UninitializedValues.cpp 31.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
//===- UninitializedValues.cpp - Find Uninitialized Values ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements uninitialized values analysis for source-level CFGs.
//
//===----------------------------------------------------------------------===//

#include "clang/Analysis/Analyses/UninitializedValues.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/Expr.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/Type.h"
#include "clang/Analysis/Analyses/PostOrderCFGView.h"
#include "clang/Analysis/AnalysisDeclContext.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/DomainSpecific/ObjCNoReturn.h"
#include "clang/Analysis/FlowSensitive/DataflowWorklist.h"
#include "clang/Basic/LLVM.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PackedVector.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Casting.h"
#include <algorithm>
#include <cassert>

using namespace clang;

#define DEBUG_LOGGING 0

static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) {
  if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() &&
      !vd->isExceptionVariable() && !vd->isInitCapture() &&
      !vd->isImplicit() && vd->getDeclContext() == dc) {
    QualType ty = vd->getType();
    return ty->isScalarType() || ty->isVectorType() || ty->isRecordType();
  }
  return false;
}

//------------------------------------------------------------------------====//
// DeclToIndex: a mapping from Decls we track to value indices.
//====------------------------------------------------------------------------//

namespace {

class DeclToIndex {
  llvm::DenseMap<const VarDecl *, unsigned> map;

public:
  DeclToIndex() = default;

  /// Compute the actual mapping from declarations to bits.
  void computeMap(const DeclContext &dc);

  /// Return the number of declarations in the map.
  unsigned size() const { return map.size(); }

  /// Returns the bit vector index for a given declaration.
  Optional<unsigned> getValueIndex(const VarDecl *d) const;
};

} // namespace

void DeclToIndex::computeMap(const DeclContext &dc) {
  unsigned count = 0;
  DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()),
                                               E(dc.decls_end());
  for ( ; I != E; ++I) {
    const VarDecl *vd = *I;
    if (isTrackedVar(vd, &dc))
      map[vd] = count++;
  }
}

Optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const {
  llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d);
  if (I == map.end())
    return None;
  return I->second;
}

//------------------------------------------------------------------------====//
// CFGBlockValues: dataflow values for CFG blocks.
//====------------------------------------------------------------------------//

// These values are defined in such a way that a merge can be done using
// a bitwise OR.
enum Value { Unknown = 0x0,         /* 00 */
             Initialized = 0x1,     /* 01 */
             Uninitialized = 0x2,   /* 10 */
             MayUninitialized = 0x3 /* 11 */ };

static bool isUninitialized(const Value v) {
  return v >= Uninitialized;
}

static bool isAlwaysUninit(const Value v) {
  return v == Uninitialized;
}

namespace {

using ValueVector = llvm::PackedVector<Value, 2, llvm::SmallBitVector>;

class CFGBlockValues {
  const CFG &cfg;
  SmallVector<ValueVector, 8> vals;
  ValueVector scratch;
  DeclToIndex declToIndex;

public:
  CFGBlockValues(const CFG &cfg);

  unsigned getNumEntries() const { return declToIndex.size(); }

  void computeSetOfDeclarations(const DeclContext &dc);

  ValueVector &getValueVector(const CFGBlock *block) {
    return vals[block->getBlockID()];
  }

  void setAllScratchValues(Value V);
  void mergeIntoScratch(ValueVector const &source, bool isFirst);
  bool updateValueVectorWithScratch(const CFGBlock *block);

  bool hasNoDeclarations() const {
    return declToIndex.size() == 0;
  }

  void resetScratch();

  ValueVector::reference operator[](const VarDecl *vd);

  Value getValue(const CFGBlock *block, const CFGBlock *dstBlock,
                 const VarDecl *vd) {
    const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
    assert(idx.hasValue());
    return getValueVector(block)[idx.getValue()];
  }
};

} // namespace

CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {}

void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) {
  declToIndex.computeMap(dc);
  unsigned decls = declToIndex.size();
  scratch.resize(decls);
  unsigned n = cfg.getNumBlockIDs();
  if (!n)
    return;
  vals.resize(n);
  for (auto &val : vals)
    val.resize(decls);
}

