUnits Alignment,
                                    SanitizerSet SkippedChecks,
                                    llvm::Value *ArraySize) {
  if (!sanitizePerformTypeCheck())
    return;

  // Don't check pointers outside the default address space. The null check
  // isn't correct, the object-size check isn't supported by LLVM, and we can't
  // communicate the addresses to the runtime handler for the vptr check.
  if (Ptr->getType()->getPointerAddressSpace())
    return;

  // Don't check pointers to volatile data. The behavior here is implementation-
  // defined.
  if (Ty.isVolatileQualified())
    return;

  SanitizerScope SanScope(this);

  SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
  llvm::BasicBlock *Done = nullptr;

  // Quickly determine whether we have a pointer to an alloca. It's possible
  // to skip null checks, and some alignment checks, for these pointers. This
  // can reduce compile-time significantly.
  auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());

  llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
  llvm::Value *IsNonNull = nullptr;
  bool IsGuaranteedNonNull =
      SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
  bool AllowNullPointers = isNullPointerAllowed(TCK);
  if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
      !IsGuaranteedNonNull) {
    // The glvalue must not be an empty glvalue.
    IsNonNull = Builder.CreateIsNotNull(Ptr);

    // The IR builder can constant-fold the null check if the pointer points to
    // a constant.
    IsGuaranteedNonNull = IsNonNull == True;

    // Skip the null check if the pointer is known to be non-null.
    if (!IsGuaranteedNonNull) {
      if (AllowNullPointers) {
        // When performing pointer casts, it's OK if the value is null.
        // Skip the remaining checks in that case.
        Done = createBasicBlock("null");
        llvm::BasicBlock *Rest = createBasicBlock("not.null");
        Builder.CreateCondBr(IsNonNull, Rest, Done);
        EmitBlock(Rest);
      } else {
        Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
      }
    }
  }

  if (SanOpts.has(SanitizerKind::ObjectSize) &&
      !SkippedChecks.has(SanitizerKind::ObjectSize) &&
      !Ty->isIncompleteType()) {
    uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
    llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
    if (ArraySize)
      Size = Builder.CreateMul(Size, ArraySize);

    // Degenerate case: new X[0] does not need an objectsize check.
    llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
    if (!ConstantSize || !ConstantSize->isNullValue()) {
      // The glvalue must refer to a large enough storage region.
      // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
      //        to check this.
      // FIXME: Get object address space
      llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
      llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
      llvm::Value *Min = Builder.getFalse();
      llvm::Value *NullIsUnknown = Builder.getFalse();
      llvm::Value *Dynamic = Builder.getFalse();
      llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
      llvm::Value *LargeEnough = Builder.CreateICmpUGE(
          Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
      Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
    }
  }

  uint64_t AlignVal = 0;
  llvm::Value *PtrAsInt = nullptr;

  if (SanOpts.has(SanitizerKind::Alignment) &&
      !SkippedChecks.has(SanitizerKind::Alignment)) {
    AlignVal = Alignment.getQuantity();
    if (!Ty->isIncompleteType() && !AlignVal)
      AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
                                             /*ForPointeeType=*/true)
                     .getQuantity();

    // The glvalue must be suitably aligned.
    if (AlignVal > 1 &&
        (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
      PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
      llvm::Value *Align = Builder.CreateAnd(
          PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
      llvm::Value *Aligned =
          Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
      if (Aligned != True)
        Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
    }
  }

  if (Checks.size() > 0) {
    // Make sure we're not losing information. Alignment needs to be a power of
    // 2
    assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
    llvm::Constant *StaticData[] = {
        EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
        llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
        llvm::ConstantInt::get(Int8Ty, TCK)};
    EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
              PtrAsInt ? PtrAsInt : Ptr);
  }

  // If possible, check that the vptr indicates that there is a subobject of
  // type Ty at offset zero within this object.
  //
  // C++11 [basic.life]p5,6:
  //   [For storage which does not refer to an object within its lifetime]
  //   The program has undefined behavior if:
  //    -- the [pointer or glvalue] is used to access a non-static data member
  //       or call a non-static member function
  if (SanOpts.has(SanitizerKind::Vptr) &&
      !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
    // Ensure that the pointer is non-null before loading it. If there is no
    // compile-time guarantee, reuse the run-time null check or emit a new one.
    if (!IsGuaranteedNonNull) {
      if (!IsNonNull)
        IsNonNull = Builder.CreateIsNotNull(Ptr);
      if (!Done)
        Done = createBasicBlock("vptr.null");
      llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
      Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
      EmitBlock(VptrNotNull);
    }

    // Compute a hash of the mangled name of the type.
    //
    // FIXME: This is not guaranteed to be deterministic! Move to a
    //        fingerprinting mechanism once LLVM provides one. For the time
    //        being the implementation happens to be deterministic.
    SmallString<64> MangledName;
    llvm::raw_svector_ostream Out(MangledName);
    CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
                                                     Out);

    // Blacklist based on the mangled type.
    if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
            SanitizerKind::Vptr, Out.str())) {
      llvm::hash_code TypeHash = hash_value(Out.str());

      // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
      llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
      llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
      Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
      llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
      llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);

      llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
      Hash = Builder.CreateTrunc(Hash, IntPtrTy);

      // Look the hash up in our cache.
      const int CacheSize = 128;
      llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
      llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
                                                     "__ubsan_vptr_type_cache");
      llvm::Value *Slot = Builder.CreateAnd(Hash,
                                            llvm::ConstantInt::get(IntPtrTy,
                                                                   CacheSize-1));
      llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
      llvm::Value *CacheVal =
        Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
                                  getPointerAlign());

      // If the hash isn't in the cache, call a runtime handler to perform the
      // hard work of checking whether the vptr is for an object of the right
      // type. This will either fill in the cache and return, or produce a
      // diagnostic.
      llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
      llvm::Constant *StaticData[] = {
        EmitCheckSourceLocation(Loc),
        EmitCheckTypeDescriptor(Ty),
        CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
        llvm::ConstantInt::get(Int8Ty, TCK)
      };
      llvm::Value *DynamicData[] = { Ptr, Hash };
      EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
                SanitizerHandler::DynamicTypeCacheMiss, StaticData,
                DynamicData);
    }
  }

  if (Done) {
    Builder.CreateBr(Done);
    EmitBlock(Done);
  }
}

/// Determine whether this expression refers to a flexible array member in a
/// struct. We disable array bounds checks for such members.
static bool isFlexibleArrayMemberExpr(const Expr *E) {
  // For compatibility with existing code, we treat arrays of length 0 or
  // 1 as flexible array members.
  // FIXME: This is inconsistent with the warning code in SemaChecking. Unify
  // the two mechanisms.
  const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
  if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
    // FIXME: Sema doesn't treat [1] as a flexible array member if the bound
    // was produced by macro expansion.
    if (CAT->getSize().ugt(1))
      return false;
  } else if (!isa<IncompleteArrayType>(AT))
    return false;

  E = E->IgnoreParens();

  // A flexible array member must be the last member in the class.
  if (const auto *ME = dyn_cast<MemberExpr>(E)) {
    // FIXME: If the base type of the member expr is not FD->getParent(),
    // this should not be treated as a flexible array member access.
    if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
      // FIXME: Sema doesn't treat a T[1] union member as a flexible array
      // member, only a T[0] or T[] member gets that treatment.
      if (FD->getParent()->isUnion())
        return true;
      RecordDecl::field_iterator FI(
          DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
      return ++FI == FD->getParent()->field_end();
    }
  } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
    return IRE->getDecl()->getNextIvar() == nullptr;
  }

  return false;
}

llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
                                                   QualType EltTy) {
  ASTContext &C = getContext();
  uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
  if (!EltSize)
    return nullptr;

  auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
  if (!ArrayDeclRef)
    return nullptr;

  auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
  if (!ParamDecl)
    return nullptr;

  auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
  if (!POSAttr)
    return nullptr;

  // Don't load the size if it's a lower bound.
  int POSType = POSAttr->getType();
  if (POSType != 0 && POSType != 1)
    return nullptr;

  // Find the implicit size parameter.
  auto PassedSizeIt = SizeArguments.find(ParamDecl);
  if (PassedSizeIt == SizeArguments.end())
    return nullptr;

  const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
  assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
  Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
  llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
                                              C.getSizeType(), E->getExprLoc());
  llvm::Value *SizeOfElement =
      llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
  return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
}

/// If Base is known to point to the start of an array, return the length of
/// that array. Return 0 if the length cannot be determined.
static llvm::Value *getArrayIndexingBound(
    CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
  // For the vector indexing extension, the bound is the number of elements.
  if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
    IndexedType = Base->getType();
    return CGF.Builder.getInt32(VT->getNumElements());
  }

  Base = Base->IgnoreParens();

  if (const auto *CE = dyn_cast<CastExpr>(Base)) {
    if (CE->getCastKind() == CK_ArrayToPointerDecay &&
        !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
      IndexedType = CE->getSubExpr()->getType();
      const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
      if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
        return CGF.Builder.getInt(CAT->getSize());
      else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
        return CGF.getVLASize(VAT).NumElts;
      // Ignore pass_object_size here. It's not applicable on decayed pointers.
    }
  }

  QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
  if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
    IndexedType = Base->getType();
    return POS;
  }

  return nullptr;
}

void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
                                      llvm::Value *Index, QualType IndexType,
                                      bool Accessed) {
  assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
         "should not be called unless adding bounds checks");
  SanitizerScope SanScope(this);

  QualType IndexedType;
  llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
  if (!Bound)
    return;

  bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
  llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
  llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);

  llvm::Constant *StaticData[] = {
    EmitCheckSourceLocation(E->getExprLoc()),
    EmitCheckTypeDescriptor(IndexedType),
    EmitCheckTypeDescriptor(IndexType)
  };
  llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
                                : Builder.CreateICmpULE(IndexVal, BoundVal);
  EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
            SanitizerHandler::OutOfBounds, StaticData, Index);
}


CodeGenFunction::ComplexPairTy CodeGenFunction::
EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
                         bool isInc, bool isPre) {
  ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());

  llvm::Value *NextVal;
  if (isa<llvm::IntegerType>(InVal.first->getType())) {
    uint64_t AmountVal = isInc ? 1 : -1;
    NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);

    // Add the inc/dec to the real part.
    NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
  } else {
    QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
    llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
    if (!isInc)
      FVal.changeSign();
    NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);

    // Add the inc/dec to the real part.
    NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
  }

  ComplexPairTy IncVal(NextVal, InVal.second);

  // Store the updated result through the lvalue.
  EmitStoreOfComplex(IncVal, LV, /*init*/ false);
  if (getLangOpts().OpenMP)
    CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
                                                              E->getSubExpr());

  // If this is a postinc, return the value read from memory, otherwise use the
  // updated value.
  return isPre ? IncVal : InVal;
}

void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
                                             CodeGenFunction *CGF) {
  // Bind VLAs in the cast type.
  if (CGF && E->getType()->isVariablyModifiedType())
    CGF->EmitVariablyModifiedType(E->getType());

  if (CGDebugInfo *DI = getModuleDebugInfo())
    DI->EmitExplicitCastType(E->getType());
}

//===----------------------------------------------------------------------===//
//                         LValue Expression Emission
//===----------------------------------------------------------------------===//

/// EmitPointerWithAlignment - Given an expression of pointer type, try to
/// derive a more accurate bound on the alignment of the pointer.
Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
                                                  LValueBaseInfo *BaseInfo,
                                                  TBAAAccessInfo *TBAAInfo) {
  // We allow this with ObjC object pointers because of fragile ABIs.
  assert(E->getType()->isPointerType() ||
         E->getType()->isObjCObjectPointerType());
  E = E->IgnoreParens();

  // Casts:
  if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
    if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
      CGM.EmitExplicitCastExprType(ECE, this);

    switch (CE->getCastKind()) {
    // Non-converting casts (but not C's implicit conversion from void*).
    case CK_BitCast:
    case CK_NoOp:
    case CK_AddressSpaceConversion:
      if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
        if (PtrTy->getPointeeType()->isVoidType())
          break;

        LValueBaseInfo InnerBaseInfo;
        TBAAAccessInfo InnerTBAAInfo;
        Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
                                                &InnerBaseInfo,
                                                &InnerTBAAInfo);
        if (BaseInfo) *BaseInfo = InnerBaseInfo;
        if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;

        if (isa<ExplicitCastExpr>(CE)) {
          LValueBaseInfo TargetTypeBaseInfo;
          TBAAAccessInfo TargetTypeTBAAInfo;
          CharUnits Align = CGM.getNaturalPointeeTypeAlignment(
              E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
          if (TBAAInfo)
            *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
                                                 TargetTypeTBAAInfo);
          // If the source l-value is opaque, honor the alignment of the
          // casted-to type.
          if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
            if (BaseInfo)
              BaseInfo->mergeForCast(TargetTypeBaseInfo);
            Addr = Address(Addr.getPointer(), Align);
          }
        }

        if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
            CE->getCastKind() == CK_BitCast) {
          if (auto PT = E->getType()->getAs<PointerType>())
            EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
                                      /*MayBeNull=*/true,
                                      CodeGenFunction::CFITCK_UnrelatedCast,
                                      CE->getBeginLoc());
        }
        return CE->getCastKind() != CK_AddressSpaceConversion
                   ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
                   : Builder.CreateAddrSpaceCast(Addr,
                                                 ConvertType(E->getType()));
      }
      break;

    // Array-to-pointer decay.
    case CK_ArrayToPointerDecay:
      return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);

    // Derived-to-base conversions.
    case CK_UncheckedDerivedToBase:
    case CK_DerivedToBase: {
      // TODO: Support accesses to members of base classes in TBAA. For now, we
      // conservatively pretend that the complete object is of the base class
      // type.
      if (TBAAInfo)
        *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
      Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
      auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
      return GetAddressOfBaseClass(Addr, Derived,
                                   CE->path_begin(), CE->path_end(),
                                   ShouldNullCheckClassCastValue(CE),
                                   CE->getExprLoc());
    }

    // TODO: Is there any reason to treat base-to-derived conversions
    // specially?
    default:
      break;
    }
  }

  // Unary &.
  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
    if (UO->getOpcode() == UO_AddrOf) {
      LValue LV = EmitLValue(UO->getSubExpr());
      if (BaseInfo) *BaseInfo = LV.getBaseInfo();
      if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
      return LV.getAddress(*this);
    }
  }

  // TODO: conditional operators, comma.

