VTableBuilder.cpp 140 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
//===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code dealing with generation of the layout of virtual tables.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/VTableBuilder.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstdio>

using namespace clang;

#define DUMP_OVERRIDERS 0

namespace {

/// BaseOffset - Represents an offset from a derived class to a direct or
/// indirect base class.
struct BaseOffset {
  /// DerivedClass - The derived class.
  const CXXRecordDecl *DerivedClass;

  /// VirtualBase - If the path from the derived class to the base class
  /// involves virtual base classes, this holds the declaration of the last
  /// virtual base in this path (i.e. closest to the base class).
  const CXXRecordDecl *VirtualBase;

  /// NonVirtualOffset - The offset from the derived class to the base class.
  /// (Or the offset from the virtual base class to the base class, if the
  /// path from the derived class to the base class involves a virtual base
  /// class.
  CharUnits NonVirtualOffset;

  BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr),
                 NonVirtualOffset(CharUnits::Zero()) { }
  BaseOffset(const CXXRecordDecl *DerivedClass,
             const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset)
    : DerivedClass(DerivedClass), VirtualBase(VirtualBase),
    NonVirtualOffset(NonVirtualOffset) { }

  bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; }
};

/// FinalOverriders - Contains the final overrider member functions for all
/// member functions in the base subobjects of a class.
class FinalOverriders {
public:
  /// OverriderInfo - Information about a final overrider.
  struct OverriderInfo {
    /// Method - The method decl of the overrider.
    const CXXMethodDecl *Method;

    /// VirtualBase - The virtual base class subobject of this overrider.
    /// Note that this records the closest derived virtual base class subobject.
    const CXXRecordDecl *VirtualBase;

    /// Offset - the base offset of the overrider's parent in the layout class.
    CharUnits Offset;

    OverriderInfo() : Method(nullptr), VirtualBase(nullptr),
                      Offset(CharUnits::Zero()) { }
  };

private:
  /// MostDerivedClass - The most derived class for which the final overriders
  /// are stored.
  const CXXRecordDecl *MostDerivedClass;

  /// MostDerivedClassOffset - If we're building final overriders for a
  /// construction vtable, this holds the offset from the layout class to the
  /// most derived class.
  const CharUnits MostDerivedClassOffset;

  /// LayoutClass - The class we're using for layout information. Will be
  /// different than the most derived class if the final overriders are for a
  /// construction vtable.
  const CXXRecordDecl *LayoutClass;

  ASTContext &Context;

  /// MostDerivedClassLayout - the AST record layout of the most derived class.
  const ASTRecordLayout &MostDerivedClassLayout;

  /// MethodBaseOffsetPairTy - Uniquely identifies a member function
  /// in a base subobject.
  typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy;

  typedef llvm::DenseMap<MethodBaseOffsetPairTy,
                         OverriderInfo> OverridersMapTy;

  /// OverridersMap - The final overriders for all virtual member functions of
  /// all the base subobjects of the most derived class.
  OverridersMapTy OverridersMap;

  /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented
  /// as a record decl and a subobject number) and its offsets in the most
  /// derived class as well as the layout class.
  typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>,
                         CharUnits> SubobjectOffsetMapTy;

  typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy;

  /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the
  /// given base.
  void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
                          CharUnits OffsetInLayoutClass,
                          SubobjectOffsetMapTy &SubobjectOffsets,
                          SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
                          SubobjectCountMapTy &SubobjectCounts);

  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;

  /// dump - dump the final overriders for a base subobject, and all its direct
  /// and indirect base subobjects.
  void dump(raw_ostream &Out, BaseSubobject Base,
            VisitedVirtualBasesSetTy& VisitedVirtualBases);

public:
  FinalOverriders(const CXXRecordDecl *MostDerivedClass,
                  CharUnits MostDerivedClassOffset,
                  const CXXRecordDecl *LayoutClass);

  /// getOverrider - Get the final overrider for the given method declaration in
  /// the subobject with the given base offset.
  OverriderInfo getOverrider(const CXXMethodDecl *MD,
                             CharUnits BaseOffset) const {
    assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) &&
           "Did not find overrider!");

    return OverridersMap.lookup(std::make_pair(MD, BaseOffset));
  }

  /// dump - dump the final overriders.
  void dump() {
    VisitedVirtualBasesSetTy VisitedVirtualBases;
    dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()),
         VisitedVirtualBases);
  }