#if DEBUG_LOGGING
static void printVector(const CFGBlock *block, ValueVector &bv,
                        unsigned num) {
  llvm::errs() << block->getBlockID() << " :";
  for (const auto &i : bv)
    llvm::errs() << ' ' << i;
  llvm::errs() << " : " << num << '\n';
}
#endif

void CFGBlockValues::setAllScratchValues(Value V) {
  for (unsigned I = 0, E = scratch.size(); I != E; ++I)
    scratch[I] = V;
}

void CFGBlockValues::mergeIntoScratch(ValueVector const &source,
                                      bool isFirst) {
  if (isFirst)
    scratch = source;
  else
    scratch |= source;
}

bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) {
  ValueVector &dst = getValueVector(block);
  bool changed = (dst != scratch);
  if (changed)
    dst = scratch;
#if DEBUG_LOGGING
  printVector(block, scratch, 0);
#endif
  return changed;
}

void CFGBlockValues::resetScratch() {
  scratch.reset();
}

ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) {
  const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
  assert(idx.hasValue());
  return scratch[idx.getValue()];
}

//------------------------------------------------------------------------====//
// Classification of DeclRefExprs as use or initialization.
//====------------------------------------------------------------------------//

namespace {

class FindVarResult {
  const VarDecl *vd;
  const DeclRefExpr *dr;

public:
  FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {}

  const DeclRefExpr *getDeclRefExpr() const { return dr; }
  const VarDecl *getDecl() const { return vd; }
};

} // namespace

static const Expr *stripCasts(ASTContext &C, const Expr *Ex) {
  while (Ex) {
    Ex = Ex->IgnoreParenNoopCasts(C);
    if (const auto *CE = dyn_cast<CastExpr>(Ex)) {
      if (CE->getCastKind() == CK_LValueBitCast) {
        Ex = CE->getSubExpr();
        continue;
      }
    }
    break;
  }
  return Ex;
}

/// If E is an expression comprising a reference to a single variable, find that
/// variable.
static FindVarResult findVar(const Expr *E, const DeclContext *DC) {
  if (const auto *DRE =
          dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E)))
    if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
      if (isTrackedVar(VD, DC))
        return FindVarResult(VD, DRE);
  return FindVarResult(nullptr, nullptr);
}

namespace {

/// Classify each DeclRefExpr as an initialization or a use. Any
/// DeclRefExpr which isn't explicitly classified will be assumed to have
/// escaped the analysis and will be treated as an initialization.
class ClassifyRefs : public StmtVisitor<ClassifyRefs> {
public:
  enum Class {
    Init,
    Use,
    SelfInit,
    ConstRefUse,
    Ignore
  };

private:
  const DeclContext *DC;
  llvm::DenseMap<const DeclRefExpr *, Class> Classification;

  bool isTrackedVar(const VarDecl *VD) const {
    return ::isTrackedVar(VD, DC);
  }

  void classify(const Expr *E, Class C);

public:
  ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {}

  void VisitDeclStmt(DeclStmt *DS);
  void VisitUnaryOperator(UnaryOperator *UO);
  void VisitBinaryOperator(BinaryOperator *BO);
  void VisitCallExpr(CallExpr *CE);
  void VisitCastExpr(CastExpr *CE);
  void VisitOMPExecutableDirective(OMPExecutableDirective *ED);

  void operator()(Stmt *S) { Visit(S); }

  Class get(const DeclRefExpr *DRE) const {
    llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I
        = Classification.find(DRE);
    if (I != Classification.end())
      return I->second;

    const auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
    if (!VD || !isTrackedVar(VD))
      return Ignore;

    return Init;
  }
};

} // namespace

static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) {
  if (VD->getType()->isRecordType())
    return nullptr;
  if (Expr *Init = VD->getInit()) {
    const auto *DRE =
        dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init));
    if (DRE && DRE->getDecl() == VD)
      return DRE;
  }
  return nullptr;
}

void ClassifyRefs::classify(const Expr *E, Class C) {
  // The result of a ?: could also be an lvalue.
  E = E->IgnoreParens();
  if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
    classify(CO->getTrueExpr(), C);
    classify(CO->getFalseExpr(), C);
    return;
  }

  if (const auto *BCO = dyn_cast<BinaryConditionalOperator>(E)) {
    classify(BCO->getFalseExpr(), C);
    return;
  }

  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) {
    classify(OVE->getSourceExpr(), C);
    return;
  }

  if (const auto *ME = dyn_cast<MemberExpr>(E)) {
    if (const auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
      if (!VD->isStaticDataMember())
        classify(ME->getBase(), C);
    }
    return;
  }

  if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
    switch (BO->getOpcode()) {
    case BO_PtrMemD:
    case BO_PtrMemI:
      classify(BO->getLHS(), C);
      return;
    case BO_Comma:
      classify(BO->getRHS(), C);
      return;
    default:
      return;
    }
  }