  // Otherwise, use the alignment of the type.
  CharUnits Align =
      CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo);
  return Address(EmitScalarExpr(E), Align);
}

llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) {
  llvm::Value *V = RV.getScalarVal();
  if (auto MPT = T->getAs<MemberPointerType>())
    return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT);
  return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
}

RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
  if (Ty->isVoidType())
    return RValue::get(nullptr);

  switch (getEvaluationKind(Ty)) {
  case TEK_Complex: {
    llvm::Type *EltTy =
      ConvertType(Ty->castAs<ComplexType>()->getElementType());
    llvm::Value *U = llvm::UndefValue::get(EltTy);
    return RValue::getComplex(std::make_pair(U, U));
  }

  // If this is a use of an undefined aggregate type, the aggregate must have an
  // identifiable address.  Just because the contents of the value are undefined
  // doesn't mean that the address can't be taken and compared.
  case TEK_Aggregate: {
    Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
    return RValue::getAggregate(DestPtr);
  }

  case TEK_Scalar:
    return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
  }
  llvm_unreachable("bad evaluation kind");
}

RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
                                              const char *Name) {
  ErrorUnsupported(E, Name);
  return GetUndefRValue(E->getType());
}

LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
                                              const char *Name) {
  ErrorUnsupported(E, Name);
  llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
  return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
                        E->getType());
}

bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
  const Expr *Base = Obj;
  while (!isa<CXXThisExpr>(Base)) {
    // The result of a dynamic_cast can be null.
    if (isa<CXXDynamicCastExpr>(Base))
      return false;

    if (const auto *CE = dyn_cast<CastExpr>(Base)) {
      Base = CE->getSubExpr();
    } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
      Base = PE->getSubExpr();
    } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
      if (UO->getOpcode() == UO_Extension)
        Base = UO->getSubExpr();
      else
        return false;
    } else {
      return false;
    }
  }
  return true;
}

LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
  LValue LV;
  if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
    LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
  else
    LV = EmitLValue(E);
  if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
    SanitizerSet SkippedChecks;
    if (const auto *ME = dyn_cast<MemberExpr>(E)) {
      bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
      if (IsBaseCXXThis)
        SkippedChecks.set(SanitizerKind::Alignment, true);
      if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
        SkippedChecks.set(SanitizerKind::Null, true);
    }
    EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
                  LV.getAlignment(), SkippedChecks);
  }
  return LV;
}

/// EmitLValue - Emit code to compute a designator that specifies the location
/// of the expression.
///
/// This can return one of two things: a simple address or a bitfield reference.
/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
/// an LLVM pointer type.
///
/// If this returns a bitfield reference, nothing about the pointee type of the
/// LLVM value is known: For example, it may not be a pointer to an integer.
///
/// If this returns a normal address, and if the lvalue's C type is fixed size,
/// this method guarantees that the returned pointer type will point to an LLVM
/// type of the same size of the lvalue's type.  If the lvalue has a variable
/// length type, this is not possible.
///
LValue CodeGenFunction::EmitLValue(const Expr *E) {
  ApplyDebugLocation DL(*this, E);
  switch (E->getStmtClass()) {
  default: return EmitUnsupportedLValue(E, "l-value expression");

  case Expr::ObjCPropertyRefExprClass:
    llvm_unreachable("cannot emit a property reference directly");

  case Expr::ObjCSelectorExprClass:
    return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
  case Expr::ObjCIsaExprClass:
    return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
  case Expr::BinaryOperatorClass:
    return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
  case Expr::CompoundAssignOperatorClass: {
    QualType Ty = E->getType();
    if (const AtomicType *AT = Ty->getAs<AtomicType>())
      Ty = AT->getValueType();
    if (!Ty->isAnyComplexType())
      return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
    return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
  }
  case Expr::CallExprClass:
  case Expr::CXXMemberCallExprClass:
  case Expr::CXXOperatorCallExprClass:
  case Expr::UserDefinedLiteralClass:
    return EmitCallExprLValue(cast<CallExpr>(E));
  case Expr::CXXRewrittenBinaryOperatorClass:
    return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
  case Expr::VAArgExprClass:
    return EmitVAArgExprLValue(cast<VAArgExpr>(E));
  case Expr::DeclRefExprClass:
    return EmitDeclRefLValue(cast<DeclRefExpr>(E));
  case Expr::ConstantExprClass: {
    const ConstantExpr *CE = cast<ConstantExpr>(E);
    if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) {
      QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit())
                             ->getCallReturnType(getContext());
      return MakeNaturalAlignAddrLValue(Result, RetType);
    }
    return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
  }
  case Expr::ParenExprClass:
    return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
  case Expr::GenericSelectionExprClass:
    return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
  case Expr::PredefinedExprClass:
    return EmitPredefinedLValue(cast<PredefinedExpr>(E));
  case Expr::StringLiteralClass:
    return EmitStringLiteralLValue(cast<StringLiteral>(E));
  case Expr::ObjCEncodeExprClass:
    return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
  case Expr::PseudoObjectExprClass:
    return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
  case Expr::InitListExprClass:
    return EmitInitListLValue(cast<InitListExpr>(E));
  case Expr::CXXTemporaryObjectExprClass:
  case Expr::CXXConstructExprClass:
    return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
  case Expr::CXXBindTemporaryExprClass:
    return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
  case Expr::CXXUuidofExprClass:
    return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
  case Expr::LambdaExprClass:
    return EmitAggExprToLValue(E);

  case Expr::ExprWithCleanupsClass: {
    const auto *cleanups = cast<ExprWithCleanups>(E);
    RunCleanupsScope Scope(*this);
    LValue LV = EmitLValue(cleanups->getSubExpr());
    if (LV.isSimple()) {
      // Defend against branches out of gnu statement expressions surrounded by
      // cleanups.
      llvm::Value *V = LV.getPointer(*this);
      Scope.ForceCleanup({&V});
      return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
                              getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
    }
    // FIXME: Is it possible to create an ExprWithCleanups that produces a
    // bitfield lvalue or some other non-simple lvalue?
    return LV;
  }

  case Expr::CXXDefaultArgExprClass: {
    auto *DAE = cast<CXXDefaultArgExpr>(E);
    CXXDefaultArgExprScope Scope(*this, DAE);
    return EmitLValue(DAE->getExpr());
  }
  case Expr::CXXDefaultInitExprClass: {
    auto *DIE = cast<CXXDefaultInitExpr>(E);
    CXXDefaultInitExprScope Scope(*this, DIE);
    return EmitLValue(DIE->getExpr());
  }
  case Expr::CXXTypeidExprClass:
    return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));

  case Expr::ObjCMessageExprClass:
    return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
  case Expr::ObjCIvarRefExprClass:
    return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
  case Expr::StmtExprClass:
    return EmitStmtExprLValue(cast<StmtExpr>(E));
  case Expr::UnaryOperatorClass:
    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
  case Expr::ArraySubscriptExprClass:
    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
  case Expr::MatrixSubscriptExprClass:
    return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E));
  case Expr::OMPArraySectionExprClass:
    return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
  case Expr::ExtVectorElementExprClass:
    return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
  case Expr::MemberExprClass:
    return EmitMemberExpr(cast<MemberExpr>(E));
  case Expr::CompoundLiteralExprClass:
    return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
  case Expr::ConditionalOperatorClass:
    return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
  case Expr::BinaryConditionalOperatorClass:
    return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
  case Expr::ChooseExprClass:
    return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
  case Expr::OpaqueValueExprClass:
    return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
  case Expr::SubstNonTypeTemplateParmExprClass:
    return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
  case Expr::ImplicitCastExprClass:
  case Expr::CStyleCastExprClass:
  case Expr::CXXFunctionalCastExprClass:
  case Expr::CXXStaticCastExprClass:
  case Expr::CXXDynamicCastExprClass:
  case Expr::CXXReinterpretCastExprClass:
  case Expr::CXXConstCastExprClass:
  case Expr::CXXAddrspaceCastExprClass:
  case Expr::ObjCBridgedCastExprClass:
    return EmitCastLValue(cast<CastExpr>(E));

  case Expr::MaterializeTemporaryExprClass:
    return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));

  case Expr::CoawaitExprClass:
    return EmitCoawaitLValue(cast<CoawaitExpr>(E));
  case Expr::CoyieldExprClass:
    return EmitCoyieldLValue(cast<CoyieldExpr>(E));
  }
}

/// Given an object of the given canonical type, can we safely copy a
/// value out of it based on its initializer?
static bool isConstantEmittableObjectType(QualType type) {
  assert(type.isCanonical());
  assert(!type->isReferenceType());

  // Must be const-qualified but non-volatile.
  Qualifiers qs = type.getLocalQualifiers();
  if (!qs.hasConst() || qs.hasVolatile()) return false;

  // Otherwise, all object types satisfy this except C++ classes with
  // mutable subobjects or non-trivial copy/destroy behavior.
  if (const auto *RT = dyn_cast<RecordType>(type))
    if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
      if (RD->hasMutableFields() || !RD->isTrivial())
        return false;

  return true;
}

/// Can we constant-emit a load of a reference to a variable of the
/// given type?  This is different from predicates like
/// Decl::mightBeUsableInConstantExpressions because we do want it to apply
/// in situations that don't necessarily satisfy the language's rules
/// for this (e.g. C++'s ODR-use rules).  For example, we want to able
/// to do this with const float variables even if those variables
/// aren't marked 'constexpr'.
enum ConstantEmissionKind {
  CEK_None,
  CEK_AsReferenceOnly,
  CEK_AsValueOrReference,
  CEK_AsValueOnly
};
static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
  type = type.getCanonicalType();
  if (const auto *ref = dyn_cast<ReferenceType>(type)) {
    if (isConstantEmittableObjectType(ref->getPointeeType()))
      return CEK_AsValueOrReference;
    return CEK_AsReferenceOnly;
  }
  if (isConstantEmittableObjectType(type))
    return CEK_AsValueOnly;
  return CEK_None;
}

/// Try to emit a reference to the given value without producing it as
/// an l-value.  This is just an optimization, but it avoids us needing
/// to emit global copies of variables if they're named without triggering
/// a formal use in a context where we can't emit a direct reference to them,
/// for instance if a block or lambda or a member of a local class uses a
/// const int variable or constexpr variable from an enclosing function.
CodeGenFunction::ConstantEmission
CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
  ValueDecl *value = refExpr->getDecl();

  // The value needs to be an enum constant or a constant variable.
  ConstantEmissionKind CEK;
  if (isa<ParmVarDecl>(value)) {
    CEK = CEK_None;
  } else if (auto *var = dyn_cast<VarDecl>(value)) {
    CEK = checkVarTypeForConstantEmission(var->getType());
  } else if (isa<EnumConstantDecl>(value)) {
    CEK = CEK_AsValueOnly;
  } else {
    CEK = CEK_None;
  }
  if (CEK == CEK_None) return ConstantEmission();

  Expr::EvalResult result;
  bool resultIsReference;
  QualType resultType;

  // It's best to evaluate all the way as an r-value if that's permitted.
  if (CEK != CEK_AsReferenceOnly &&
      refExpr->EvaluateAsRValue(result, getContext())) {
    resultIsReference = false;
    resultType = refExpr->getType();

  // Otherwise, try to evaluate as an l-value.
  } else if (CEK != CEK_AsValueOnly &&
             refExpr->EvaluateAsLValue(result, getContext())) {
    resultIsReference = true;
    resultType = value->getType();

  // Failure.
  } else {
    return ConstantEmission();
  }

  // In any case, if the initializer has side-effects, abandon ship.
  if (result.HasSideEffects)
    return ConstantEmission();

  // Emit as a constant.
  auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
                                               result.Val, resultType);

  // Make sure we emit a debug reference to the global variable.
  // This should probably fire even for
  if (isa<VarDecl>(value)) {
    if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
      EmitDeclRefExprDbgValue(refExpr, result.Val);
  } else {
    assert(isa<EnumConstantDecl>(value));
    EmitDeclRefExprDbgValue(refExpr, result.Val);
  }

  // If we emitted a reference constant, we need to dereference that.
  if (resultIsReference)
    return ConstantEmission::forReference(C);

  return ConstantEmission::forValue(C);
}

static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
                                                        const MemberExpr *ME) {
  if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
    // Try to emit static variable member expressions as DREs.
    return DeclRefExpr::Create(
        CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
        /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
        ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
  }
  return nullptr;
}

CodeGenFunction::ConstantEmission
CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
  if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
    return tryEmitAsConstant(DRE);
  return ConstantEmission();
}

llvm::Value *CodeGenFunction::emitScalarConstant(
    const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
  assert(Constant && "not a constant");
  if (Constant.isReference())
    return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
                            E->getExprLoc())
        .getScalarVal();
  return Constant.getValue();
}

llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
                                               SourceLocation Loc) {
  return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
                          lvalue.getType(), Loc, lvalue.getBaseInfo(),
                          lvalue.getTBAAInfo(), lvalue.isNontemporal());
}

static bool hasBooleanRepresentation(QualType Ty) {
  if (Ty->isBooleanType())
    return true;

  if (const EnumType *ET = Ty->getAs<EnumType>())
    return ET->getDecl()->getIntegerType()->isBooleanType();

  if (const AtomicType *AT = Ty->getAs<AtomicType>())
    return hasBooleanRepresentation(AT->getValueType());

  return false;
}

static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
                            llvm::APInt &Min, llvm::APInt &End,
                            bool StrictEnums, bool IsBool) {
  const EnumType *ET = Ty->getAs<EnumType>();
  bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
                                ET && !ET->getDecl()->isFixed();
  if (!IsBool && !IsRegularCPlusPlusEnum)
    return false;

  if (IsBool) {
    Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
    End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
  } else {
    const EnumDecl *ED = ET->getDecl();
    llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
    unsigned Bitwidth = LTy->getScalarSizeInBits();
    unsigned NumNegativeBits = ED->getNumNegativeBits();
    unsigned NumPositiveBits = ED->getNumPositiveBits();

    if (NumNegativeBits) {
      unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
      assert(NumBits <= Bitwidth);
      End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
      Min = -End;
    } else {
      assert(NumPositiveBits <= Bitwidth);
      End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
      Min = llvm::APInt(Bitwidth, 0);
    }
  }
  return true;
}

llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
  llvm::APInt Min, End;
  if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
                       hasBooleanRepresentation(Ty)))
    return nullptr;

  llvm::MDBuilder MDHelper(getLLVMContext());
  return MDHelper.createRange(Min, End);
}

bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
                                           SourceLocation Loc) {
  bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
  bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
  if (!HasBoolCheck && !HasEnumCheck)
    return false;

  bool IsBool = hasBooleanRepresentation(Ty) ||
                NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
  bool NeedsBoolCheck = HasBoolCheck && IsBool;
  bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
  if (!NeedsBoolCheck && !NeedsEnumCheck)
    return false;

  // Single-bit booleans don't need to be checked. Special-case this to avoid
  // a bit width mismatch when handling bitfield values. This is handled by
  // EmitFromMemory for the non-bitfield case.
  if (IsBool &&
      cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
    return false;

  llvm::APInt Min, End;
  if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
    return true;

  auto &Ctx = getLLVMContext();
  SanitizerScope SanScope(this);
  llvm::Value *Check;
  --End;
  if (!Min) {
    Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
  } else {
    llvm::Value *Upper =
        Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
    llvm::Value *Lower =
        Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
    Check = Builder.CreateAnd(Upper, Lower);
  }
  llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
                                  EmitCheckTypeDescriptor(Ty)};
  SanitizerMask Kind =
      NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
  EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
            StaticArgs, EmitCheckValue(Value));
  return true;
}

llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
                                               QualType Ty,
                                               SourceLocation Loc,
                                               LValueBaseInfo BaseInfo,
                                               TBAAAccessInfo TBAAInfo,
                                               bool isNontemporal) {
  if (!CGM.getCodeGenOpts().PreserveVec3Type) {
    // For better performance, handle vector loads differently.
    if (Ty->isVectorType()) {
      const llvm::Type *EltTy = Addr.getElementType();

      const auto *VTy = cast<llvm::FixedVectorType>(EltTy);

      // Handle vectors of size 3 like size 4 for better performance.
      if (VTy->getNumElements() == 3) {

        // Bitcast to vec4 type.
        auto *vec4Ty = llvm::FixedVectorType::get(VTy->getElementType(), 4);
        Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
        // Now load value.
        llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");

        // Shuffle vector to get vec3.
        V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
                                        ArrayRef<int>{0, 1, 2}, "extractVec");
        return EmitFromMemory(V, Ty);
      }
    }
  }

  // Atomic operations have to be done on integral types.
  LValue AtomicLValue =
      LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
  if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
    return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
  }

  llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
  if (isNontemporal) {
    llvm::MDNode *Node = llvm::MDNode::get(
        Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
    Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
  }

  CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);

  if (EmitScalarRangeCheck(Load, Ty, Loc)) {
    // In order to prevent the optimizer from throwing away the check, don't
    // attach range metadata to the load.
  } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
    if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
      Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);

  return EmitFromMemory(Load, Ty);
}

llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
  // Bool has a different representation in memory than in registers.
  if (hasBooleanRepresentation(Ty)) {
    // This should really always be an i1, but sometimes it's already
    // an i8, and it's awkward to track those cases down.
    if (Value->getType()->isIntegerTy(1))
      return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
           "wrong value rep of bool");
  }

  return Value;
}

llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
  // Bool has a different representation in memory than in registers.
  if (hasBooleanRepresentation(Ty)) {
    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
           "wrong value rep of bool");
    return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
  }

  return Value;
}

// Convert the pointer of \p Addr to a pointer to a vector (the value type of
// MatrixType), if it points to a array (the memory type of MatrixType).
static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
                                         bool IsVector = true) {
  auto *ArrayTy = dyn_cast<llvm::ArrayType>(
      cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
  if (ArrayTy && IsVector) {
    auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
                                                ArrayTy->getNumElements());

    return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy));
  }
  auto *VectorTy = dyn_cast<llvm::VectorType>(
      cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
  if (VectorTy && !IsVector) {
    auto *ArrayTy = llvm::ArrayType::get(
        VectorTy->getElementType(),
        cast<llvm::FixedVectorType>(VectorTy)->getNumElements());

    return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy));
  }

  return Addr;
}

// Emit a store of a matrix LValue. This may require casting the original
// pointer to memory address (ArrayType) to a pointer to the value type
// (VectorType).
static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
                                    bool isInit, CodeGenFunction &CGF) {
  Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
                                           value->getType()->isVectorTy());
  CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
                        lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
                        lvalue.isNontemporal());
}

void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
                                        bool Volatile, QualType Ty,
                                        LValueBaseInfo BaseInfo,
                                        TBAAAccessInfo TBAAInfo,
                                        bool isInit, bool isNontemporal) {
  if (!CGM.getCodeGenOpts().PreserveVec3Type) {
    // Handle vectors differently to get better performance.
    if (Ty->isVectorType()) {
      llvm::Type *SrcTy = Value->getType();
      auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
      // Handle vec3 special.
      if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) {
        // Our source is a vec3, do a shuffle vector to make it a vec4.
        Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
                                            ArrayRef<int>{0, 1, 2, -1},
                                            "extractVec");
        SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4);
      }
      if (Addr.getElementType() != SrcTy) {
        Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
      }
    }
  }