};

FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass,
                                 CharUnits MostDerivedClassOffset,
                                 const CXXRecordDecl *LayoutClass)
  : MostDerivedClass(MostDerivedClass),
  MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass),
  Context(MostDerivedClass->getASTContext()),
  MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) {

  // Compute base offsets.
  SubobjectOffsetMapTy SubobjectOffsets;
  SubobjectOffsetMapTy SubobjectLayoutClassOffsets;
  SubobjectCountMapTy SubobjectCounts;
  ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()),
                     /*IsVirtual=*/false,
                     MostDerivedClassOffset,
                     SubobjectOffsets, SubobjectLayoutClassOffsets,
                     SubobjectCounts);

  // Get the final overriders.
  CXXFinalOverriderMap FinalOverriders;
  MostDerivedClass->getFinalOverriders(FinalOverriders);

  for (const auto &Overrider : FinalOverriders) {
    const CXXMethodDecl *MD = Overrider.first;
    const OverridingMethods &Methods = Overrider.second;

    for (const auto &M : Methods) {
      unsigned SubobjectNumber = M.first;
      assert(SubobjectOffsets.count(std::make_pair(MD->getParent(),
                                                   SubobjectNumber)) &&
             "Did not find subobject offset!");

      CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(),
                                                            SubobjectNumber)];

      assert(M.second.size() == 1 && "Final overrider is not unique!");
      const UniqueVirtualMethod &Method = M.second.front();

      const CXXRecordDecl *OverriderRD = Method.Method->getParent();
      assert(SubobjectLayoutClassOffsets.count(
             std::make_pair(OverriderRD, Method.Subobject))
             && "Did not find subobject offset!");
      CharUnits OverriderOffset =
        SubobjectLayoutClassOffsets[std::make_pair(OverriderRD,
                                                   Method.Subobject)];

      OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)];
      assert(!Overrider.Method && "Overrider should not exist yet!");

      Overrider.Offset = OverriderOffset;
      Overrider.Method = Method.Method;
      Overrider.VirtualBase = Method.InVirtualSubobject;
    }
  }

#if DUMP_OVERRIDERS
  // And dump them (for now).
  dump();
#endif
}

static BaseOffset ComputeBaseOffset(const ASTContext &Context,
                                    const CXXRecordDecl *DerivedRD,
                                    const CXXBasePath &Path) {
  CharUnits NonVirtualOffset = CharUnits::Zero();

  unsigned NonVirtualStart = 0;
  const CXXRecordDecl *VirtualBase = nullptr;

  // First, look for the virtual base class.
  for (int I = Path.size(), E = 0; I != E; --I) {
    const CXXBasePathElement &Element = Path[I - 1];

    if (Element.Base->isVirtual()) {
      NonVirtualStart = I;
      QualType VBaseType = Element.Base->getType();
      VirtualBase = VBaseType->getAsCXXRecordDecl();
      break;
    }
  }

  // Now compute the non-virtual offset.
  for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) {
    const CXXBasePathElement &Element = Path[I];

    // Check the base class offset.
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class);

    const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl();

    NonVirtualOffset += Layout.getBaseClassOffset(Base);
  }

  // FIXME: This should probably use CharUnits or something. Maybe we should
  // even change the base offsets in ASTRecordLayout to be specified in
  // CharUnits.
  return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset);

}

static BaseOffset ComputeBaseOffset(const ASTContext &Context,
                                    const CXXRecordDecl *BaseRD,
                                    const CXXRecordDecl *DerivedRD) {
  CXXBasePaths Paths(/*FindAmbiguities=*/false,
                     /*RecordPaths=*/true, /*DetectVirtual=*/false);

  if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
    llvm_unreachable("Class must be derived from the passed in base class!");

  return ComputeBaseOffset(Context, DerivedRD, Paths.front());
}

static BaseOffset
ComputeReturnAdjustmentBaseOffset(ASTContext &Context,
                                  const CXXMethodDecl *DerivedMD,
                                  const CXXMethodDecl *BaseMD) {
  const auto *BaseFT = BaseMD->getType()->castAs<FunctionType>();
  const auto *DerivedFT = DerivedMD->getType()->castAs<FunctionType>();