  FindVarResult Var = findVar(E, DC);
  if (const DeclRefExpr *DRE = Var.getDeclRefExpr())
    Classification[DRE] = std::max(Classification[DRE], C);
}

void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) {
  for (auto *DI : DS->decls()) {
    auto *VD = dyn_cast<VarDecl>(DI);
    if (VD && isTrackedVar(VD))
      if (const DeclRefExpr *DRE = getSelfInitExpr(VD))
        Classification[DRE] = SelfInit;
  }
}

void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) {
  // Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this
  // is not a compound-assignment, we will treat it as initializing the variable
  // when TransferFunctions visits it. A compound-assignment does not affect
  // whether a variable is uninitialized, and there's no point counting it as a
  // use.
  if (BO->isCompoundAssignmentOp())
    classify(BO->getLHS(), Use);
  else if (BO->getOpcode() == BO_Assign || BO->getOpcode() == BO_Comma)
    classify(BO->getLHS(), Ignore);
}

void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) {
  // Increment and decrement are uses despite there being no lvalue-to-rvalue
  // conversion.
  if (UO->isIncrementDecrementOp())
    classify(UO->getSubExpr(), Use);
}

void ClassifyRefs::VisitOMPExecutableDirective(OMPExecutableDirective *ED) {
  for (Stmt *S : OMPExecutableDirective::used_clauses_children(ED->clauses()))
    classify(cast<Expr>(S), Use);
}

static bool isPointerToConst(const QualType &QT) {
  return QT->isAnyPointerType() && QT->getPointeeType().isConstQualified();
}

static bool hasTrivialBody(CallExpr *CE) {
  if (FunctionDecl *FD = CE->getDirectCallee()) {
    if (FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
      return FTD->getTemplatedDecl()->hasTrivialBody();
    return FD->hasTrivialBody();
  }
  return false;
}

void ClassifyRefs::VisitCallExpr(CallExpr *CE) {
  // Classify arguments to std::move as used.
  if (CE->isCallToStdMove()) {
    // RecordTypes are handled in SemaDeclCXX.cpp.
    if (!CE->getArg(0)->getType()->isRecordType())
      classify(CE->getArg(0), Use);
    return;
  }
  bool isTrivialBody = hasTrivialBody(CE);
  // If a value is passed by const pointer to a function,
  // we should not assume that it is initialized by the call, and we
  // conservatively do not assume that it is used.
  // If a value is passed by const reference to a function,
  // it should already be initialized.
  for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
       I != E; ++I) {
    if ((*I)->isGLValue()) {
      if ((*I)->getType().isConstQualified())
        classify((*I), isTrivialBody ? Ignore : ConstRefUse);
    } else if (isPointerToConst((*I)->getType())) {
      const Expr *Ex = stripCasts(DC->getParentASTContext(), *I);
      const auto *UO = dyn_cast<UnaryOperator>(Ex);
      if (UO && UO->getOpcode() == UO_AddrOf)
        Ex = UO->getSubExpr();
      classify(Ex, Ignore);
    }
  }
}

void ClassifyRefs::VisitCastExpr(CastExpr *CE) {
  if (CE->getCastKind() == CK_LValueToRValue)
    classify(CE->getSubExpr(), Use);
  else if (const auto *CSE = dyn_cast<CStyleCastExpr>(CE)) {
    if (CSE->getType()->isVoidType()) {
      // Squelch any detected load of an uninitialized value if
      // we cast it to void.
      // e.g. (void) x;
      classify(CSE->getSubExpr(), Ignore);
    }
  }
}