  Value = EmitToMemory(Value, Ty);

  LValue AtomicLValue =
      LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
  if (Ty->isAtomicType() ||
      (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
    EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
    return;
  }

  llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
  if (isNontemporal) {
    llvm::MDNode *Node =
        llvm::MDNode::get(Store->getContext(),
                          llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
    Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
  }

  CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
}

void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
                                        bool isInit) {
  if (lvalue.getType()->isConstantMatrixType()) {
    EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
    return;
  }

  EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
                    lvalue.getType(), lvalue.getBaseInfo(),
                    lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
}

// Emit a load of a LValue of matrix type. This may require casting the pointer
// to memory address (ArrayType) to a pointer to the value type (VectorType).
static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
                                     CodeGenFunction &CGF) {
  assert(LV.getType()->isConstantMatrixType());
  Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
  LV.setAddress(Addr);
  return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
}

/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
/// method emits the address of the lvalue, then loads the result as an rvalue,
/// returning the rvalue.
RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
  if (LV.isObjCWeak()) {
    // load of a __weak object.
    Address AddrWeakObj = LV.getAddress(*this);
    return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
                                                             AddrWeakObj));
  }
  if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
    // In MRC mode, we do a load+autorelease.
    if (!getLangOpts().ObjCAutoRefCount) {
      return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
    }

    // In ARC mode, we load retained and then consume the value.
    llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
    Object = EmitObjCConsumeObject(LV.getType(), Object);
    return RValue::get(Object);
  }

  if (LV.isSimple()) {
    assert(!LV.getType()->isFunctionType());

    if (LV.getType()->isConstantMatrixType())
      return EmitLoadOfMatrixLValue(LV, Loc, *this);

    // Everything needs a load.
    return RValue::get(EmitLoadOfScalar(LV, Loc));
  }

  if (LV.isVectorElt()) {
    llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
                                              LV.isVolatileQualified());
    return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
                                                    "vecext"));
  }

  // If this is a reference to a subset of the elements of a vector, either
  // shuffle the input or extract/insert them as appropriate.
  if (LV.isExtVectorElt()) {
    return EmitLoadOfExtVectorElementLValue(LV);
  }

  // Global Register variables always invoke intrinsics
  if (LV.isGlobalReg())
    return EmitLoadOfGlobalRegLValue(LV);

  if (LV.isMatrixElt()) {
    llvm::LoadInst *Load =
        Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified());
    return RValue::get(
        Builder.CreateExtractElement(Load, LV.getMatrixIdx(), "matrixext"));
  }

  assert(LV.isBitField() && "Unknown LValue type!");
  return EmitLoadOfBitfieldLValue(LV, Loc);
}

RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
                                                 SourceLocation Loc) {
  const CGBitFieldInfo &Info = LV.getBitFieldInfo();

  // Get the output type.
  llvm::Type *ResLTy = ConvertType(LV.getType());

  Address Ptr = LV.getBitFieldAddress();
  llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");

  if (Info.IsSigned) {
    assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
    unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
    if (HighBits)
      Val = Builder.CreateShl(Val, HighBits, "bf.shl");
    if (Info.Offset + HighBits)
      Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
  } else {
    if (Info.Offset)
      Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
    if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
      Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
                                                              Info.Size),
                              "bf.clear");
  }
  Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
  EmitScalarRangeCheck(Val, LV.getType(), Loc);
  return RValue::get(Val);
}

// If this is a reference to a subset of the elements of a vector, create an
// appropriate shufflevector.
RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
  llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
                                        LV.isVolatileQualified());

  const llvm::Constant *Elts = LV.getExtVectorElts();

  // If the result of the expression is a non-vector type, we must be extracting
  // a single element.  Just codegen as an extractelement.
  const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
  if (!ExprVT) {
    unsigned InIdx = getAccessedFieldNo(0, Elts);
    llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
    return RValue::get(Builder.CreateExtractElement(Vec, Elt));
  }

  // Always use shuffle vector to try to retain the original program structure
  unsigned NumResultElts = ExprVT->getNumElements();

  SmallVector<int, 4> Mask;
  for (unsigned i = 0; i != NumResultElts; ++i)
    Mask.push_back(getAccessedFieldNo(i, Elts));

  Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
                                    Mask);
  return RValue::get(Vec);
}

/// Generates lvalue for partial ext_vector access.
Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
  Address VectorAddress = LV.getExtVectorAddress();
  QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
  llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);

  Address CastToPointerElement =
    Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
                                 "conv.ptr.element");

  const llvm::Constant *Elts = LV.getExtVectorElts();
  unsigned ix = getAccessedFieldNo(0, Elts);

  Address VectorBasePtrPlusIx =
    Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
                                   "vector.elt");

  return VectorBasePtrPlusIx;
}

/// Load of global gamed gegisters are always calls to intrinsics.
RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
  assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
         "Bad type for register variable");
  llvm::MDNode *RegName = cast<llvm::MDNode>(
      cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());

  // We accept integer and pointer types only
  llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
  llvm::Type *Ty = OrigTy;
  if (OrigTy->isPointerTy())
    Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
  llvm::Type *Types[] = { Ty };

  llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
  llvm::Value *Call = Builder.CreateCall(
      F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
  if (OrigTy->isPointerTy())
    Call = Builder.CreateIntToPtr(Call, OrigTy);
  return RValue::get(Call);
}

/// EmitStoreThroughLValue - Store the specified rvalue into the specified
/// lvalue, where both are guaranteed to the have the same type, and that type
/// is 'Ty'.
void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
                                             bool isInit) {
  if (!Dst.isSimple()) {
    if (Dst.isVectorElt()) {
      // Read/modify/write the vector, inserting the new element.
      llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
                                            Dst.isVolatileQualified());
      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
                                        Dst.getVectorIdx(), "vecins");
      Builder.CreateStore(Vec, Dst.getVectorAddress(),
                          Dst.isVolatileQualified());
      return;
    }

    // If this is an update of extended vector elements, insert them as
    // appropriate.
    if (Dst.isExtVectorElt())
      return EmitStoreThroughExtVectorComponentLValue(Src, Dst);

    if (Dst.isGlobalReg())
      return EmitStoreThroughGlobalRegLValue(Src, Dst);

    if (Dst.isMatrixElt()) {
      llvm::Value *Vec = Builder.CreateLoad(Dst.getMatrixAddress());
      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
                                        Dst.getMatrixIdx(), "matins");
      Builder.CreateStore(Vec, Dst.getMatrixAddress(),
                          Dst.isVolatileQualified());
      return;
    }

    assert(Dst.isBitField() && "Unknown LValue type");
    return EmitStoreThroughBitfieldLValue(Src, Dst);
  }

  // There's special magic for assigning into an ARC-qualified l-value.
  if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
    switch (Lifetime) {
    case Qualifiers::OCL_None:
      llvm_unreachable("present but none");

    case Qualifiers::OCL_ExplicitNone:
      // nothing special
      break;

    case Qualifiers::OCL_Strong:
      if (isInit) {
        Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
        break;
      }
      EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
      return;

    case Qualifiers::OCL_Weak:
      if (isInit)
        // Initialize and then skip the primitive store.
        EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
      else
        EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
                         /*ignore*/ true);
      return;

    case Qualifiers::OCL_Autoreleasing:
      Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
                                                     Src.getScalarVal()));
      // fall into the normal path
      break;
    }
  }

  if (Dst.isObjCWeak() && !Dst.isNonGC()) {
    // load of a __weak object.
    Address LvalueDst = Dst.getAddress(*this);
    llvm::Value *src = Src.getScalarVal();
     CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
    return;
  }

  if (Dst.isObjCStrong() && !Dst.isNonGC()) {
    // load of a __strong object.
    Address LvalueDst = Dst.getAddress(*this);
    llvm::Value *src = Src.getScalarVal();
    if (Dst.isObjCIvar()) {
      assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
      llvm::Type *ResultType = IntPtrTy;
      Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
      llvm::Value *RHS = dst.getPointer();
      RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
      llvm::Value *LHS =
        Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
                               "sub.ptr.lhs.cast");
      llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
      CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
                                              BytesBetween);
    } else if (Dst.isGlobalObjCRef()) {
      CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
                                                Dst.isThreadLocalRef());
    }
    else
      CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
    return;
  }

  assert(Src.isScalar() && "Can't emit an agg store with this method");
  EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
}

void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
                                                     llvm::Value **Result) {
  const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
  llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
  Address Ptr = Dst.getBitFieldAddress();

  // Get the source value, truncated to the width of the bit-field.
  llvm::Value *SrcVal = Src.getScalarVal();

  // Cast the source to the storage type and shift it into place.
  SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
                                 /*isSigned=*/false);
  llvm::Value *MaskedVal = SrcVal;

  // See if there are other bits in the bitfield's storage we'll need to load
  // and mask together with source before storing.
  if (Info.StorageSize != Info.Size) {
    assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
    llvm::Value *Val =
      Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");

    // Mask the source value as needed.
    if (!hasBooleanRepresentation(Dst.getType()))
      SrcVal = Builder.CreateAnd(SrcVal,
                                 llvm::APInt::getLowBitsSet(Info.StorageSize,
                                                            Info.Size),
                                 "bf.value");
    MaskedVal = SrcVal;
    if (Info.Offset)
      SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");

    // Mask out the original value.
    Val = Builder.CreateAnd(Val,
                            ~llvm::APInt::getBitsSet(Info.StorageSize,
                                                     Info.Offset,
                                                     Info.Offset + Info.Size),
                            "bf.clear");

    // Or together the unchanged values and the source value.
    SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
  } else {
    assert(Info.Offset == 0);
    // According to the AACPS:
    // When a volatile bit-field is written, and its container does not overlap
    // with any non-bit-field member, its container must be read exactly once and
    // written exactly once using the access width appropriate to the type of the
    // container. The two accesses are not atomic.
    if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
        CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
      Builder.CreateLoad(Ptr, true, "bf.load");
  }

  // Write the new value back out.
  Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());

  // Return the new value of the bit-field, if requested.
  if (Result) {
    llvm::Value *ResultVal = MaskedVal;

    // Sign extend the value if needed.
    if (Info.IsSigned) {
      assert(Info.Size <= Info.StorageSize);
      unsigned HighBits = Info.StorageSize - Info.Size;
      if (HighBits) {
        ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
        ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
      }
    }

    ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
                                      "bf.result.cast");
    *Result = EmitFromMemory(ResultVal, Dst.getType());
  }
}

void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
                                                               LValue Dst) {
  // This access turns into a read/modify/write of the vector.  Load the input
  // value now.
  llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
                                        Dst.isVolatileQualified());
  const llvm::Constant *Elts = Dst.getExtVectorElts();

  llvm::Value *SrcVal = Src.getScalarVal();

  if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
    unsigned NumSrcElts = VTy->getNumElements();
    unsigned NumDstElts =
        cast<llvm::FixedVectorType>(Vec->getType())->getNumElements();
    if (NumDstElts == NumSrcElts) {
      // Use shuffle vector is the src and destination are the same number of
      // elements and restore the vector mask since it is on the side it will be
      // stored.
      SmallVector<int, 4> Mask(NumDstElts);
      for (unsigned i = 0; i != NumSrcElts; ++i)
        Mask[getAccessedFieldNo(i, Elts)] = i;

      Vec = Builder.CreateShuffleVector(
          SrcVal, llvm::UndefValue::get(Vec->getType()), Mask);
    } else if (NumDstElts > NumSrcElts) {
      // Extended the source vector to the same length and then shuffle it
      // into the destination.
      // FIXME: since we're shuffling with undef, can we just use the indices
      //        into that?  This could be simpler.
      SmallVector<int, 4> ExtMask;
      for (unsigned i = 0; i != NumSrcElts; ++i)
        ExtMask.push_back(i);
      ExtMask.resize(NumDstElts, -1);
      llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(
          SrcVal, llvm::UndefValue::get(SrcVal->getType()), ExtMask);
      // build identity
      SmallVector<int, 4> Mask;
      for (unsigned i = 0; i != NumDstElts; ++i)
        Mask.push_back(i);

      // When the vector size is odd and .odd or .hi is used, the last element
      // of the Elts constant array will be one past the size of the vector.
      // Ignore the last element here, if it is greater than the mask size.
      if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
        NumSrcElts--;

      // modify when what gets shuffled in
      for (unsigned i = 0; i != NumSrcElts; ++i)
        Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
      Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
    } else {
      // We should never shorten the vector
      llvm_unreachable("unexpected shorten vector length");
    }
  } else {
    // If the Src is a scalar (not a vector) it must be updating one element.
    unsigned InIdx = getAccessedFieldNo(0, Elts);
    llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
  }

  Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
                      Dst.isVolatileQualified());
}

/// Store of global named registers are always calls to intrinsics.
void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
  assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
         "Bad type for register variable");
  llvm::MDNode *RegName = cast<llvm::MDNode>(
      cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
  assert(RegName && "Register LValue is not metadata");

  // We accept integer and pointer types only
  llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
  llvm::Type *Ty = OrigTy;
  if (OrigTy->isPointerTy())
    Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
  llvm::Type *Types[] = { Ty };

  llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
  llvm::Value *Value = Src.getScalarVal();
  if (OrigTy->isPointerTy())
    Value = Builder.CreatePtrToInt(Value, Ty);
  Builder.CreateCall(
      F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
}

// setObjCGCLValueClass - sets class of the lvalue for the purpose of
// generating write-barries API. It is currently a global, ivar,
// or neither.
static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
                                 LValue &LV,
                                 bool IsMemberAccess=false) {
  if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
    return;

  if (isa<ObjCIvarRefExpr>(E)) {
    QualType ExpTy = E->getType();
    if (IsMemberAccess && ExpTy->isPointerType()) {
      // If ivar is a structure pointer, assigning to field of
      // this struct follows gcc's behavior and makes it a non-ivar
      // writer-barrier conservatively.
      ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
      if (ExpTy->isRecordType()) {
        LV.setObjCIvar(false);
        return;
      }
    }
    LV.setObjCIvar(true);
    auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
    LV.setBaseIvarExp(Exp->getBase());
    LV.setObjCArray(E->getType()->isArrayType());
    return;
  }

  if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
    if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
      if (VD->hasGlobalStorage()) {
        LV.setGlobalObjCRef(true);
        LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
      }
    }
    LV.setObjCArray(E->getType()->isArrayType());
    return;
  }

  if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
    return;
  }

  if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
    if (LV.isObjCIvar()) {
      // If cast is to a structure pointer, follow gcc's behavior and make it
      // a non-ivar write-barrier.
      QualType ExpTy = E->getType();
      if (ExpTy->isPointerType())
        ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
      if (ExpTy->isRecordType())
        LV.setObjCIvar(false);
    }
    return;
  }

  if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
    setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
    return;
  }

  if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
    return;
  }

  if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
    return;
  }

  if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
    return;
  }

  if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
    setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
    if (LV.isObjCIvar() && !LV.isObjCArray())
      // Using array syntax to assigning to what an ivar points to is not
      // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
      LV.setObjCIvar(false);
    else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
      // Using array syntax to assigning to what global points to is not
      // same as assigning to the global itself. {id *G;} G[i] = 0;
      LV.setGlobalObjCRef(false);
    return;
  }

  if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
    setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
    // We don't know if member is an 'ivar', but this flag is looked at
    // only in the context of LV.isObjCIvar().
    LV.setObjCArray(E->getType()->isArrayType());
    return;
  }
}

static llvm::Value *
EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
                                llvm::Value *V, llvm::Type *IRType,
                                StringRef Name = StringRef()) {
  unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
  return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
}

static LValue EmitThreadPrivateVarDeclLValue(
    CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
    llvm::Type *RealVarTy, SourceLocation Loc) {
  if (CGF.CGM.getLangOpts().OpenMPIRBuilder)
    Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
        CGF, VD, Addr, Loc);
  else
    Addr =
        CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);

  Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
  return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
}

static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
                                           const VarDecl *VD, QualType T) {
  llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
      OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
  // Return an invalid address if variable is MT_To and unified
  // memory is not enabled. For all other cases: MT_Link and
  // MT_To with unified memory, return a valid address.
  if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
               !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
    return Address::invalid();
  assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
          (*Res == OMPDeclareTargetDeclAttr::MT_To &&
           CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
         "Expected link clause OR to clause with unified memory enabled.");
  QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
  Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
  return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
}

Address
CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
                                     LValueBaseInfo *PointeeBaseInfo,
                                     TBAAAccessInfo *PointeeTBAAInfo) {
  llvm::LoadInst *Load =
      Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
  CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());

  CharUnits Align = CGM.getNaturalTypeAlignment(
      RefLVal.getType()->getPointeeType(), PointeeBaseInfo, PointeeTBAAInfo,
      /* forPointeeType= */ true);
  return Address(Load, Align);
}

LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
  LValueBaseInfo PointeeBaseInfo;
  TBAAAccessInfo PointeeTBAAInfo;
  Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
                                            &PointeeTBAAInfo);
  return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
                        PointeeBaseInfo, PointeeTBAAInfo);
}

Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
                                           const PointerType *PtrTy,
                                           LValueBaseInfo *BaseInfo,
                                           TBAAAccessInfo *TBAAInfo) {
  llvm::Value *Addr = Builder.CreateLoad(Ptr);
  return Address(Addr, CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(),
                                                   BaseInfo, TBAAInfo,
                                                   /*forPointeeType=*/true));
}

LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
                                                const PointerType *PtrTy) {
  LValueBaseInfo BaseInfo;
  TBAAAccessInfo TBAAInfo;
  Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
  return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
}

static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
                                      const Expr *E, const VarDecl *VD) {
  QualType T = E->getType();

  // If it's thread_local, emit a call to its wrapper function instead.
  if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
      CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
    return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
  // Check if the variable is marked as declare target with link clause in
  // device codegen.
  if (CGF.getLangOpts().OpenMPIsDevice) {
    Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
    if (Addr.isValid())
      return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
  }

  llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
  llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
  V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
  CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
  Address Addr(V, Alignment);
  // Emit reference to the private copy of the variable if it is an OpenMP
  // threadprivate variable.
  if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
      VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
    return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
                                          E->getExprLoc());
  }
  LValue LV = VD->getType()->isReferenceType() ?
      CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
                                    AlignmentSource::Decl) :
      CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
  setObjCGCLValueClass(CGF.getContext(), E, LV);
  return LV;
}

static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
                                               GlobalDecl GD) {
  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
  if (FD->hasAttr<WeakRefAttr>()) {
    ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
    return aliasee.getPointer();
  }

  llvm::Constant *V = CGM.GetAddrOfFunction(GD);
  if (!FD->hasPrototype()) {
    if (const FunctionProtoType *Proto =
            FD->getType()->getAs<FunctionProtoType>()) {
      // Ugly case: for a K&R-style definition, the type of the definition
      // isn't the same as the type of a use.  Correct for this with a
      // bitcast.
      QualType NoProtoType =
          CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
      NoProtoType = CGM.getContext().getPointerType(NoProtoType);
      V = llvm::ConstantExpr::getBitCast(V,
                                      CGM.getTypes().ConvertType(NoProtoType));
    }
  }
  return V;
}

static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
                                     GlobalDecl GD) {
  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
  llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
  CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
  return CGF.MakeAddrLValue(V, E->getType(), Alignment,
                            AlignmentSource::Decl);
}

static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
                                      llvm::Value *ThisValue) {
  QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
  LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
  return CGF.EmitLValueForField(LV, FD);
}

/// Named Registers are named metadata pointing to the register name
/// which will be read from/written to as an argument to the intrinsic
/// @llvm.read/write_register.
/// So far, only the name is being passed down, but other options such as
/// register type, allocation type or even optimization options could be
/// passed down via the metadata node.
static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
  SmallString<64> Name("llvm.named.register.");
  AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
  assert(Asm->getLabel().size() < 64-Name.size() &&
      "Register name too big");
  Name.append(Asm->getLabel());
  llvm::NamedMDNode *M =
    CGM.getModule().getOrInsertNamedMetadata(Name);
  if (M->getNumOperands() == 0) {
    llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
                                              Asm->getLabel());
    llvm::Metadata *Ops[] = {Str};
    M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
  }

  CharUnits Alignment = CGM.getContext().getDeclAlign(VD);

  llvm::Value *Ptr =
    llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
  return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
}

/// Determine whether we can emit a reference to \p VD from the current
/// context, despite not necessarily having seen an odr-use of the variable in
/// this context.
static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
                                               const DeclRefExpr *E,
                                               const VarDecl *VD,
                                               bool IsConstant) {
  // For a variable declared in an enclosing scope, do not emit a spurious
  // reference even if we have a capture, as that will emit an unwarranted
  // reference to our capture state, and will likely generate worse code than
  // emitting a local copy.
  if (E->refersToEnclosingVariableOrCapture())
    return false;

  // For a local declaration declared in this function, we can always reference
  // it even if we don't have an odr-use.
  if (VD->hasLocalStorage()) {
    return VD->getDeclContext() ==
           dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
  }

  // For a global declaration, we can emit a reference to it if we know
  // for sure that we are able to emit a definition of it.
  VD = VD->getDefinition(CGF.getContext());
  if (!VD)
    return false;

  // Don't emit a spurious reference if it might be to a variable that only
  // exists on a different device / target.
  // FIXME: This is unnecessarily broad. Check whether this would actually be a
  // cross-target reference.
  if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
      CGF.getLangOpts().OpenCL) {
    return false;
  }

  // We can emit a spurious reference only if the linkage implies that we'll
  // be emitting a non-interposable symbol that will be retained until link
  // time.
  switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
  case llvm::GlobalValue::ExternalLinkage:
  case llvm::GlobalValue::LinkOnceODRLinkage:
  case llvm::GlobalValue::WeakODRLinkage:
  case llvm::GlobalValue::InternalLinkage:
  case llvm::GlobalValue::PrivateLinkage:
    return true;
  default:
    return false;
  }
}

LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
  const NamedDecl *ND = E->getDecl();
  QualType T = E->getType();

  assert(E->isNonOdrUse() != NOUR_Unevaluated &&
         "should not emit an unevaluated operand");

  if (const auto *VD = dyn_cast<VarDecl>(ND)) {
    // Global Named registers access via intrinsics only
    if (VD->getStorageClass() == SC_Register &&
        VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
      return EmitGlobalNamedRegister(VD, CGM);

    // If this DeclRefExpr does not constitute an odr-use of the variable,
    // we're not permitted to emit a reference to it in general, and it might
    // not be captured if capture would be necessary for a use. Emit the
    // constant value directly instead.
    if (E->isNonOdrUse() == NOUR_Constant &&
        (VD->getType()->isReferenceType() ||
         !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
      VD->getAnyInitializer(VD);
      llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
          E->getLocation(), *VD->evaluateValue(), VD->getType());
      assert(Val && "failed to emit constant expression");

      Address Addr = Address::invalid();
      if (!VD->getType()->isReferenceType()) {
        // Spill the constant value to a global.
        Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
                                           getContext().getDeclAlign(VD));
        llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
        auto *PTy = llvm::PointerType::get(
            VarTy, getContext().getTargetAddressSpace(VD->getType()));
        if (PTy != Addr.getType())
          Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
      } else {
        // Should we be using the alignment of the constant pointer we emitted?
        CharUnits Alignment =
            CGM.getNaturalTypeAlignment(E->getType(),
                                        /* BaseInfo= */ nullptr,
                                        /* TBAAInfo= */ nullptr,
                                        /* forPointeeType= */ true);
        Addr = Address(Val, Alignment);
      }
      return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
    }

    // FIXME: Handle other kinds of non-odr-use DeclRefExprs.

    // Check for captured variables.
    if (E->refersToEnclosingVariableOrCapture()) {
      VD = VD->getCanonicalDecl();
      if (auto *FD = LambdaCaptureFields.lookup(VD))
        return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
      if (CapturedStmtInfo) {
        auto I = LocalDeclMap.find(VD);
        if (I != LocalDeclMap.end()) {
          LValue CapLVal;
          if (VD->getType()->isReferenceType())
            CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
                                                AlignmentSource::Decl);
          else
            CapLVal = MakeAddrLValue(I->second, T);
          // Mark lvalue as nontemporal if the variable is marked as nontemporal
          // in simd context.
          if (getLangOpts().OpenMP &&
              CGM.getOpenMPRuntime().isNontemporalDecl(VD))
            CapLVal.setNontemporal(/*Value=*/true);
          return CapLVal;
        }
        LValue CapLVal =
            EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
                                    CapturedStmtInfo->getContextValue());
        CapLVal = MakeAddrLValue(
            Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)),
            CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
            CapLVal.getTBAAInfo());
        // Mark lvalue as nontemporal if the variable is marked as nontemporal
        // in simd context.
        if (getLangOpts().OpenMP &&
            CGM.getOpenMPRuntime().isNontemporalDecl(VD))
          CapLVal.setNontemporal(/*Value=*/true);
        return CapLVal;
      }

      assert(isa<BlockDecl>(CurCodeDecl));
      Address addr = GetAddrOfBlockDecl(VD);
      return MakeAddrLValue(addr, T, AlignmentSource::Decl);
    }
  }

  // FIXME: We should be able to assert this for FunctionDecls as well!
  // FIXME: We should be able to assert this for all DeclRefExprs, not just
  // those with a valid source location.
  assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
          !E->getLocation().isValid()) &&
         "Should not use decl without marking it used!");

  if (ND->hasAttr<WeakRefAttr>()) {
    const auto *VD = cast<ValueDecl>(ND);
    ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
    return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
  }

  if (const auto *VD = dyn_cast<VarDecl>(ND)) {
    // Check if this is a global variable.
    if (VD->hasLinkage() || VD->isStaticDataMember())
      return EmitGlobalVarDeclLValue(*this, E, VD);

    Address addr = Address::invalid();

    // The variable should generally be present in the local decl map.
    auto iter = LocalDeclMap.find(VD);
    if (iter != LocalDeclMap.end()) {
      addr = iter->second;

    // Otherwise, it might be static local we haven't emitted yet for
    // some reason; most likely, because it's in an outer function.
    } else if (VD->isStaticLocal()) {
      addr = Address(CGM.getOrCreateStaticVarDecl(
          *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
                     getContext().getDeclAlign(VD));

    // No other cases for now.
    } else {
      llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
    }


    // Check for OpenMP threadprivate variables.
    if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
        VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
      return EmitThreadPrivateVarDeclLValue(
          *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
          E->getExprLoc());
    }

    // Drill into block byref variables.
    bool isBlockByref = VD->isEscapingByref();
    if (isBlockByref) {
      addr = emitBlockByrefAddress(addr, VD);
    }

    // Drill into reference types.
    LValue LV = VD->getType()->isReferenceType() ?
        EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
        MakeAddrLValue(addr, T, AlignmentSource::Decl);

    bool isLocalStorage = VD->hasLocalStorage();

    bool NonGCable = isLocalStorage &&
                     !VD->getType()->isReferenceType() &&
                     !isBlockByref;
    if (NonGCable) {
      LV.getQuals().removeObjCGCAttr();
      LV.setNonGC(true);
    }

    bool isImpreciseLifetime =
      (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
    if (isImpreciseLifetime)
      LV.setARCPreciseLifetime(ARCImpreciseLifetime);
    setObjCGCLValueClass(getContext(), E, LV);
    return LV;
  }

  if (const auto *FD = dyn_cast<FunctionDecl>(ND))
    return EmitFunctionDeclLValue(*this, E, FD);

  // FIXME: While we're emitting a binding from an enclosing scope, all other
  // DeclRefExprs we see should be implicitly treated as if they also refer to
  // an enclosing scope.
  if (const auto *BD = dyn_cast<BindingDecl>(ND))
    return EmitLValue(BD->getBinding());

  // We can form DeclRefExprs naming GUID declarations when reconstituting
  // non-type template parameters into expressions.
  if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
    return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
                          AlignmentSource::Decl);

  llvm_unreachable("Unhandled DeclRefExpr");
}

LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
  // __extension__ doesn't affect lvalue-ness.
  if (E->getOpcode() == UO_Extension)
    return EmitLValue(E->getSubExpr());

  QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
  switch (E->getOpcode()) {
  default: llvm_unreachable("Unknown unary operator lvalue!");
  case UO_Deref: {
    QualType T = E->getSubExpr()->getType()->getPointeeType();
    assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");

    LValueBaseInfo BaseInfo;
    TBAAAccessInfo TBAAInfo;
    Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
                                            &TBAAInfo);
    LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
    LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());

    // We should not generate __weak write barrier on indirect reference
    // of a pointer to object; as in void foo (__weak id *param); *param = 0;
    // But, we continue to generate __strong write barrier on indirect write
    // into a pointer to object.
    if (getLangOpts().ObjC &&
        getLangOpts().getGC() != LangOptions::NonGC &&
        LV.isObjCWeak())
      LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
    return LV;
  }
  case UO_Real:
  case UO_Imag: {
    LValue LV = EmitLValue(E->getSubExpr());
    assert(LV.isSimple() && "real/imag on non-ordinary l-value");

    // __real is valid on scalars.  This is a faster way of testing that.
    // __imag can only produce an rvalue on scalars.
    if (E->getOpcode() == UO_Real &&
        !LV.getAddress(*this).getElementType()->isStructTy()) {
      assert(E->getSubExpr()->getType()->isArithmeticType());
      return LV;
    }

    QualType T = ExprTy->castAs<ComplexType>()->getElementType();

    Address Component =
        (E->getOpcode() == UO_Real
             ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
             : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
    LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
                                   CGM.getTBAAInfoForSubobject(LV, T));
    ElemLV.getQuals().addQualifiers(LV.getQuals());
    return ElemLV;
  }
  case UO_PreInc:
  case UO_PreDec: {
    LValue LV = EmitLValue(E->getSubExpr());
    bool isInc = E->getOpcode() == UO_PreInc;

    if (E->getType()->isAnyComplexType())
      EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
    else
      EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
    return LV;
  }
  }
}

LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
                        E->getType(), AlignmentSource::Decl);
}

LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
                        E->getType(), AlignmentSource::Decl);
}

LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
  auto SL = E->getFunctionName();
  assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
  StringRef FnName = CurFn->getName();
  if (FnName.startswith("\01"))
    FnName = FnName.substr(1);
  StringRef NameItems[] = {
      PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
  std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
  if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
    std::string Name = std::string(SL->getString());
    if (!Name.empty()) {
      unsigned Discriminator =
          CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
      if (Discriminator)
        Name += "_" + Twine(Discriminator + 1).str();
      auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
      return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
    } else {
      auto C =
          CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
      return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
    }
  }
  auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
  return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
}

/// Emit a type description suitable for use by a runtime sanitizer library. The
/// format of a type descriptor is
///
/// \code
///   { i16 TypeKind, i16 TypeInfo }
/// \endcode
///
/// followed by an array of i8 containing the type name. TypeKind is 0 for an
/// integer, 1 for a floating point value, and -1 for anything else.
llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
  // Only emit each type's descriptor once.
  if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
    return C;

  uint16_t TypeKind = -1;
  uint16_t TypeInfo = 0;

  if (T->isIntegerType()) {
    TypeKind = 0;
    TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
               (T->isSignedIntegerType() ? 1 : 0);
  } else if (T->isFloatingType()) {
    TypeKind = 1;
    TypeInfo = getContext().getTypeSize(T);
  }

  // Format the type name as if for a diagnostic, including quotes and
  // optionally an 'aka'.
  SmallString<32> Buffer;
  CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
                                    (intptr_t)T.getAsOpaquePtr(),
                                    StringRef(), StringRef(), None, Buffer,
                                    None);

  llvm::Constant *Components[] = {
    Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
    llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
  };
  llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);

  auto *GV = new llvm::GlobalVariable(
      CGM.getModule(), Descriptor->getType(),
      /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
  CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);

  // Remember the descriptor for this type.
  CGM.setTypeDescriptorInMap(T, GV);

  return GV;
}

llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
  llvm::Type *TargetTy = IntPtrTy;

  if (V->getType() == TargetTy)
    return V;

  // Floating-point types which fit into intptr_t are bitcast to integers
  // and then passed directly (after zero-extension, if necessary).
  if (V->getType()->isFloatingPointTy()) {
    unsigned Bits = V->getType()->getPrimitiveSizeInBits();
    if (Bits <= TargetTy->getIntegerBitWidth())
      V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
                                                         Bits));
  }

  // Integers which fit in intptr_t are zero-extended and passed directly.
  if (V->getType()->isIntegerTy() &&
      V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
    return Builder.CreateZExt(V, TargetTy);

  // Pointers are passed directly, everything else is passed by address.
  if (!V->getType()->isPointerTy()) {
    Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
    Builder.CreateStore(V, Ptr);
    V = Ptr.getPointer();
  }
  return Builder.CreatePtrToInt(V, TargetTy);
}

/// Emit a representation of a SourceLocation for passing to a handler
/// in a sanitizer runtime library. The format for this data is:
/// \code
///   struct SourceLocation {
///     const char *Filename;
///     int32_t Line, Column;
///   };
/// \endcode
/// For an invalid SourceLocation, the Filename pointer is null.
llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
  llvm::Constant *Filename;
  int Line, Column;

  PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
  if (PLoc.isValid()) {
    StringRef FilenameString = PLoc.getFilename();

    int PathComponentsToStrip =
        CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
    if (PathComponentsToStrip < 0) {
      assert(PathComponentsToStrip != INT_MIN);
      int PathComponentsToKeep = -PathComponentsToStrip;
      auto I = llvm::sys::path::rbegin(FilenameString);
      auto E = llvm::sys::path::rend(FilenameString);
      while (I != E && --PathComponentsToKeep)
        ++I;