  // Canonicalize the return types.
  CanQualType CanDerivedReturnType =
      Context.getCanonicalType(DerivedFT->getReturnType());
  CanQualType CanBaseReturnType =
      Context.getCanonicalType(BaseFT->getReturnType());

  assert(CanDerivedReturnType->getTypeClass() ==
         CanBaseReturnType->getTypeClass() &&
         "Types must have same type class!");

  if (CanDerivedReturnType == CanBaseReturnType) {
    // No adjustment needed.
    return BaseOffset();
  }

  if (isa<ReferenceType>(CanDerivedReturnType)) {
    CanDerivedReturnType =
      CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType();
    CanBaseReturnType =
      CanBaseReturnType->getAs<ReferenceType>()->getPointeeType();
  } else if (isa<PointerType>(CanDerivedReturnType)) {
    CanDerivedReturnType =
      CanDerivedReturnType->getAs<PointerType>()->getPointeeType();
    CanBaseReturnType =
      CanBaseReturnType->getAs<PointerType>()->getPointeeType();
  } else {
    llvm_unreachable("Unexpected return type!");
  }

  // We need to compare unqualified types here; consider
  //   const T *Base::foo();
  //   T *Derived::foo();
  if (CanDerivedReturnType.getUnqualifiedType() ==
      CanBaseReturnType.getUnqualifiedType()) {
    // No adjustment needed.
    return BaseOffset();
  }

  const CXXRecordDecl *DerivedRD =
    cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl());

  const CXXRecordDecl *BaseRD =
    cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl());

  return ComputeBaseOffset(Context, BaseRD, DerivedRD);
}

void
FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
                              CharUnits OffsetInLayoutClass,
                              SubobjectOffsetMapTy &SubobjectOffsets,
                              SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
                              SubobjectCountMapTy &SubobjectCounts) {
  const CXXRecordDecl *RD = Base.getBase();

  unsigned SubobjectNumber = 0;
  if (!IsVirtual)
    SubobjectNumber = ++SubobjectCounts[RD];

  // Set up the subobject to offset mapping.
  assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber))
         && "Subobject offset already exists!");
  assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber))
         && "Subobject offset already exists!");

  SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset();
  SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] =
    OffsetInLayoutClass;

  // Traverse our bases.
  for (const auto &B : RD->bases()) {
    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();

    CharUnits BaseOffset;
    CharUnits BaseOffsetInLayoutClass;
    if (B.isVirtual()) {
      // Check if we've visited this virtual base before.
      if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0)))
        continue;

      const ASTRecordLayout &LayoutClassLayout =
        Context.getASTRecordLayout(LayoutClass);

      BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
      BaseOffsetInLayoutClass =
        LayoutClassLayout.getVBaseClassOffset(BaseDecl);
    } else {
      const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
      CharUnits Offset = Layout.getBaseClassOffset(BaseDecl);

      BaseOffset = Base.getBaseOffset() + Offset;
      BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset;
    }

    ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset),
                       B.isVirtual(), BaseOffsetInLayoutClass,
                       SubobjectOffsets, SubobjectLayoutClassOffsets,
                       SubobjectCounts);
  }
}

void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base,
                           VisitedVirtualBasesSetTy &VisitedVirtualBases) {
  const CXXRecordDecl *RD = Base.getBase();
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);

  for (const auto &B : RD->bases()) {
    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();

    // Ignore bases that don't have any virtual member functions.
    if (!BaseDecl->isPolymorphic())
      continue;

    CharUnits BaseOffset;
    if (B.isVirtual()) {
      if (!VisitedVirtualBases.insert(BaseDecl).second) {
        // We've visited this base before.
        continue;
      }

      BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
    } else {
      BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset();
    }

    dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases);
  }

  Out << "Final overriders for (";
  RD->printQualifiedName(Out);
  Out << ", ";
  Out << Base.getBaseOffset().getQuantity() << ")\n";

  // Now dump the overriders for this base subobject.
  for (const auto *MD : RD->methods()) {
    if (!VTableContextBase::hasVtableSlot(MD))
      continue;
    MD = MD->getCanonicalDecl();

    OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset());

    Out << "  ";
    MD->printQualifiedName(Out);
    Out << " - (";
    Overrider.Method->printQualifiedName(Out);
    Out << ", " << Overrider.Offset.getQuantity() << ')';

    BaseOffset Offset;
    if (!Overrider.Method->isPure())
      Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);

    if (!Offset.isEmpty()) {
      Out << " [ret-adj: ";
      if (Offset.VirtualBase) {
        Offset.VirtualBase->printQualifiedName(Out);
        Out << " vbase, ";
      }

      Out << Offset.NonVirtualOffset.getQuantity() << " nv]";
    }

    Out << "\n";
  }
}

/// VCallOffsetMap - Keeps track of vcall offsets when building a vtable.
struct VCallOffsetMap {

  typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy;

  /// Offsets - Keeps track of methods and their offsets.
  // FIXME: This should be a real map and not a vector.
  SmallVector<MethodAndOffsetPairTy, 16> Offsets;

  /// MethodsCanShareVCallOffset - Returns whether two virtual member functions
  /// can share the same vcall offset.
  static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
                                         const CXXMethodDecl *RHS);

public:
  /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the
  /// add was successful, or false if there was already a member function with
  /// the same signature in the map.
  bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset);

  /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the
  /// vtable address point) for the given virtual member function.
  CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD);

  // empty - Return whether the offset map is empty or not.
  bool empty() const { return Offsets.empty(); }
};

static bool HasSameVirtualSignature(const CXXMethodDecl *LHS,
                                    const CXXMethodDecl *RHS) {
  const FunctionProtoType *LT =
    cast<FunctionProtoType>(LHS->getType().getCanonicalType());
  const FunctionProtoType *RT =
    cast<FunctionProtoType>(RHS->getType().getCanonicalType());

  // Fast-path matches in the canonical types.
  if (LT == RT) return true;

  // Force the signatures to match.  We can't rely on the overrides
  // list here because there isn't necessarily an inheritance
  // relationship between the two methods.
  if (LT->getMethodQuals() != RT->getMethodQuals())
    return false;
  return LT->getParamTypes() == RT->getParamTypes();
}

bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
                                                const CXXMethodDecl *RHS) {
  assert(VTableContextBase::hasVtableSlot(LHS) && "LHS must be virtual!");
  assert(VTableContextBase::hasVtableSlot(RHS) && "LHS must be virtual!");

  // A destructor can share a vcall offset with another destructor.
  if (isa<CXXDestructorDecl>(LHS))
    return isa<CXXDestructorDecl>(RHS);

  // FIXME: We need to check more things here.

  // The methods must have the same name.
  DeclarationName LHSName = LHS->getDeclName();
  DeclarationName RHSName = RHS->getDeclName();
  if (LHSName != RHSName)
    return false;

  // And the same signatures.
  return HasSameVirtualSignature(LHS, RHS);
}

bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD,
                                    CharUnits OffsetOffset) {
  // Check if we can reuse an offset.
  for (const auto &OffsetPair : Offsets) {
    if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
      return false;
  }

  // Add the offset.
  Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset));
  return true;
}

CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) {
  // Look for an offset.
  for (const auto &OffsetPair : Offsets) {
    if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
      return OffsetPair.second;
  }

  llvm_unreachable("Should always find a vcall offset offset!");
}

/// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets.
class VCallAndVBaseOffsetBuilder {
public:
  typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
    VBaseOffsetOffsetsMapTy;

private:
  const ItaniumVTableContext &VTables;

  /// MostDerivedClass - The most derived class for which we're building vcall
  /// and vbase offsets.
  const CXXRecordDecl *MostDerivedClass;

  /// LayoutClass - The class we're using for layout information. Will be
  /// different than the most derived class if we're building a construction
  /// vtable.
  const CXXRecordDecl *LayoutClass;

  /// Context - The ASTContext which we will use for layout information.
  ASTContext &Context;

  /// Components - vcall and vbase offset components
  typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy;
  VTableComponentVectorTy Components;

  /// VisitedVirtualBases - Visited virtual bases.
  llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;