//------------------------------------------------------------------------====//
// Transfer function for uninitialized values analysis.
//====------------------------------------------------------------------------//

namespace {

class TransferFunctions : public StmtVisitor<TransferFunctions> {
  CFGBlockValues &vals;
  const CFG &cfg;
  const CFGBlock *block;
  AnalysisDeclContext &ac;
  const ClassifyRefs &classification;
  ObjCNoReturn objCNoRet;
  UninitVariablesHandler &handler;

public:
  TransferFunctions(CFGBlockValues &vals, const CFG &cfg,
                    const CFGBlock *block, AnalysisDeclContext &ac,
                    const ClassifyRefs &classification,
                    UninitVariablesHandler &handler)
      : vals(vals), cfg(cfg), block(block), ac(ac),
        classification(classification), objCNoRet(ac.getASTContext()),
        handler(handler) {}

  void reportUse(const Expr *ex, const VarDecl *vd);
  void reportConstRefUse(const Expr *ex, const VarDecl *vd);

  void VisitBinaryOperator(BinaryOperator *bo);
  void VisitBlockExpr(BlockExpr *be);
  void VisitCallExpr(CallExpr *ce);
  void VisitDeclRefExpr(DeclRefExpr *dr);
  void VisitDeclStmt(DeclStmt *ds);
  void VisitGCCAsmStmt(GCCAsmStmt *as);
  void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS);
  void VisitObjCMessageExpr(ObjCMessageExpr *ME);
  void VisitOMPExecutableDirective(OMPExecutableDirective *ED);

  bool isTrackedVar(const VarDecl *vd) {
    return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl()));
  }

  FindVarResult findVar(const Expr *ex) {
    return ::findVar(ex, cast<DeclContext>(ac.getDecl()));
  }

  UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) {
    UninitUse Use(ex, isAlwaysUninit(v));

    assert(isUninitialized(v));
    if (Use.getKind() == UninitUse::Always)
      return Use;

    // If an edge which leads unconditionally to this use did not initialize
    // the variable, we can say something stronger than 'may be uninitialized':
    // we can say 'either it's used uninitialized or you have dead code'.
    //
    // We track the number of successors of a node which have been visited, and
    // visit a node once we have visited all of its successors. Only edges where
    // the variable might still be uninitialized are followed. Since a variable
    // can't transfer from being initialized to being uninitialized, this will
    // trace out the subgraph which inevitably leads to the use and does not
    // initialize the variable. We do not want to skip past loops, since their
    // non-termination might be correlated with the initialization condition.
    //
    // For example:
    //
    //         void f(bool a, bool b) {
    // block1:   int n;
    //           if (a) {
    // block2:     if (b)
    // block3:       n = 1;
    // block4:   } else if (b) {
    // block5:     while (!a) {
    // block6:       do_work(&a);
    //               n = 2;
    //             }
    //           }
    // block7:   if (a)
    // block8:     g();
    // block9:   return n;
    //         }
    //
    // Starting from the maybe-uninitialized use in block 9:
    //  * Block 7 is not visited because we have only visited one of its two
    //    successors.
    //  * Block 8 is visited because we've visited its only successor.
    // From block 8:
    //  * Block 7 is visited because we've now visited both of its successors.
    // From block 7:
    //  * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all
    //    of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively).
    //  * Block 3 is not visited because it initializes 'n'.
    // Now the algorithm terminates, having visited blocks 7 and 8, and having
    // found the frontier is blocks 2, 4, and 5.
    //
    // 'n' is definitely uninitialized for two edges into block 7 (from blocks 2
    // and 4), so we report that any time either of those edges is taken (in
    // each case when 'b == false'), 'n' is used uninitialized.
    SmallVector<const CFGBlock*, 32> Queue;
    SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0);
    Queue.push_back(block);
    // Specify that we've already visited all successors of the starting block.
    // This has the dual purpose of ensuring we never add it to the queue, and
    // of marking it as not being a candidate element of the frontier.
    SuccsVisited[block->getBlockID()] = block->succ_size();
    while (!Queue.empty()) {
      const CFGBlock *B = Queue.pop_back_val();

      // If the use is always reached from the entry block, make a note of that.
      if (B == &cfg.getEntry())
        Use.setUninitAfterCall();

      for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end();
           I != E; ++I) {
        const CFGBlock *Pred = *I;
        if (!Pred)
          continue;