      FilenameString = FilenameString.substr(I - E);
    } else if (PathComponentsToStrip > 0) {
      auto I = llvm::sys::path::begin(FilenameString);
      auto E = llvm::sys::path::end(FilenameString);
      while (I != E && PathComponentsToStrip--)
        ++I;

      if (I != E)
        FilenameString =
            FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
      else
        FilenameString = llvm::sys::path::filename(FilenameString);
    }

    auto FilenameGV =
        CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
    CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
                          cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
    Filename = FilenameGV.getPointer();
    Line = PLoc.getLine();
    Column = PLoc.getColumn();
  } else {
    Filename = llvm::Constant::getNullValue(Int8PtrTy);
    Line = Column = 0;
  }

  llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
                            Builder.getInt32(Column)};

  return llvm::ConstantStruct::getAnon(Data);
}

namespace {
/// Specify under what conditions this check can be recovered
enum class CheckRecoverableKind {
  /// Always terminate program execution if this check fails.
  Unrecoverable,
  /// Check supports recovering, runtime has both fatal (noreturn) and
  /// non-fatal handlers for this check.
  Recoverable,
  /// Runtime conditionally aborts, always need to support recovery.
  AlwaysRecoverable
};
}

static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
  assert(Kind.countPopulation() == 1);
  if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
    return CheckRecoverableKind::AlwaysRecoverable;
  else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
    return CheckRecoverableKind::Unrecoverable;
  else
    return CheckRecoverableKind::Recoverable;
}

namespace {
struct SanitizerHandlerInfo {
  char const *const Name;
  unsigned Version;
};
}

const SanitizerHandlerInfo SanitizerHandlers[] = {
#define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
    LIST_SANITIZER_CHECKS
#undef SANITIZER_CHECK
};

static void emitCheckHandlerCall(CodeGenFunction &CGF,
                                 llvm::FunctionType *FnType,
                                 ArrayRef<llvm::Value *> FnArgs,
                                 SanitizerHandler CheckHandler,
                                 CheckRecoverableKind RecoverKind, bool IsFatal,
                                 llvm::BasicBlock *ContBB) {
  assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
  Optional<ApplyDebugLocation> DL;
  if (!CGF.Builder.getCurrentDebugLocation()) {
    // Ensure that the call has at least an artificial debug location.
    DL.emplace(CGF, SourceLocation());
  }
  bool NeedsAbortSuffix =
      IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
  bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
  const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
  const StringRef CheckName = CheckInfo.Name;
  std::string FnName = "__ubsan_handle_" + CheckName.str();
  if (CheckInfo.Version && !MinimalRuntime)
    FnName += "_v" + llvm::utostr(CheckInfo.Version);
  if (MinimalRuntime)
    FnName += "_minimal";
  if (NeedsAbortSuffix)
    FnName += "_abort";
  bool MayReturn =
      !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;

  llvm::AttrBuilder B;
  if (!MayReturn) {
    B.addAttribute(llvm::Attribute::NoReturn)
        .addAttribute(llvm::Attribute::NoUnwind);
  }
  B.addAttribute(llvm::Attribute::UWTable);

  llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
      FnType, FnName,
      llvm::AttributeList::get(CGF.getLLVMContext(),
                               llvm::AttributeList::FunctionIndex, B),
      /*Local=*/true);
  llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
  if (!MayReturn) {
    HandlerCall->setDoesNotReturn();
    CGF.Builder.CreateUnreachable();
  } else {
    CGF.Builder.CreateBr(ContBB);
  }
}

void CodeGenFunction::EmitCheck(
    ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
    SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
    ArrayRef<llvm::Value *> DynamicArgs) {
  assert(IsSanitizerScope);
  assert(Checked.size() > 0);
  assert(CheckHandler >= 0 &&
         size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
  const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;

  llvm::Value *FatalCond = nullptr;
  llvm::Value *RecoverableCond = nullptr;
  llvm::Value *TrapCond = nullptr;
  for (int i = 0, n = Checked.size(); i < n; ++i) {
    llvm::Value *Check = Checked[i].first;
    // -fsanitize-trap= overrides -fsanitize-recover=.
    llvm::Value *&Cond =
        CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
            ? TrapCond
            : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
                  ? RecoverableCond
                  : FatalCond;
    Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
  }

  if (TrapCond)
    EmitTrapCheck(TrapCond);
  if (!FatalCond && !RecoverableCond)
    return;

  llvm::Value *JointCond;
  if (FatalCond && RecoverableCond)
    JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
  else
    JointCond = FatalCond ? FatalCond : RecoverableCond;
  assert(JointCond);

  CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
  assert(SanOpts.has(Checked[0].second));
#ifndef NDEBUG
  for (int i = 1, n = Checked.size(); i < n; ++i) {
    assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
           "All recoverable kinds in a single check must be same!");
    assert(SanOpts.has(Checked[i].second));
  }
#endif

  llvm::BasicBlock *Cont = createBasicBlock("cont");
  llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
  llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
  // Give hint that we very much don't expect to execute the handler
  // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
  llvm::MDBuilder MDHelper(getLLVMContext());
  llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
  Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
  EmitBlock(Handlers);

  // Handler functions take an i8* pointing to the (handler-specific) static
  // information block, followed by a sequence of intptr_t arguments
  // representing operand values.
  SmallVector<llvm::Value *, 4> Args;
  SmallVector<llvm::Type *, 4> ArgTypes;
  if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
    Args.reserve(DynamicArgs.size() + 1);
    ArgTypes.reserve(DynamicArgs.size() + 1);

    // Emit handler arguments and create handler function type.
    if (!StaticArgs.empty()) {
      llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
      auto *InfoPtr =
          new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
                                   llvm::GlobalVariable::PrivateLinkage, Info);
      InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
      CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
      Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
      ArgTypes.push_back(Int8PtrTy);
    }

    for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
      Args.push_back(EmitCheckValue(DynamicArgs[i]));
      ArgTypes.push_back(IntPtrTy);
    }
  }

  llvm::FunctionType *FnType =
    llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);

  if (!FatalCond || !RecoverableCond) {
    // Simple case: we need to generate a single handler call, either
    // fatal, or non-fatal.
    emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
                         (FatalCond != nullptr), Cont);
  } else {
    // Emit two handler calls: first one for set of unrecoverable checks,
    // another one for recoverable.
    llvm::BasicBlock *NonFatalHandlerBB =
        createBasicBlock("non_fatal." + CheckName);
    llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
    Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
    EmitBlock(FatalHandlerBB);
    emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
                         NonFatalHandlerBB);
    EmitBlock(NonFatalHandlerBB);
    emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
                         Cont);
  }

  EmitBlock(Cont);
}

void CodeGenFunction::EmitCfiSlowPathCheck(
    SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
    llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
  llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");

  llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
  llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);

  llvm::MDBuilder MDHelper(getLLVMContext());
  llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
  BI->setMetadata(llvm::LLVMContext::MD_prof, Node);

  EmitBlock(CheckBB);

  bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);

  llvm::CallInst *CheckCall;
  llvm::FunctionCallee SlowPathFn;
  if (WithDiag) {
    llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
    auto *InfoPtr =
        new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
                                 llvm::GlobalVariable::PrivateLinkage, Info);
    InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
    CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);

    SlowPathFn = CGM.getModule().getOrInsertFunction(
        "__cfi_slowpath_diag",
        llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
                                false));
    CheckCall = Builder.CreateCall(
        SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
  } else {
    SlowPathFn = CGM.getModule().getOrInsertFunction(
        "__cfi_slowpath",
        llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
    CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
  }

  CGM.setDSOLocal(
      cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
  CheckCall->setDoesNotThrow();

  EmitBlock(Cont);
}

// Emit a stub for __cfi_check function so that the linker knows about this
// symbol in LTO mode.
void CodeGenFunction::EmitCfiCheckStub() {
  llvm::Module *M = &CGM.getModule();
  auto &Ctx = M->getContext();
  llvm::Function *F = llvm::Function::Create(
      llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
      llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
  CGM.setDSOLocal(F);
  llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
  // FIXME: consider emitting an intrinsic call like
  // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
  // which can be lowered in CrossDSOCFI pass to the actual contents of
  // __cfi_check. This would allow inlining of __cfi_check calls.
  llvm::CallInst::Create(
      llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
  llvm::ReturnInst::Create(Ctx, nullptr, BB);
}

// This function is basically a switch over the CFI failure kind, which is
// extracted from CFICheckFailData (1st function argument). Each case is either
// llvm.trap or a call to one of the two runtime handlers, based on
// -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
// failure kind) traps, but this should really never happen.  CFICheckFailData
// can be nullptr if the calling module has -fsanitize-trap behavior for this
// check kind; in this case __cfi_check_fail traps as well.
void CodeGenFunction::EmitCfiCheckFail() {
  SanitizerScope SanScope(this);
  FunctionArgList Args;
  ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
                            ImplicitParamDecl::Other);
  ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
                            ImplicitParamDecl::Other);
  Args.push_back(&ArgData);
  Args.push_back(&ArgAddr);

  const CGFunctionInfo &FI =
    CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);

  llvm::Function *F = llvm::Function::Create(
      llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
      llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());

  CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F);
  CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
  F->setVisibility(llvm::GlobalValue::HiddenVisibility);

  StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
                SourceLocation());

  // This function should not be affected by blacklist. This function does
  // not have a source location, but "src:*" would still apply. Revert any
  // changes to SanOpts made in StartFunction.
  SanOpts = CGM.getLangOpts().Sanitize;

  llvm::Value *Data =
      EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
                       CGM.getContext().VoidPtrTy, ArgData.getLocation());
  llvm::Value *Addr =
      EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
                       CGM.getContext().VoidPtrTy, ArgAddr.getLocation());

  // Data == nullptr means the calling module has trap behaviour for this check.
  llvm::Value *DataIsNotNullPtr =
      Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
  EmitTrapCheck(DataIsNotNullPtr);

  llvm::StructType *SourceLocationTy =
      llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
  llvm::StructType *CfiCheckFailDataTy =
      llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);

  llvm::Value *V = Builder.CreateConstGEP2_32(
      CfiCheckFailDataTy,
      Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
      0);
  Address CheckKindAddr(V, getIntAlign());
  llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);

  llvm::Value *AllVtables = llvm::MetadataAsValue::get(
      CGM.getLLVMContext(),
      llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
  llvm::Value *ValidVtable = Builder.CreateZExt(
      Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
                         {Addr, AllVtables}),
      IntPtrTy);

  const std::pair<int, SanitizerMask> CheckKinds[] = {
      {CFITCK_VCall, SanitizerKind::CFIVCall},
      {CFITCK_NVCall, SanitizerKind::CFINVCall},
      {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
      {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
      {CFITCK_ICall, SanitizerKind::CFIICall}};

  SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
  for (auto CheckKindMaskPair : CheckKinds) {
    int Kind = CheckKindMaskPair.first;
    SanitizerMask Mask = CheckKindMaskPair.second;
    llvm::Value *Cond =
        Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
    if (CGM.getLangOpts().Sanitize.has(Mask))
      EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
                {Data, Addr, ValidVtable});
    else
      EmitTrapCheck(Cond);
  }

  FinishFunction();
  // The only reference to this function will be created during LTO link.
  // Make sure it survives until then.
  CGM.addUsedGlobal(F);
}

void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
  if (SanOpts.has(SanitizerKind::Unreachable)) {
    SanitizerScope SanScope(this);
    EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
                             SanitizerKind::Unreachable),
              SanitizerHandler::BuiltinUnreachable,
              EmitCheckSourceLocation(Loc), None);
  }
  Builder.CreateUnreachable();
}

void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
  llvm::BasicBlock *Cont = createBasicBlock("cont");

  // If we're optimizing, collapse all calls to trap down to just one per
  // function to save on code size.
  if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
    TrapBB = createBasicBlock("trap");
    Builder.CreateCondBr(Checked, Cont, TrapBB);
    EmitBlock(TrapBB);
    llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
    TrapCall->setDoesNotReturn();
    TrapCall->setDoesNotThrow();
    Builder.CreateUnreachable();
  } else {
    Builder.CreateCondBr(Checked, Cont, TrapBB);
  }

  EmitBlock(Cont);
}

llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
  llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));

  if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
    auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
                                  CGM.getCodeGenOpts().TrapFuncName);
    TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
  }

  return TrapCall;
}

Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
                                                 LValueBaseInfo *BaseInfo,
                                                 TBAAAccessInfo *TBAAInfo) {
  assert(E->getType()->isArrayType() &&
         "Array to pointer decay must have array source type!");

  // Expressions of array type can't be bitfields or vector elements.
  LValue LV = EmitLValue(E);
  Address Addr = LV.getAddress(*this);

  // If the array type was an incomplete type, we need to make sure
  // the decay ends up being the right type.
  llvm::Type *NewTy = ConvertType(E->getType());
  Addr = Builder.CreateElementBitCast(Addr, NewTy);

  // Note that VLA pointers are always decayed, so we don't need to do
  // anything here.
  if (!E->getType()->isVariableArrayType()) {
    assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
           "Expected pointer to array");
    Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
  }

  // The result of this decay conversion points to an array element within the
  // base lvalue. However, since TBAA currently does not support representing
  // accesses to elements of member arrays, we conservatively represent accesses
  // to the pointee object as if it had no any base lvalue specified.
  // TODO: Support TBAA for member arrays.
  QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
  if (BaseInfo) *BaseInfo = LV.getBaseInfo();
  if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);

  return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
}

/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
/// array to pointer, return the array subexpression.
static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
  // If this isn't just an array->pointer decay, bail out.
  const auto *CE = dyn_cast<CastExpr>(E);
  if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
    return nullptr;

  // If this is a decay from variable width array, bail out.
  const Expr *SubExpr = CE->getSubExpr();
  if (SubExpr->getType()->isVariableArrayType())
    return nullptr;

  return SubExpr;
}

static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
                                          llvm::Value *ptr,
                                          ArrayRef<llvm::Value*> indices,
                                          bool inbounds,
                                          bool signedIndices,
                                          SourceLocation loc,
                                    const llvm::Twine &name = "arrayidx") {
  if (inbounds) {
    return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
                                      CodeGenFunction::NotSubtraction, loc,
                                      name);
  } else {
    return CGF.Builder.CreateGEP(ptr, indices, name);
  }
}

static CharUnits getArrayElementAlign(CharUnits arrayAlign,
                                      llvm::Value *idx,
                                      CharUnits eltSize) {
  // If we have a constant index, we can use the exact offset of the
  // element we're accessing.
  if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
    CharUnits offset = constantIdx->getZExtValue() * eltSize;
    return arrayAlign.alignmentAtOffset(offset);

  // Otherwise, use the worst-case alignment for any element.
  } else {
    return arrayAlign.alignmentOfArrayElement(eltSize);
  }
}

static QualType getFixedSizeElementType(const ASTContext &ctx,
                                        const VariableArrayType *vla) {
  QualType eltType;
  do {
    eltType = vla->getElementType();
  } while ((vla = ctx.getAsVariableArrayType(eltType)));
  return eltType;
}

/// Given an array base, check whether its member access belongs to a record
/// with preserve_access_index attribute or not.
static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
  if (!ArrayBase || !CGF.getDebugInfo())
    return false;

  // Only support base as either a MemberExpr or DeclRefExpr.
  // DeclRefExpr to cover cases like:
  //    struct s { int a; int b[10]; };
  //    struct s *p;
  //    p[1].a
  // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
  // p->b[5] is a MemberExpr example.
  const Expr *E = ArrayBase->IgnoreImpCasts();
  if (const auto *ME = dyn_cast<MemberExpr>(E))
    return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();

  if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
    const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
    if (!VarDef)
      return false;

    const auto *PtrT = VarDef->getType()->getAs<PointerType>();
    if (!PtrT)
      return false;

    const auto *PointeeT = PtrT->getPointeeType()
                             ->getUnqualifiedDesugaredType();
    if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
      return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
    return false;
  }

  return false;
}

static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
                                     ArrayRef<llvm::Value *> indices,
                                     QualType eltType, bool inbounds,
                                     bool signedIndices, SourceLocation loc,
                                     QualType *arrayType = nullptr,
                                     const Expr *Base = nullptr,
                                     const llvm::Twine &name = "arrayidx") {
  // All the indices except that last must be zero.
#ifndef NDEBUG
  for (auto idx : indices.drop_back())
    assert(isa<llvm::ConstantInt>(idx) &&
           cast<llvm::ConstantInt>(idx)->isZero());
#endif

  // Determine the element size of the statically-sized base.  This is
  // the thing that the indices are expressed in terms of.
  if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
    eltType = getFixedSizeElementType(CGF.getContext(), vla);
  }

  // We can use that to compute the best alignment of the element.
  CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
  CharUnits eltAlign =
    getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);

  llvm::Value *eltPtr;
  auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
  if (!LastIndex ||
      (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
    eltPtr = emitArraySubscriptGEP(
        CGF, addr.getPointer(), indices, inbounds, signedIndices,
        loc, name);
  } else {
    // Remember the original array subscript for bpf target
    unsigned idx = LastIndex->getZExtValue();
    llvm::DIType *DbgInfo = nullptr;
    if (arrayType)
      DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
    eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
                                                        addr.getPointer(),
                                                        indices.size() - 1,
                                                        idx, DbgInfo);
  }

  return Address(eltPtr, eltAlign);
}

LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
                                               bool Accessed) {
  // The index must always be an integer, which is not an aggregate.  Emit it
  // in lexical order (this complexity is, sadly, required by C++17).
  llvm::Value *IdxPre =
      (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
  bool SignedIndices = false;
  auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
    auto *Idx = IdxPre;
    if (E->getLHS() != E->getIdx()) {
      assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
      Idx = EmitScalarExpr(E->getIdx());
    }

    QualType IdxTy = E->getIdx()->getType();
    bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
    SignedIndices |= IdxSigned;

    if (SanOpts.has(SanitizerKind::ArrayBounds))
      EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);

    // Extend or truncate the index type to 32 or 64-bits.
    if (Promote && Idx->getType() != IntPtrTy)
      Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");

    return Idx;
  };
  IdxPre = nullptr;

  // If the base is a vector type, then we are forming a vector element lvalue
  // with this subscript.
  if (E->getBase()->getType()->isVectorType() &&
      !isa<ExtVectorElementExpr>(E->getBase())) {
    // Emit the vector as an lvalue to get its address.
    LValue LHS = EmitLValue(E->getBase());
    auto *Idx = EmitIdxAfterBase(/*Promote*/false);
    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
    return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
                                 E->getBase()->getType(), LHS.getBaseInfo(),
                                 TBAAAccessInfo());
  }

  // All the other cases basically behave like simple offsetting.