        Value AtPredExit = vals.getValue(Pred, B, vd);
        if (AtPredExit == Initialized)
          // This block initializes the variable.
          continue;
        if (AtPredExit == MayUninitialized &&
            vals.getValue(B, nullptr, vd) == Uninitialized) {
          // This block declares the variable (uninitialized), and is reachable
          // from a block that initializes the variable. We can't guarantee to
          // give an earlier location for the diagnostic (and it appears that
          // this code is intended to be reachable) so give a diagnostic here
          // and go no further down this path.
          Use.setUninitAfterDecl();
          continue;
        }

        if (AtPredExit == MayUninitialized) {
          // If the predecessor's terminator is an "asm goto" that initializes
          // the variable, then it won't be counted as "initialized" on the
          // non-fallthrough paths.
          CFGTerminator term = Pred->getTerminator();
          if (const auto *as = dyn_cast_or_null<GCCAsmStmt>(term.getStmt())) {
            const CFGBlock *fallthrough = *Pred->succ_begin();
            if (as->isAsmGoto() &&
                llvm::any_of(as->outputs(), [&](const Expr *output) {
                    return vd == findVar(output).getDecl() &&
                        llvm::any_of(as->labels(),
                                     [&](const AddrLabelExpr *label) {
                          return label->getLabel()->getStmt() == B->Label &&
                              B != fallthrough;
                        });
                })) {
              Use.setUninitAfterDecl();
              continue;
            }
          }
        }

        unsigned &SV = SuccsVisited[Pred->getBlockID()];
        if (!SV) {
          // When visiting the first successor of a block, mark all NULL
          // successors as having been visited.
          for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(),
                                             SE = Pred->succ_end();
               SI != SE; ++SI)
            if (!*SI)
              ++SV;
        }

        if (++SV == Pred->succ_size())
          // All paths from this block lead to the use and don't initialize the
          // variable.
          Queue.push_back(Pred);
      }
    }

    // Scan the frontier, looking for blocks where the variable was
    // uninitialized.
    for (const auto *Block : cfg) {
      unsigned BlockID = Block->getBlockID();
      const Stmt *Term = Block->getTerminatorStmt();
      if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() &&
          Term) {
        // This block inevitably leads to the use. If we have an edge from here
        // to a post-dominator block, and the variable is uninitialized on that
        // edge, we have found a bug.
        for (CFGBlock::const_succ_iterator I = Block->succ_begin(),
             E = Block->succ_end(); I != E; ++I) {
          const CFGBlock *Succ = *I;
          if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() &&
              vals.getValue(Block, Succ, vd) == Uninitialized) {
            // Switch cases are a special case: report the label to the caller
            // as the 'terminator', not the switch statement itself. Suppress
            // situations where no label matched: we can't be sure that's
            // possible.
            if (isa<SwitchStmt>(Term)) {
              const Stmt *Label = Succ->getLabel();
              if (!Label || !isa<SwitchCase>(Label))
                // Might not be possible.
                continue;
              UninitUse::Branch Branch;
              Branch.Terminator = Label;
              Branch.Output = 0; // Ignored.
              Use.addUninitBranch(Branch);
            } else {
              UninitUse::Branch Branch;
              Branch.Terminator = Term;
              Branch.Output = I - Block->succ_begin();
              Use.addUninitBranch(Branch);
            }
          }
        }
      }
    }

    return Use;
  }
};

} // namespace

void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) {
  Value v = vals[vd];
  if (isUninitialized(v))
    handler.handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
}

void TransferFunctions::reportConstRefUse(const Expr *ex, const VarDecl *vd) {
  Value v = vals[vd];
  if (isAlwaysUninit(v))
    handler.handleConstRefUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
}

void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) {
  // This represents an initialization of the 'element' value.
  if (const auto *DS = dyn_cast<DeclStmt>(FS->getElement())) {
    const auto *VD = cast<VarDecl>(DS->getSingleDecl());
    if (isTrackedVar(VD))
      vals[VD] = Initialized;
  }
}

void TransferFunctions::VisitOMPExecutableDirective(
    OMPExecutableDirective *ED) {
  for (Stmt *S : OMPExecutableDirective::used_clauses_children(ED->clauses())) {
    assert(S && "Expected non-null used-in-clause child.");
    Visit(S);
  }
  if (!ED->isStandaloneDirective())
    Visit(ED->getStructuredBlock());
}

void TransferFunctions::VisitBlockExpr(BlockExpr *be) {
  const BlockDecl *bd = be->getBlockDecl();
  for (const auto &I : bd->captures()) {
    const VarDecl *vd = I.getVariable();
    if (!isTrackedVar(vd))
      continue;
    if (I.isByRef()) {
      vals[vd] = Initialized;
      continue;
    }
    reportUse(be, vd);
  }
}