  // Handle the extvector case we ignored above.
  if (isa<ExtVectorElementExpr>(E->getBase())) {
    LValue LV = EmitLValue(E->getBase());
    auto *Idx = EmitIdxAfterBase(/*Promote*/true);
    Address Addr = EmitExtVectorElementLValue(LV);

    QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
    Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
                                 SignedIndices, E->getExprLoc());
    return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
                          CGM.getTBAAInfoForSubobject(LV, EltType));
  }

  LValueBaseInfo EltBaseInfo;
  TBAAAccessInfo EltTBAAInfo;
  Address Addr = Address::invalid();
  if (const VariableArrayType *vla =
           getContext().getAsVariableArrayType(E->getType())) {
    // The base must be a pointer, which is not an aggregate.  Emit
    // it.  It needs to be emitted first in case it's what captures
    // the VLA bounds.
    Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
    auto *Idx = EmitIdxAfterBase(/*Promote*/true);

    // The element count here is the total number of non-VLA elements.
    llvm::Value *numElements = getVLASize(vla).NumElts;

    // Effectively, the multiply by the VLA size is part of the GEP.
    // GEP indexes are signed, and scaling an index isn't permitted to
    // signed-overflow, so we use the same semantics for our explicit
    // multiply.  We suppress this if overflow is not undefined behavior.
    if (getLangOpts().isSignedOverflowDefined()) {
      Idx = Builder.CreateMul(Idx, numElements);
    } else {
      Idx = Builder.CreateNSWMul(Idx, numElements);
    }

    Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
                                 !getLangOpts().isSignedOverflowDefined(),
                                 SignedIndices, E->getExprLoc());

  } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
    // Indexing over an interface, as in "NSString *P; P[4];"

    // Emit the base pointer.
    Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
    auto *Idx = EmitIdxAfterBase(/*Promote*/true);

    CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
    llvm::Value *InterfaceSizeVal =
        llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());

    llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);

    // We don't necessarily build correct LLVM struct types for ObjC
    // interfaces, so we can't rely on GEP to do this scaling
    // correctly, so we need to cast to i8*.  FIXME: is this actually
    // true?  A lot of other things in the fragile ABI would break...
    llvm::Type *OrigBaseTy = Addr.getType();
    Addr = Builder.CreateElementBitCast(Addr, Int8Ty);

    // Do the GEP.
    CharUnits EltAlign =
      getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
    llvm::Value *EltPtr =
        emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
                              SignedIndices, E->getExprLoc());
    Addr = Address(EltPtr, EltAlign);

    // Cast back.
    Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
    // If this is A[i] where A is an array, the frontend will have decayed the
    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
    // "gep x, i" here.  Emit one "gep A, 0, i".
    assert(Array->getType()->isArrayType() &&
           "Array to pointer decay must have array source type!");
    LValue ArrayLV;
    // For simple multidimensional array indexing, set the 'accessed' flag for
    // better bounds-checking of the base expression.
    if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
      ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
    else
      ArrayLV = EmitLValue(Array);
    auto *Idx = EmitIdxAfterBase(/*Promote*/true);

    // Propagate the alignment from the array itself to the result.
    QualType arrayType = Array->getType();
    Addr = emitArraySubscriptGEP(
        *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
        E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
        E->getExprLoc(), &arrayType, E->getBase());
    EltBaseInfo = ArrayLV.getBaseInfo();
    EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
  } else {
    // The base must be a pointer; emit it with an estimate of its alignment.
    Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
    auto *Idx = EmitIdxAfterBase(/*Promote*/true);
    QualType ptrType = E->getBase()->getType();
    Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
                                 !getLangOpts().isSignedOverflowDefined(),
                                 SignedIndices, E->getExprLoc(), &ptrType,
                                 E->getBase());
  }

  LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);

  if (getLangOpts().ObjC &&
      getLangOpts().getGC() != LangOptions::NonGC) {
    LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
    setObjCGCLValueClass(getContext(), E, LV);
  }
  return LV;
}

LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) {
  assert(
      !E->isIncomplete() &&
      "incomplete matrix subscript expressions should be rejected during Sema");
  LValue Base = EmitLValue(E->getBase());
  llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx());
  llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx());
  llvm::Value *NumRows = Builder.getIntN(
      RowIdx->getType()->getScalarSizeInBits(),
      E->getBase()->getType()->getAs<ConstantMatrixType>()->getNumRows());
  llvm::Value *FinalIdx =
      Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx);
  return LValue::MakeMatrixElt(
      MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx,
      E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo());
}

static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
                                       LValueBaseInfo &BaseInfo,
                                       TBAAAccessInfo &TBAAInfo,
                                       QualType BaseTy, QualType ElTy,
                                       bool IsLowerBound) {
  LValue BaseLVal;
  if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
    BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
    if (BaseTy->isArrayType()) {
      Address Addr = BaseLVal.getAddress(CGF);
      BaseInfo = BaseLVal.getBaseInfo();

      // If the array type was an incomplete type, we need to make sure
      // the decay ends up being the right type.
      llvm::Type *NewTy = CGF.ConvertType(BaseTy);
      Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);

      // Note that VLA pointers are always decayed, so we don't need to do
      // anything here.
      if (!BaseTy->isVariableArrayType()) {
        assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
               "Expected pointer to array");
        Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
      }

      return CGF.Builder.CreateElementBitCast(Addr,
                                              CGF.ConvertTypeForMem(ElTy));
    }
    LValueBaseInfo TypeBaseInfo;
    TBAAAccessInfo TypeTBAAInfo;
    CharUnits Align =
        CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
    BaseInfo.mergeForCast(TypeBaseInfo);
    TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
    return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align);
  }
  return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
}

LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
                                                bool IsLowerBound) {
  QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
  QualType ResultExprTy;
  if (auto *AT = getContext().getAsArrayType(BaseTy))
    ResultExprTy = AT->getElementType();
  else
    ResultExprTy = BaseTy->getPointeeType();
  llvm::Value *Idx = nullptr;
  if (IsLowerBound || E->getColonLocFirst().isInvalid()) {
    // Requesting lower bound or upper bound, but without provided length and
    // without ':' symbol for the default length -> length = 1.
    // Idx = LowerBound ?: 0;
    if (auto *LowerBound = E->getLowerBound()) {
      Idx = Builder.CreateIntCast(
          EmitScalarExpr(LowerBound), IntPtrTy,
          LowerBound->getType()->hasSignedIntegerRepresentation());
    } else
      Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
  } else {
    // Try to emit length or lower bound as constant. If this is possible, 1
    // is subtracted from constant length or lower bound. Otherwise, emit LLVM
    // IR (LB + Len) - 1.
    auto &C = CGM.getContext();
    auto *Length = E->getLength();
    llvm::APSInt ConstLength;
    if (Length) {
      // Idx = LowerBound + Length - 1;
      if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) {
        ConstLength = CL->zextOrTrunc(PointerWidthInBits);
        Length = nullptr;
      }
      auto *LowerBound = E->getLowerBound();
      llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
      if (LowerBound) {
        if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) {
          ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits);
          LowerBound = nullptr;
        }
      }
      if (!Length)
        --ConstLength;
      else if (!LowerBound)
        --ConstLowerBound;

      if (Length || LowerBound) {
        auto *LowerBoundVal =
            LowerBound
                ? Builder.CreateIntCast(
                      EmitScalarExpr(LowerBound), IntPtrTy,
                      LowerBound->getType()->hasSignedIntegerRepresentation())
                : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
        auto *LengthVal =
            Length
                ? Builder.CreateIntCast(
                      EmitScalarExpr(Length), IntPtrTy,
                      Length->getType()->hasSignedIntegerRepresentation())
                : llvm::ConstantInt::get(IntPtrTy, ConstLength);
        Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
                                /*HasNUW=*/false,
                                !getLangOpts().isSignedOverflowDefined());
        if (Length && LowerBound) {
          Idx = Builder.CreateSub(
              Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
              /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
        }
      } else
        Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
    } else {
      // Idx = ArraySize - 1;
      QualType ArrayTy = BaseTy->isPointerType()
                             ? E->getBase()->IgnoreParenImpCasts()->getType()
                             : BaseTy;
      if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
        Length = VAT->getSizeExpr();
        if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) {
          ConstLength = *L;
          Length = nullptr;
        }
      } else {
        auto *CAT = C.getAsConstantArrayType(ArrayTy);
        ConstLength = CAT->getSize();
      }
      if (Length) {
        auto *LengthVal = Builder.CreateIntCast(
            EmitScalarExpr(Length), IntPtrTy,
            Length->getType()->hasSignedIntegerRepresentation());
        Idx = Builder.CreateSub(
            LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
            /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
      } else {
        ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
        --ConstLength;
        Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
      }
    }
  }
  assert(Idx);

  Address EltPtr = Address::invalid();
  LValueBaseInfo BaseInfo;
  TBAAAccessInfo TBAAInfo;
  if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
    // The base must be a pointer, which is not an aggregate.  Emit
    // it.  It needs to be emitted first in case it's what captures
    // the VLA bounds.
    Address Base =
        emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
                                BaseTy, VLA->getElementType(), IsLowerBound);
    // The element count here is the total number of non-VLA elements.
    llvm::Value *NumElements = getVLASize(VLA).NumElts;

    // Effectively, the multiply by the VLA size is part of the GEP.
    // GEP indexes are signed, and scaling an index isn't permitted to
    // signed-overflow, so we use the same semantics for our explicit
    // multiply.  We suppress this if overflow is not undefined behavior.
    if (getLangOpts().isSignedOverflowDefined())
      Idx = Builder.CreateMul(Idx, NumElements);
    else
      Idx = Builder.CreateNSWMul(Idx, NumElements);
    EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
                                   !getLangOpts().isSignedOverflowDefined(),
                                   /*signedIndices=*/false, E->getExprLoc());
  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
    // If this is A[i] where A is an array, the frontend will have decayed the
    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
    // "gep x, i" here.  Emit one "gep A, 0, i".
    assert(Array->getType()->isArrayType() &&
           "Array to pointer decay must have array source type!");
    LValue ArrayLV;
    // For simple multidimensional array indexing, set the 'accessed' flag for
    // better bounds-checking of the base expression.
    if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
      ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
    else
      ArrayLV = EmitLValue(Array);

    // Propagate the alignment from the array itself to the result.
    EltPtr = emitArraySubscriptGEP(
        *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
        ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
        /*signedIndices=*/false, E->getExprLoc());
    BaseInfo = ArrayLV.getBaseInfo();
    TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
  } else {
    Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
                                           TBAAInfo, BaseTy, ResultExprTy,
                                           IsLowerBound);
    EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
                                   !getLangOpts().isSignedOverflowDefined(),
                                   /*signedIndices=*/false, E->getExprLoc());
  }

  return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
}

LValue CodeGenFunction::
EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
  // Emit the base vector as an l-value.
  LValue Base;

  // ExtVectorElementExpr's base can either be a vector or pointer to vector.
  if (E->isArrow()) {
    // If it is a pointer to a vector, emit the address and form an lvalue with
    // it.
    LValueBaseInfo BaseInfo;
    TBAAAccessInfo TBAAInfo;
    Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
    const auto *PT = E->getBase()->getType()->castAs<PointerType>();
    Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
    Base.getQuals().removeObjCGCAttr();
  } else if (E->getBase()->isGLValue()) {
    // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
    // emit the base as an lvalue.
    assert(E->getBase()->getType()->isVectorType());
    Base = EmitLValue(E->getBase());
  } else {
    // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
    assert(E->getBase()->getType()->isVectorType() &&
           "Result must be a vector");
    llvm::Value *Vec = EmitScalarExpr(E->getBase());

    // Store the vector to memory (because LValue wants an address).
    Address VecMem = CreateMemTemp(E->getBase()->getType());
    Builder.CreateStore(Vec, VecMem);
    Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
                          AlignmentSource::Decl);
  }

  QualType type =
    E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());

  // Encode the element access list into a vector of unsigned indices.
  SmallVector<uint32_t, 4> Indices;
  E->getEncodedElementAccess(Indices);

  if (Base.isSimple()) {
    llvm::Constant *CV =
        llvm::ConstantDataVector::get(getLLVMContext(), Indices);
    return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
                                    Base.getBaseInfo(), TBAAAccessInfo());
  }
  assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");

  llvm::Constant *BaseElts = Base.getExtVectorElts();
  SmallVector<llvm::Constant *, 4> CElts;

  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
    CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
  llvm::Constant *CV = llvm::ConstantVector::get(CElts);
  return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
                                  Base.getBaseInfo(), TBAAAccessInfo());
}

LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
  if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
    EmitIgnoredExpr(E->getBase());
    return EmitDeclRefLValue(DRE);
  }

  Expr *BaseExpr = E->getBase();
  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
  LValue BaseLV;
  if (E->isArrow()) {
    LValueBaseInfo BaseInfo;
    TBAAAccessInfo TBAAInfo;
    Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
    QualType PtrTy = BaseExpr->getType()->getPointeeType();
    SanitizerSet SkippedChecks;
    bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
    if (IsBaseCXXThis)
      SkippedChecks.set(SanitizerKind::Alignment, true);
    if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
      SkippedChecks.set(SanitizerKind::Null, true);
    EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
                  /*Alignment=*/CharUnits::Zero(), SkippedChecks);
    BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
  } else
    BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);

  NamedDecl *ND = E->getMemberDecl();
  if (auto *Field = dyn_cast<FieldDecl>(ND)) {
    LValue LV = EmitLValueForField(BaseLV, Field);
    setObjCGCLValueClass(getContext(), E, LV);
    if (getLangOpts().OpenMP) {
      // If the member was explicitly marked as nontemporal, mark it as
      // nontemporal. If the base lvalue is marked as nontemporal, mark access
      // to children as nontemporal too.
      if ((IsWrappedCXXThis(BaseExpr) &&
           CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
          BaseLV.isNontemporal())
        LV.setNontemporal(/*Value=*/true);
    }
    return LV;
  }

  if (const auto *FD = dyn_cast<FunctionDecl>(ND))
    return EmitFunctionDeclLValue(*this, E, FD);

  llvm_unreachable("Unhandled member declaration!");
}

/// Given that we are currently emitting a lambda, emit an l-value for
/// one of its members.
LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
  assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
  assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
  QualType LambdaTagType =
    getContext().getTagDeclType(Field->getParent());
  LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
  return EmitLValueForField(LambdaLV, Field);
}

/// Get the field index in the debug info. The debug info structure/union
/// will ignore the unnamed bitfields.
unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
                                             unsigned FieldIndex) {
  unsigned I = 0, Skipped = 0;

  for (auto F : Rec->getDefinition()->fields()) {
    if (I == FieldIndex)
      break;
    if (F->isUnnamedBitfield())
      Skipped++;
    I++;
  }

  return FieldIndex - Skipped;
}

/// Get the address of a zero-sized field within a record. The resulting
/// address doesn't necessarily have the right type.
static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
                                       const FieldDecl *Field) {
  CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
      CGF.getContext().getFieldOffset(Field));
  if (Offset.isZero())
    return Base;
  Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
  return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
}

/// Drill down to the storage of a field without walking into
/// reference types.
///
/// The resulting address doesn't necessarily have the right type.
static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
                                      const FieldDecl *field) {
  if (field->isZeroSize(CGF.getContext()))
    return emitAddrOfZeroSizeField(CGF, base, field);

  const RecordDecl *rec = field->getParent();

  unsigned idx =
    CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);

  return CGF.Builder.CreateStructGEP(base, idx, field->getName());
}

static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
                                        Address addr, const FieldDecl *field) {
  const RecordDecl *rec = field->getParent();
  llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
      base.getType(), rec->getLocation());

  unsigned idx =
      CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);

  return CGF.Builder.CreatePreserveStructAccessIndex(
      addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
}

static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
  const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
  if (!RD)
    return false;

  if (RD->isDynamicClass())
    return true;

  for (const auto &Base : RD->bases())
    if (hasAnyVptr(Base.getType(), Context))
      return true;

  for (const FieldDecl *Field : RD->fields())
    if (hasAnyVptr(Field->getType(), Context))
      return true;

  return false;
}

LValue CodeGenFunction::EmitLValueForField(LValue base,
                                           const FieldDecl *field) {
  LValueBaseInfo BaseInfo = base.getBaseInfo();

  if (field->isBitField()) {
    const CGRecordLayout &RL =
      CGM.getTypes().getCGRecordLayout(field->getParent());
    const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
    Address Addr = base.getAddress(*this);
    unsigned Idx = RL.getLLVMFieldNo(field);
    const RecordDecl *rec = field->getParent();
    if (!IsInPreservedAIRegion &&
        (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
      if (Idx != 0)
        // For structs, we GEP to the field that the record layout suggests.
        Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
    } else {
      llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
          getContext().getRecordType(rec), rec->getLocation());
      Addr = Builder.CreatePreserveStructAccessIndex(Addr, Idx,
          getDebugInfoFIndex(rec, field->getFieldIndex()),
          DbgInfo);
    }

    // Get the access type.
    llvm::Type *FieldIntTy =
      llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
    if (Addr.getElementType() != FieldIntTy)
      Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);

    QualType fieldType =
      field->getType().withCVRQualifiers(base.getVRQualifiers());
    // TODO: Support TBAA for bit fields.
    LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
    return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
                                TBAAAccessInfo());
  }

  // Fields of may-alias structures are may-alias themselves.
  // FIXME: this should get propagated down through anonymous structs
  // and unions.
  QualType FieldType = field->getType();
  const RecordDecl *rec = field->getParent();
  AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
  LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
  TBAAAccessInfo FieldTBAAInfo;
  if (base.getTBAAInfo().isMayAlias() ||
          rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
    FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
  } else if (rec->isUnion()) {
    // TODO: Support TBAA for unions.
    FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
  } else {
    // If no base type been assigned for the base access, then try to generate
    // one for this base lvalue.
    FieldTBAAInfo = base.getTBAAInfo();
    if (!FieldTBAAInfo.BaseType) {
        FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
        assert(!FieldTBAAInfo.Offset &&
               "Nonzero offset for an access with no base type!");
    }

    // Adjust offset to be relative to the base type.
    const ASTRecordLayout &Layout =
        getContext().getASTRecordLayout(field->getParent());
    unsigned CharWidth = getContext().getCharWidth();
    if (FieldTBAAInfo.BaseType)
      FieldTBAAInfo.Offset +=
          Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;

    // Update the final access type and size.
    FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
    FieldTBAAInfo.Size =
        getContext().getTypeSizeInChars(FieldType).getQuantity();
  }

  Address addr = base.getAddress(*this);
  if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
    if (CGM.getCodeGenOpts().StrictVTablePointers &&
        ClassDef->isDynamicClass()) {
      // Getting to any field of dynamic object requires stripping dynamic
      // information provided by invariant.group.  This is because accessing
      // fields may leak the real address of dynamic object, which could result
      // in miscompilation when leaked pointer would be compared.
      auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
      addr = Address(stripped, addr.getAlignment());
    }
  }

  unsigned RecordCVR = base.getVRQualifiers();
  if (rec->isUnion()) {
    // For unions, there is no pointer adjustment.
    if (CGM.getCodeGenOpts().StrictVTablePointers &&
        hasAnyVptr(FieldType, getContext()))
      // Because unions can easily skip invariant.barriers, we need to add
      // a barrier every time CXXRecord field with vptr is referenced.
      addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
                     addr.getAlignment());

    if (IsInPreservedAIRegion ||
        (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
      // Remember the original union field index
      llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
          rec->getLocation());
      addr = Address(
          Builder.CreatePreserveUnionAccessIndex(
              addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
          addr.getAlignment());
    }

    if (FieldType->isReferenceType())
      addr = Builder.CreateElementBitCast(
          addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
  } else {
    if (!IsInPreservedAIRegion &&
        (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
      // For structs, we GEP to the field that the record layout suggests.
      addr = emitAddrOfFieldStorage(*this, addr, field);
    else
      // Remember the original struct field index
      addr = emitPreserveStructAccess(*this, base, addr, field);
  }

  // If this is a reference field, load the reference right now.
  if (FieldType->isReferenceType()) {
    LValue RefLVal =
        MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
    if (RecordCVR & Qualifiers::Volatile)
      RefLVal.getQuals().addVolatile();
    addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);

    // Qualifiers on the struct don't apply to the referencee.
    RecordCVR = 0;
    FieldType = FieldType->getPointeeType();
  }

  // Make sure that the address is pointing to the right type.  This is critical
  // for both unions and structs.  A union needs a bitcast, a struct element
  // will need a bitcast if the LLVM type laid out doesn't match the desired
  // type.
  addr = Builder.CreateElementBitCast(
      addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());

  if (field->hasAttr<AnnotateAttr>())
    addr = EmitFieldAnnotations(field, addr);

  LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
  LV.getQuals().addCVRQualifiers(RecordCVR);

  // __weak attribute on a field is ignored.
  if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
    LV.getQuals().removeObjCGCAttr();

  return LV;
}

LValue
CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
                                                  const FieldDecl *Field) {
  QualType FieldType = Field->getType();

  if (!FieldType->isReferenceType())
    return EmitLValueForField(Base, Field);

  Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);

  // Make sure that the address is pointing to the right type.
  llvm::Type *llvmType = ConvertTypeForMem(FieldType);
  V = Builder.CreateElementBitCast(V, llvmType, Field->getName());

  // TODO: Generate TBAA information that describes this access as a structure
  // member access and not just an access to an object of the field's type. This
  // should be similar to what we do in EmitLValueForField().
  LValueBaseInfo BaseInfo = Base.getBaseInfo();
  AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
  LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
  return MakeAddrLValue(V, FieldType, FieldBaseInfo,
                        CGM.getTBAAInfoForSubobject(Base, FieldType));
}

LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
  if (E->isFileScope()) {
    ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
    return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
  }
  if (E->getType()->isVariablyModifiedType())
    // make sure to emit the VLA size.
    EmitVariablyModifiedType(E->getType());

  Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
  const Expr *InitExpr = E->getInitializer();
  LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);

  EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
                   /*Init*/ true);

  // Block-scope compound literals are destroyed at the end of the enclosing
  // scope in C.
  if (!getLangOpts().CPlusPlus)
    if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
      pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
                                  E->getType(), getDestroyer(DtorKind),
                                  DtorKind & EHCleanup);

  return Result;
}

LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
  if (!E->isGLValue())
    // Initializing an aggregate temporary in C++11: T{...}.
    return EmitAggExprToLValue(E);

  // An lvalue initializer list must be initializing a reference.
  assert(E->isTransparent() && "non-transparent glvalue init list");
  return EmitLValue(E->getInit(0));
}

/// Emit the operand of a glvalue conditional operator. This is either a glvalue
/// or a (possibly-parenthesized) throw-expression. If this is a throw, no
/// LValue is returned and the current block has been terminated.
static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
                                                    const Expr *Operand) {
  if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
    CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
    return None;
  }

  return CGF.EmitLValue(Operand);
}

LValue CodeGenFunction::
EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
  if (!expr->isGLValue()) {
    // ?: here should be an aggregate.
    assert(hasAggregateEvaluationKind(expr->getType()) &&
           "Unexpected conditional operator!");
    return EmitAggExprToLValue(expr);
  }

  OpaqueValueMapping binding(*this, expr);

  const Expr *condExpr = expr->getCond();
  bool CondExprBool;
  if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
    const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
    if (!CondExprBool) std::swap(live, dead);

    if (!ContainsLabel(dead)) {
      // If the true case is live, we need to track its region.
      if (CondExprBool)
        incrementProfileCounter(expr);
      // If a throw expression we emit it and return an undefined lvalue
      // because it can't be used.
      if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) {
        EmitCXXThrowExpr(ThrowExpr);
        llvm::Type *Ty =
            llvm::PointerType::getUnqual(ConvertType(dead->getType()));
        return MakeAddrLValue(
            Address(llvm::UndefValue::get(Ty), CharUnits::One()),
            dead->getType());
      }
      return EmitLValue(live);
    }
  }

  llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
  llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
  llvm::BasicBlock *contBlock = createBasicBlock("cond.end");

  ConditionalEvaluation eval(*this);
  EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));

  // Any temporaries created here are conditional.
  EmitBlock(lhsBlock);
  incrementProfileCounter(expr);
  eval.begin(*this);
  Optional<LValue> lhs =
      EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
  eval.end(*this);

  if (lhs && !lhs->isSimple())
    return EmitUnsupportedLValue(expr, "conditional operator");

  lhsBlock = Builder.GetInsertBlock();
  if (lhs)
    Builder.CreateBr(contBlock);

  // Any temporaries created here are conditional.
  EmitBlock(rhsBlock);
  eval.begin(*this);
  Optional<LValue> rhs =
      EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
  eval.end(*this);
  if (rhs && !rhs->isSimple())
    return EmitUnsupportedLValue(expr, "conditional operator");
  rhsBlock = Builder.GetInsertBlock();

  EmitBlock(contBlock);

  if (lhs && rhs) {
    llvm::PHINode *phi =
        Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue");
    phi->addIncoming(lhs->getPointer(*this), lhsBlock);
    phi->addIncoming(rhs->getPointer(*this), rhsBlock);
    Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
    AlignmentSource alignSource =
      std::max(lhs->getBaseInfo().getAlignmentSource(),
               rhs->getBaseInfo().getAlignmentSource());
    TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
        lhs->getTBAAInfo(), rhs->getTBAAInfo());
    return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
                          TBAAInfo);
  } else {
    assert((lhs || rhs) &&
           "both operands of glvalue conditional are throw-expressions?");
    return lhs ? *lhs : *rhs;
  }
}

/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
/// type. If the cast is to a reference, we can have the usual lvalue result,
/// otherwise if a cast is needed by the code generator in an lvalue context,
/// then it must mean that we need the address of an aggregate in order to
/// access one of its members.  This can happen for all the reasons that casts
/// are permitted with aggregate result, including noop aggregate casts, and
/// cast from scalar to union.
LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
  switch (E->getCastKind()) {
  case CK_ToVoid:
  case CK_BitCast:
  case CK_LValueToRValueBitCast:
  case CK_ArrayToPointerDecay:
  case CK_FunctionToPointerDecay:
  case CK_NullToMemberPointer:
  case CK_NullToPointer:
  case CK_IntegralToPointer:
  case CK_PointerToIntegral:
  case CK_PointerToBoolean:
  case CK_VectorSplat:
  case CK_IntegralCast:
  case CK_BooleanToSignedIntegral:
  case CK_IntegralToBoolean:
  case CK_IntegralToFloating:
  case CK_FloatingToIntegral:
  case CK_FloatingToBoolean:
  case CK_FloatingCast:
  case CK_FloatingRealToComplex:
  case CK_FloatingComplexToReal:
  case CK_FloatingComplexToBoolean:
  case CK_FloatingComplexCast:
  case CK_FloatingComplexToIntegralComplex:
  case CK_IntegralRealToComplex:
  case CK_IntegralComplexToReal:
  case CK_IntegralComplexToBoolean:
  case CK_IntegralComplexCast:
  case CK_IntegralComplexToFloatingComplex:
  case CK_DerivedToBaseMemberPointer:
  case CK_BaseToDerivedMemberPointer:
  case CK_MemberPointerToBoolean:
  case CK_ReinterpretMemberPointer:
  case CK_AnyPointerToBlockPointerCast:
  case CK_ARCProduceObject:
  case CK_ARCConsumeObject:
  case CK_ARCReclaimReturnedObject:
  case CK_ARCExtendBlockObject:
  case CK_CopyAndAutoreleaseBlockObject:
  case CK_IntToOCLSampler:
  case CK_FixedPointCast:
  case CK_FixedPointToBoolean:
  case CK_FixedPointToIntegral:
  case CK_IntegralToFixedPoint:
    return EmitUnsupportedLValue(E, "unexpected cast lvalue");

  case CK_Dependent:
    llvm_unreachable("dependent cast kind in IR gen!");

  case CK_BuiltinFnToFnPtr:
    llvm_unreachable("builtin functions are handled elsewhere");

  // These are never l-values; just use the aggregate emission code.
  case CK_NonAtomicToAtomic:
  case CK_AtomicToNonAtomic:
    return EmitAggExprToLValue(E);

  case CK_Dynamic: {
    LValue LV = EmitLValue(E->getSubExpr());
    Address V = LV.getAddress(*this);
    const auto *DCE = cast<CXXDynamicCastExpr>(E);
    return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
  }

  case CK_ConstructorConversion:
  case CK_UserDefinedConversion:
  case CK_CPointerToObjCPointerCast:
  case CK_BlockPointerToObjCPointerCast:
  case CK_NoOp:
  case CK_LValueToRValue:
    return EmitLValue(E->getSubExpr());

  case CK_UncheckedDerivedToBase:
  case CK_DerivedToBase: {
    const auto *DerivedClassTy =
        E->getSubExpr()->getType()->castAs<RecordType>();
    auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());

    LValue LV = EmitLValue(E->getSubExpr());
    Address This = LV.getAddress(*this);

    // Perform the derived-to-base conversion
    Address Base = GetAddressOfBaseClass(
        This, DerivedClassDecl, E->path_begin(), E->path_end(),
        /*NullCheckValue=*/false, E->getExprLoc());

    // TODO: Support accesses to members of base classes in TBAA. For now, we
    // conservatively pretend that the complete object is of the base class
    // type.
    return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
                          CGM.getTBAAInfoForSubobject(LV, E->getType()));
  }
  case CK_ToUnion:
    return EmitAggExprToLValue(E);
  case CK_BaseToDerived: {
    const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
    auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());

    LValue LV = EmitLValue(E->getSubExpr());

    // Perform the base-to-derived conversion
    Address Derived = GetAddressOfDerivedClass(
        LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
        /*NullCheckValue=*/false);

    // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
    // performed and the object is not of the derived type.
    if (sanitizePerformTypeCheck())
      EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
                    Derived.getPointer(), E->getType());

    if (SanOpts.has(SanitizerKind::CFIDerivedCast))
      EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
                                /*MayBeNull=*/false, CFITCK_DerivedCast,
                                E->getBeginLoc());

    return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
                          CGM.getTBAAInfoForSubobject(LV, E->getType()));
  }
  case CK_LValueBitCast: {
    // This must be a reinterpret_cast (or c-style equivalent).
    const auto *CE = cast<ExplicitCastExpr>(E);

    CGM.EmitExplicitCastExprType(CE, this);
    LValue LV = EmitLValue(E->getSubExpr());
    Address V = Builder.CreateBitCast(LV.getAddress(*this),
                                      ConvertType(CE->getTypeAsWritten()));

    if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
      EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
                                /*MayBeNull=*/false, CFITCK_UnrelatedCast,
                                E->getBeginLoc());

    return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
                          CGM.getTBAAInfoForSubobject(LV, E->getType()));
  }
  case CK_AddressSpaceConversion: {
    LValue LV = EmitLValue(E->getSubExpr());
    QualType DestTy = getContext().getPointerType(E->getType());
    llvm::Value *V = getTargetHooks().performAddrSpaceCast(
        *this, LV.getPointer(*this),
        E->getSubExpr()->getType().getAddressSpace(),
        E->getType().getAddressSpace(), ConvertType(DestTy));
    return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()),
                          E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
  }
  case CK_ObjCObjectLValueCast: {
    LValue LV = EmitLValue(E->getSubExpr());
    Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
                                             ConvertType(E->getType()));
    return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
                          CGM.getTBAAInfoForSubobject(LV, E->getType()));
  }
  case CK_ZeroToOCLOpaqueType:
    llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
  }

  llvm_unreachable("Unhandled lvalue cast kind?");
}

LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
  assert(OpaqueValueMappingData::shouldBindAsLValue(e));
  return getOrCreateOpaqueLValueMapping(e);
}