void TransferFunctions::VisitCallExpr(CallExpr *ce) {
  if (Decl *Callee = ce->getCalleeDecl()) {
    if (Callee->hasAttr<ReturnsTwiceAttr>()) {
      // After a call to a function like setjmp or vfork, any variable which is
      // initialized anywhere within this function may now be initialized. For
      // now, just assume such a call initializes all variables.  FIXME: Only
      // mark variables as initialized if they have an initializer which is
      // reachable from here.
      vals.setAllScratchValues(Initialized);
    }
    else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) {
      // Functions labeled like "analyzer_noreturn" are often used to denote
      // "panic" functions that in special debug situations can still return,
      // but for the most part should not be treated as returning.  This is a
      // useful annotation borrowed from the static analyzer that is useful for
      // suppressing branch-specific false positives when we call one of these
      // functions but keep pretending the path continues (when in reality the
      // user doesn't care).
      vals.setAllScratchValues(Unknown);
    }
  }
}

void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) {
  switch (classification.get(dr)) {
  case ClassifyRefs::Ignore:
    break;
  case ClassifyRefs::Use:
    reportUse(dr, cast<VarDecl>(dr->getDecl()));
    break;
  case ClassifyRefs::Init:
    vals[cast<VarDecl>(dr->getDecl())] = Initialized;
    break;
  case ClassifyRefs::SelfInit:
    handler.handleSelfInit(cast<VarDecl>(dr->getDecl()));
    break;
  case ClassifyRefs::ConstRefUse:
    reportConstRefUse(dr, cast<VarDecl>(dr->getDecl()));
    break;
  }
}

void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) {
  if (BO->getOpcode() == BO_Assign) {
    FindVarResult Var = findVar(BO->getLHS());
    if (const VarDecl *VD = Var.getDecl())
      vals[VD] = Initialized;
  }
}

void TransferFunctions::VisitDeclStmt(DeclStmt *DS) {
  for (auto *DI : DS->decls()) {
    auto *VD = dyn_cast<VarDecl>(DI);
    if (VD && isTrackedVar(VD)) {
      if (getSelfInitExpr(VD)) {
        // If the initializer consists solely of a reference to itself, we
        // explicitly mark the variable as uninitialized. This allows code
        // like the following:
        //
        //   int x = x;
        //
        // to deliberately leave a variable uninitialized. Different analysis
        // clients can detect this pattern and adjust their reporting
        // appropriately, but we need to continue to analyze subsequent uses
        // of the variable.
        vals[VD] = Uninitialized;
      } else if (VD->getInit()) {
        // Treat the new variable as initialized.
        vals[VD] = Initialized;
      } else {
        // No initializer: the variable is now uninitialized. This matters
        // for cases like:
        //   while (...) {
        //     int n;
        //     use(n);
        //     n = 0;
        //   }
        // FIXME: Mark the variable as uninitialized whenever its scope is
        // left, since its scope could be re-entered by a jump over the
        // declaration.
        vals[VD] = Uninitialized;
      }
    }
  }
}

void TransferFunctions::VisitGCCAsmStmt(GCCAsmStmt *as) {
  // An "asm goto" statement is a terminator that may initialize some variables.
  if (!as->isAsmGoto())
    return;

  for (const Expr *o : as->outputs())
    if (const VarDecl *VD = findVar(o).getDecl())
      if (vals[VD] != Initialized)
        // If the variable isn't initialized by the time we get here, then we
        // mark it as potentially uninitialized for those cases where it's used
        // on an indirect path, where it's not guaranteed to be defined.
        vals[VD] = MayUninitialized;
}

void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) {
  // If the Objective-C message expression is an implicit no-return that
  // is not modeled in the CFG, set the tracked dataflow values to Unknown.
  if (objCNoRet.isImplicitNoReturn(ME)) {
    vals.setAllScratchValues(Unknown);
  }
}

//------------------------------------------------------------------------====//
// High-level "driver" logic for uninitialized values analysis.
//====------------------------------------------------------------------------//