LValue
CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
  assert(OpaqueValueMapping::shouldBindAsLValue(e));

  llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
      it = OpaqueLValues.find(e);

  if (it != OpaqueLValues.end())
    return it->second;

  assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
  return EmitLValue(e->getSourceExpr());
}

RValue
CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
  assert(!OpaqueValueMapping::shouldBindAsLValue(e));

  llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
      it = OpaqueRValues.find(e);

  if (it != OpaqueRValues.end())
    return it->second;

  assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
  return EmitAnyExpr(e->getSourceExpr());
}

RValue CodeGenFunction::EmitRValueForField(LValue LV,
                                           const FieldDecl *FD,
                                           SourceLocation Loc) {
  QualType FT = FD->getType();
  LValue FieldLV = EmitLValueForField(LV, FD);
  switch (getEvaluationKind(FT)) {
  case TEK_Complex:
    return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
  case TEK_Aggregate:
    return FieldLV.asAggregateRValue(*this);
  case TEK_Scalar:
    // This routine is used to load fields one-by-one to perform a copy, so
    // don't load reference fields.
    if (FD->getType()->isReferenceType())
      return RValue::get(FieldLV.getPointer(*this));
    // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
    // primitive load.
    if (FieldLV.isBitField())
      return EmitLoadOfLValue(FieldLV, Loc);
    return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
  }
  llvm_unreachable("bad evaluation kind");
}

//===--------------------------------------------------------------------===//
//                             Expression Emission
//===--------------------------------------------------------------------===//

RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
                                     ReturnValueSlot ReturnValue) {
  // Builtins never have block type.
  if (E->getCallee()->getType()->isBlockPointerType())
    return EmitBlockCallExpr(E, ReturnValue);

  if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
    return EmitCXXMemberCallExpr(CE, ReturnValue);

  if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
    return EmitCUDAKernelCallExpr(CE, ReturnValue);

  if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
    if (const CXXMethodDecl *MD =
          dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
      return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);

  CGCallee callee = EmitCallee(E->getCallee());

  if (callee.isBuiltin()) {
    return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
                           E, ReturnValue);
  }

  if (callee.isPseudoDestructor()) {
    return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
  }

  return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
}

/// Emit a CallExpr without considering whether it might be a subclass.
RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
                                           ReturnValueSlot ReturnValue) {
  CGCallee Callee = EmitCallee(E->getCallee());
  return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
}

static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());

  if (auto builtinID = FD->getBuiltinID()) {
    // Replaceable builtin provide their own implementation of a builtin. Unless
    // we are in the builtin implementation itself, don't call the actual
    // builtin. If we are in the builtin implementation, avoid trivial infinite
    // recursion.
    if (!FD->isInlineBuiltinDeclaration() ||
        CGF.CurFn->getName() == FD->getName())
      return CGCallee::forBuiltin(builtinID, FD);
  }

  llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
  return CGCallee::forDirect(calleePtr, GD);
}

CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
  E = E->IgnoreParens();

  // Look through function-to-pointer decay.
  if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
    if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
        ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
      return EmitCallee(ICE->getSubExpr());
    }

  // Resolve direct calls.
  } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
    if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
      return EmitDirectCallee(*this, FD);
    }
  } else if (auto ME = dyn_cast<MemberExpr>(E)) {
    if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
      EmitIgnoredExpr(ME->getBase());
      return EmitDirectCallee(*this, FD);
    }

  // Look through template substitutions.
  } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
    return EmitCallee(NTTP->getReplacement());

  // Treat pseudo-destructor calls differently.
  } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
    return CGCallee::forPseudoDestructor(PDE);
  }

  // Otherwise, we have an indirect reference.
  llvm::Value *calleePtr;
  QualType functionType;
  if (auto ptrType = E->getType()->getAs<PointerType>()) {
    calleePtr = EmitScalarExpr(E);
    functionType = ptrType->getPointeeType();
  } else {
    functionType = E->getType();
    calleePtr = EmitLValue(E).getPointer(*this);
  }
  assert(functionType->isFunctionType());

  GlobalDecl GD;
  if (const auto *VD =
          dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
    GD = GlobalDecl(VD);

  CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
  CGCallee callee(calleeInfo, calleePtr);
  return callee;
}

LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
  // Comma expressions just emit their LHS then their RHS as an l-value.
  if (E->getOpcode() == BO_Comma) {
    EmitIgnoredExpr(E->getLHS());
    EnsureInsertPoint();
    return EmitLValue(E->getRHS());
  }

  if (E->getOpcode() == BO_PtrMemD ||
      E->getOpcode() == BO_PtrMemI)
    return EmitPointerToDataMemberBinaryExpr(E);

  assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");

  // Note that in all of these cases, __block variables need the RHS
  // evaluated first just in case the variable gets moved by the RHS.

  switch (getEvaluationKind(E->getType())) {
  case TEK_Scalar: {
    switch (E->getLHS()->getType().getObjCLifetime()) {
    case Qualifiers::OCL_Strong:
      return EmitARCStoreStrong(E, /*ignored*/ false).first;

    case Qualifiers::OCL_Autoreleasing:
      return EmitARCStoreAutoreleasing(E).first;

    // No reason to do any of these differently.
    case Qualifiers::OCL_None:
    case Qualifiers::OCL_ExplicitNone:
    case Qualifiers::OCL_Weak:
      break;
    }

    RValue RV = EmitAnyExpr(E->getRHS());
    LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
    if (RV.isScalar())
      EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
    EmitStoreThroughLValue(RV, LV);
    if (getLangOpts().OpenMP)
      CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
                                                                E->getLHS());
    return LV;
  }

  case TEK_Complex:
    return EmitComplexAssignmentLValue(E);

  case TEK_Aggregate:
    return EmitAggExprToLValue(E);
  }
  llvm_unreachable("bad evaluation kind");
}

LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
  RValue RV = EmitCallExpr(E);

  if (!RV.isScalar())
    return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
                          AlignmentSource::Decl);

  assert(E->getCallReturnType(getContext())->isReferenceType() &&
         "Can't have a scalar return unless the return type is a "
         "reference type!");

  return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
}

LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
  // FIXME: This shouldn't require another copy.
  return EmitAggExprToLValue(E);
}

LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
  assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
         && "binding l-value to type which needs a temporary");
  AggValueSlot Slot = CreateAggTemp(E->getType());
  EmitCXXConstructExpr(E, Slot);
  return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
}

LValue
CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
  return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
}

Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
  return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()),
                                      ConvertType(E->getType()));
}

LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
  return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
                        AlignmentSource::Decl);
}

LValue
CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
  Slot.setExternallyDestructed();
  EmitAggExpr(E->getSubExpr(), Slot);
  EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
  return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
}

LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
  RValue RV = EmitObjCMessageExpr(E);

  if (!RV.isScalar())
    return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
                          AlignmentSource::Decl);

  assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
         "Can't have a scalar return unless the return type is a "
         "reference type!");

  return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
}

LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
  Address V =
    CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
  return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
}

llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
                                             const ObjCIvarDecl *Ivar) {
  return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
}

LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
                                          llvm::Value *BaseValue,
                                          const ObjCIvarDecl *Ivar,
                                          unsigned CVRQualifiers) {
  return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
                                                   Ivar, CVRQualifiers);
}

LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
  // FIXME: A lot of the code below could be shared with EmitMemberExpr.
  llvm::Value *BaseValue = nullptr;
  const Expr *BaseExpr = E->getBase();
  Qualifiers BaseQuals;
  QualType ObjectTy;
  if (E->isArrow()) {
    BaseValue = EmitScalarExpr(BaseExpr);
    ObjectTy = BaseExpr->getType()->getPointeeType();
    BaseQuals = ObjectTy.getQualifiers();
  } else {
    LValue BaseLV = EmitLValue(BaseExpr);
    BaseValue = BaseLV.getPointer(*this);
    ObjectTy = BaseExpr->getType();
    BaseQuals = ObjectTy.getQualifiers();
  }

  LValue LV =
    EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
                      BaseQuals.getCVRQualifiers());
  setObjCGCLValueClass(getContext(), E, LV);
  return LV;
}

LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
  // Can only get l-value for message expression returning aggregate type
  RValue RV = EmitAnyExprToTemp(E);
  return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
                        AlignmentSource::Decl);
}

RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
                                 const CallExpr *E, ReturnValueSlot ReturnValue,
                                 llvm::Value *Chain) {
  // Get the actual function type. The callee type will always be a pointer to
  // function type or a block pointer type.
  assert(CalleeType->isFunctionPointerType() &&
         "Call must have function pointer type!");

  const Decl *TargetDecl =
      OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();

  CalleeType = getContext().getCanonicalType(CalleeType);

  auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();

  CGCallee Callee = OrigCallee;

  if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
      (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
    if (llvm::Constant *PrefixSig =
            CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
      SanitizerScope SanScope(this);
      // Remove any (C++17) exception specifications, to allow calling e.g. a
      // noexcept function through a non-noexcept pointer.
      auto ProtoTy =
        getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
      llvm::Constant *FTRTTIConst =
          CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
      llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
      llvm::StructType *PrefixStructTy = llvm::StructType::get(
          CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);

      llvm::Value *CalleePtr = Callee.getFunctionPointer();

      llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
          CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
      llvm::Value *CalleeSigPtr =
          Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
      llvm::Value *CalleeSig =
          Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
      llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);

      llvm::BasicBlock *Cont = createBasicBlock("cont");
      llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
      Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);

      EmitBlock(TypeCheck);
      llvm::Value *CalleeRTTIPtr =
          Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
      llvm::Value *CalleeRTTIEncoded =
          Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
      llvm::Value *CalleeRTTI =
          DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
      llvm::Value *CalleeRTTIMatch =
          Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
      llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
                                      EmitCheckTypeDescriptor(CalleeType)};
      EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
                SanitizerHandler::FunctionTypeMismatch, StaticData,
                {CalleePtr, CalleeRTTI, FTRTTIConst});

      Builder.CreateBr(Cont);
      EmitBlock(Cont);
    }
  }

  const auto *FnType = cast<FunctionType>(PointeeType);

  // If we are checking indirect calls and this call is indirect, check that the
  // function pointer is a member of the bit set for the function type.
  if (SanOpts.has(SanitizerKind::CFIICall) &&
      (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
    SanitizerScope SanScope(this);
    EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);

    llvm::Metadata *MD;
    if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
      MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
    else
      MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));

    llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);

    llvm::Value *CalleePtr = Callee.getFunctionPointer();
    llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
    llvm::Value *TypeTest = Builder.CreateCall(
        CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});

    auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
    llvm::Constant *StaticData[] = {
        llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
        EmitCheckSourceLocation(E->getBeginLoc()),
        EmitCheckTypeDescriptor(QualType(FnType, 0)),
    };
    if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
      EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
                           CastedCallee, StaticData);
    } else {
      EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
                SanitizerHandler::CFICheckFail, StaticData,
                {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
    }
  }

  CallArgList Args;
  if (Chain)
    Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
             CGM.getContext().VoidPtrTy);

  // C++17 requires that we evaluate arguments to a call using assignment syntax
  // right-to-left, and that we evaluate arguments to certain other operators
  // left-to-right. Note that we allow this to override the order dictated by
  // the calling convention on the MS ABI, which means that parameter
  // destruction order is not necessarily reverse construction order.
  // FIXME: Revisit this based on C++ committee response to unimplementability.
  EvaluationOrder Order = EvaluationOrder::Default;
  if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
    if (OCE->isAssignmentOp())
      Order = EvaluationOrder::ForceRightToLeft;
    else {
      switch (OCE->getOperator()) {
      case OO_LessLess:
      case OO_GreaterGreater:
      case OO_AmpAmp:
      case OO_PipePipe:
      case OO_Comma:
      case OO_ArrowStar:
        Order = EvaluationOrder::ForceLeftToRight;
        break;
      default:
        break;
      }
    }
  }

  EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
               E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);

  const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
      Args, FnType, /*ChainCall=*/Chain);

  // C99 6.5.2.2p6:
  //   If the expression that denotes the called function has a type
  //   that does not include a prototype, [the default argument
  //   promotions are performed]. If the number of arguments does not
  //   equal the number of parameters, the behavior is undefined. If
  //   the function is defined with a type that includes a prototype,
  //   and either the prototype ends with an ellipsis (, ...) or the
  //   types of the arguments after promotion are not compatible with
  //   the types of the parameters, the behavior is undefined. If the
  //   function is defined with a type that does not include a
  //   prototype, and the types of the arguments after promotion are
  //   not compatible with those of the parameters after promotion,
  //   the behavior is undefined [except in some trivial cases].
  // That is, in the general case, we should assume that a call
  // through an unprototyped function type works like a *non-variadic*
  // call.  The way we make this work is to cast to the exact type
  // of the promoted arguments.
  //
  // Chain calls use this same code path to add the invisible chain parameter
  // to the function type.
  if (isa<FunctionNoProtoType>(FnType) || Chain) {
    llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
    int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
    CalleeTy = CalleeTy->getPointerTo(AS);

    llvm::Value *CalleePtr = Callee.getFunctionPointer();
    CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
    Callee.setFunctionPointer(CalleePtr);
  }

  llvm::CallBase *CallOrInvoke = nullptr;
  RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
                         E->getExprLoc());

  // Generate function declaration DISuprogram in order to be used
  // in debug info about call sites.
  if (CGDebugInfo *DI = getDebugInfo()) {
    if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl))
      DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0),
                                  CalleeDecl);
  }

  return Call;
}

LValue CodeGenFunction::
EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
  Address BaseAddr = Address::invalid();
  if (E->getOpcode() == BO_PtrMemI) {
    BaseAddr = EmitPointerWithAlignment(E->getLHS());
  } else {
    BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
  }

  llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
  const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();

  LValueBaseInfo BaseInfo;
  TBAAAccessInfo TBAAInfo;
  Address MemberAddr =
    EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
                                    &TBAAInfo);

  return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
}

/// Given the address of a temporary variable, produce an r-value of
/// its type.
RValue CodeGenFunction::convertTempToRValue(Address addr,
                                            QualType type,
                                            SourceLocation loc) {
  LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
  switch (getEvaluationKind(type)) {
  case TEK_Complex:
    return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
  case TEK_Aggregate:
    return lvalue.asAggregateRValue(*this);
  case TEK_Scalar:
    return RValue::get(EmitLoadOfScalar(lvalue, loc));
  }
  llvm_unreachable("bad evaluation kind");
}

void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
  assert(Val->getType()->isFPOrFPVectorTy());
  if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
    return;

  llvm::MDBuilder MDHelper(getLLVMContext());
  llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);

  cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
}

namespace {
  struct LValueOrRValue {
    LValue LV;
    RValue RV;
  };
}

static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
                                           const PseudoObjectExpr *E,
                                           bool forLValue,
                                           AggValueSlot slot) {
  SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;

  // Find the result expression, if any.
  const Expr *resultExpr = E->getResultExpr();
  LValueOrRValue result;

  for (PseudoObjectExpr::const_semantics_iterator
         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
    const Expr *semantic = *i;

    // If this semantic expression is an opaque value, bind it
    // to the result of its source expression.
    if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
      // Skip unique OVEs.
      if (ov->isUnique()) {
        assert(ov != resultExpr &&
               "A unique OVE cannot be used as the result expression");
        continue;
      }

      // If this is the result expression, we may need to evaluate
      // directly into the slot.
      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
      OVMA opaqueData;
      if (ov == resultExpr && ov->isRValue() && !forLValue &&
          CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
        CGF.EmitAggExpr(ov->getSourceExpr(), slot);
        LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
                                       AlignmentSource::Decl);
        opaqueData = OVMA::bind(CGF, ov, LV);
        result.RV = slot.asRValue();

      // Otherwise, emit as normal.
      } else {
        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());

        // If this is the result, also evaluate the result now.
        if (ov == resultExpr) {
          if (forLValue)
            result.LV = CGF.EmitLValue(ov);
          else
            result.RV = CGF.EmitAnyExpr(ov, slot);
        }
      }

      opaques.push_back(opaqueData);

    // Otherwise, if the expression is the result, evaluate it
    // and remember the result.
    } else if (semantic == resultExpr) {
      if (forLValue)
        result.LV = CGF.EmitLValue(semantic);
      else
        result.RV = CGF.EmitAnyExpr(semantic, slot);

    // Otherwise, evaluate the expression in an ignored context.
    } else {
      CGF.EmitIgnoredExpr(semantic);
    }
  }

  // Unbind all the opaques now.
  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
    opaques[i].unbind(CGF);

  return result;
}

RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
                                               AggValueSlot slot) {
  return emitPseudoObjectExpr(*this, E, false, slot).RV;
}

LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
  return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
}