static bool runOnBlock(const CFGBlock *block, const CFG &cfg,
                       AnalysisDeclContext &ac, CFGBlockValues &vals,
                       const ClassifyRefs &classification,
                       llvm::BitVector &wasAnalyzed,
                       UninitVariablesHandler &handler) {
  wasAnalyzed[block->getBlockID()] = true;
  vals.resetScratch();
  // Merge in values of predecessor blocks.
  bool isFirst = true;
  for (CFGBlock::const_pred_iterator I = block->pred_begin(),
       E = block->pred_end(); I != E; ++I) {
    const CFGBlock *pred = *I;
    if (!pred)
      continue;
    if (wasAnalyzed[pred->getBlockID()]) {
      vals.mergeIntoScratch(vals.getValueVector(pred), isFirst);
      isFirst = false;
    }
  }
  // Apply the transfer function.
  TransferFunctions tf(vals, cfg, block, ac, classification, handler);
  for (const auto &I : *block) {
    if (Optional<CFGStmt> cs = I.getAs<CFGStmt>())
      tf.Visit(const_cast<Stmt *>(cs->getStmt()));
  }
  CFGTerminator terminator = block->getTerminator();
  if (auto *as = dyn_cast_or_null<GCCAsmStmt>(terminator.getStmt()))
    if (as->isAsmGoto())
      tf.Visit(as);
  return vals.updateValueVectorWithScratch(block);
}

namespace {

/// PruneBlocksHandler is a special UninitVariablesHandler that is used
/// to detect when a CFGBlock has any *potential* use of an uninitialized
/// variable.  It is mainly used to prune out work during the final
/// reporting pass.
struct PruneBlocksHandler : public UninitVariablesHandler {
  /// Records if a CFGBlock had a potential use of an uninitialized variable.
  llvm::BitVector hadUse;

  /// Records if any CFGBlock had a potential use of an uninitialized variable.
  bool hadAnyUse = false;

  /// The current block to scribble use information.
  unsigned currentBlock = 0;

  PruneBlocksHandler(unsigned numBlocks) : hadUse(numBlocks, false) {}

  ~PruneBlocksHandler() override = default;

  void handleUseOfUninitVariable(const VarDecl *vd,
                                 const UninitUse &use) override {
    hadUse[currentBlock] = true;
    hadAnyUse = true;
  }

  void handleConstRefUseOfUninitVariable(const VarDecl *vd,
                                         const UninitUse &use) override {
    hadUse[currentBlock] = true;
    hadAnyUse = true;
  }
  
  /// Called when the uninitialized variable analysis detects the
  /// idiom 'int x = x'.  All other uses of 'x' within the initializer
  /// are handled by handleUseOfUninitVariable.
  void handleSelfInit(const VarDecl *vd) override {
    hadUse[currentBlock] = true;
    hadAnyUse = true;
  }
};

} // namespace

void clang::runUninitializedVariablesAnalysis(
    const DeclContext &dc,
    const CFG &cfg,
    AnalysisDeclContext &ac,
    UninitVariablesHandler &handler,
    UninitVariablesAnalysisStats &stats) {
  CFGBlockValues vals(cfg);
  vals.computeSetOfDeclarations(dc);
  if (vals.hasNoDeclarations())
    return;

  stats.NumVariablesAnalyzed = vals.getNumEntries();

  // Precompute which expressions are uses and which are initializations.
  ClassifyRefs classification(ac);
  cfg.VisitBlockStmts(classification);

  // Mark all variables uninitialized at the entry.
  const CFGBlock &entry = cfg.getEntry();
  ValueVector &vec = vals.getValueVector(&entry);
  const unsigned n = vals.getNumEntries();
  for (unsigned j = 0; j < n; ++j) {
    vec[j] = Uninitialized;
  }

  // Proceed with the workist.
  ForwardDataflowWorklist worklist(cfg, ac);
  llvm::BitVector previouslyVisited(cfg.getNumBlockIDs());
  worklist.enqueueSuccessors(&cfg.getEntry());
  llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false);
  wasAnalyzed[cfg.getEntry().getBlockID()] = true;
  PruneBlocksHandler PBH(cfg.getNumBlockIDs());

  while (const CFGBlock *block = worklist.dequeue()) {
    PBH.currentBlock = block->getBlockID();

    // Did the block change?
    bool changed = runOnBlock(block, cfg, ac, vals,
                              classification, wasAnalyzed, PBH);
    ++stats.NumBlockVisits;
    if (changed || !previouslyVisited[block->getBlockID()])
      worklist.enqueueSuccessors(block);
    previouslyVisited[block->getBlockID()] = true;
  }

  if (!PBH.hadAnyUse)
    return;

  // Run through the blocks one more time, and report uninitialized variables.
  for (const auto *block : cfg)
    if (PBH.hadUse[block->getBlockID()]) {
      runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, handler);
      ++stats.NumBlockVisits;
    }
}

UninitVariablesHandler::~UninitVariablesHandler() = default;