  /// VCallOffsets - Keeps track of vcall offsets.
  VCallOffsetMap VCallOffsets;


  /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets,
  /// relative to the address point.
  VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;

  /// FinalOverriders - The final overriders of the most derived class.
  /// (Can be null when we're not building a vtable of the most derived class).
  const FinalOverriders *Overriders;

  /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the
  /// given base subobject.
  void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual,
                               CharUnits RealBaseOffset);

  /// AddVCallOffsets - Add vcall offsets for the given base subobject.
  void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset);

  /// AddVBaseOffsets - Add vbase offsets for the given class.
  void AddVBaseOffsets(const CXXRecordDecl *Base,
                       CharUnits OffsetInLayoutClass);

  /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in
  /// chars, relative to the vtable address point.
  CharUnits getCurrentOffsetOffset() const;

public:
  VCallAndVBaseOffsetBuilder(const ItaniumVTableContext &VTables,
                             const CXXRecordDecl *MostDerivedClass,
                             const CXXRecordDecl *LayoutClass,
                             const FinalOverriders *Overriders,
                             BaseSubobject Base, bool BaseIsVirtual,
                             CharUnits OffsetInLayoutClass)
      : VTables(VTables), MostDerivedClass(MostDerivedClass),
        LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
        Overriders(Overriders) {

    // Add vcall and vbase offsets.
    AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass);
  }

  /// Methods for iterating over the components.
  typedef VTableComponentVectorTy::const_reverse_iterator const_iterator;
  const_iterator components_begin() const { return Components.rbegin(); }
  const_iterator components_end() const { return Components.rend(); }

  const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; }
  const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
    return VBaseOffsetOffsets;
  }
};

void
VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base,
                                                    bool BaseIsVirtual,
                                                    CharUnits RealBaseOffset) {
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase());

  // Itanium C++ ABI 2.5.2:
  //   ..in classes sharing a virtual table with a primary base class, the vcall
  //   and vbase offsets added by the derived class all come before the vcall
  //   and vbase offsets required by the base class, so that the latter may be
  //   laid out as required by the base class without regard to additions from
  //   the derived class(es).

  // (Since we're emitting the vcall and vbase offsets in reverse order, we'll
  // emit them for the primary base first).
  if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
    bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();

    CharUnits PrimaryBaseOffset;

    // Get the base offset of the primary base.
    if (PrimaryBaseIsVirtual) {
      assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
             "Primary vbase should have a zero offset!");

      const ASTRecordLayout &MostDerivedClassLayout =
        Context.getASTRecordLayout(MostDerivedClass);

      PrimaryBaseOffset =
        MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
    } else {
      assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
             "Primary base should have a zero offset!");

      PrimaryBaseOffset = Base.getBaseOffset();
    }

    AddVCallAndVBaseOffsets(
      BaseSubobject(PrimaryBase,PrimaryBaseOffset),
      PrimaryBaseIsVirtual, RealBaseOffset);
  }

  AddVBaseOffsets(Base.getBase(), RealBaseOffset);

  // We only want to add vcall offsets for virtual bases.
  if (BaseIsVirtual)
    AddVCallOffsets(Base, RealBaseOffset);
}

CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const {
  // OffsetIndex is the index of this vcall or vbase offset, relative to the
  // vtable address point. (We subtract 3 to account for the information just
  // above the address point, the RTTI info, the offset to top, and the
  // vcall offset itself).
  int64_t OffsetIndex = -(int64_t)(3 + Components.size());

  // Under the relative ABI, the offset widths are 32-bit ints instead of
  // pointer widths.
  CharUnits OffsetWidth = Context.toCharUnitsFromBits(
      VTables.isRelativeLayout() ? 32
                                 : Context.getTargetInfo().getPointerWidth(0));
  CharUnits OffsetOffset = OffsetWidth * OffsetIndex;

  return OffsetOffset;
}

void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base,
                                                 CharUnits VBaseOffset) {
  const CXXRecordDecl *RD = Base.getBase();
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);

  const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();

  // Handle the primary base first.
  // We only want to add vcall offsets if the base is non-virtual; a virtual
  // primary base will have its vcall and vbase offsets emitted already.
  if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) {
    // Get the base offset of the primary base.
    assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
           "Primary base should have a zero offset!");

    AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()),
                    VBaseOffset);
  }

  // Add the vcall offsets.
  for (const auto *MD : RD->methods()) {
    if (!VTableContextBase::hasVtableSlot(MD))
      continue;
    MD = MD->getCanonicalDecl();

    CharUnits OffsetOffset = getCurrentOffsetOffset();

    // Don't add a vcall offset if we already have one for this member function
    // signature.
    if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset))
      continue;

    CharUnits Offset = CharUnits::Zero();

    if (Overriders) {
      // Get the final overrider.
      FinalOverriders::OverriderInfo Overrider =
        Overriders->getOverrider(MD, Base.getBaseOffset());

      /// The vcall offset is the offset from the virtual base to the object
      /// where the function was overridden.
      Offset = Overrider.Offset - VBaseOffset;
    }

    Components.push_back(
      VTableComponent::MakeVCallOffset(Offset));
  }

  // And iterate over all non-virtual bases (ignoring the primary base).
  for (const auto &B : RD->bases()) {
    if (B.isVirtual())
      continue;

    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
    if (BaseDecl == PrimaryBase)
      continue;

    // Get the base offset of this base.
    CharUnits BaseOffset = Base.getBaseOffset() +
      Layout.getBaseClassOffset(BaseDecl);

    AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset),
                    VBaseOffset);
  }
}

void
VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD,
                                            CharUnits OffsetInLayoutClass) {
  const ASTRecordLayout &LayoutClassLayout =
    Context.getASTRecordLayout(LayoutClass);

  // Add vbase offsets.
  for (const auto &B : RD->bases()) {
    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();

    // Check if this is a virtual base that we haven't visited before.
    if (B.isVirtual() && VisitedVirtualBases.insert(BaseDecl).second) {
      CharUnits Offset =
        LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass;

      // Add the vbase offset offset.
      assert(!VBaseOffsetOffsets.count(BaseDecl) &&
             "vbase offset offset already exists!");

      CharUnits VBaseOffsetOffset = getCurrentOffsetOffset();
      VBaseOffsetOffsets.insert(
          std::make_pair(BaseDecl, VBaseOffsetOffset));

      Components.push_back(
          VTableComponent::MakeVBaseOffset(Offset));
    }

    // Check the base class looking for more vbase offsets.
    AddVBaseOffsets(BaseDecl, OffsetInLayoutClass);
  }
}

/// ItaniumVTableBuilder - Class for building vtable layout information.
class ItaniumVTableBuilder {
public:
  /// PrimaryBasesSetVectorTy - A set vector of direct and indirect
  /// primary bases.
  typedef llvm::SmallSetVector<const CXXRecordDecl *, 8>
    PrimaryBasesSetVectorTy;

  typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
    VBaseOffsetOffsetsMapTy;

  typedef VTableLayout::AddressPointsMapTy AddressPointsMapTy;

  typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;

private:
  /// VTables - Global vtable information.
  ItaniumVTableContext &VTables;

  /// MostDerivedClass - The most derived class for which we're building this
  /// vtable.
  const CXXRecordDecl *MostDerivedClass;

  /// MostDerivedClassOffset - If we're building a construction vtable, this
  /// holds the offset from the layout class to the most derived class.
  const CharUnits MostDerivedClassOffset;

  /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual
  /// base. (This only makes sense when building a construction vtable).
  bool MostDerivedClassIsVirtual;

  /// LayoutClass - The class we're using for layout information. Will be
  /// different than the most derived class if we're building a construction
  /// vtable.
  const CXXRecordDecl *LayoutClass;

  /// Context - The ASTContext which we will use for layout information.
  ASTContext &Context;

  /// FinalOverriders - The final overriders of the most derived class.
  const FinalOverriders Overriders;

  /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual
  /// bases in this vtable.
  llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases;

  /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for
  /// the most derived class.
  VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;

  /// Components - The components of the vtable being built.
  SmallVector<VTableComponent, 64> Components;

  /// AddressPoints - Address points for the vtable being built.
  AddressPointsMapTy AddressPoints;

  /// MethodInfo - Contains information about a method in a vtable.
  /// (Used for computing 'this' pointer adjustment thunks.
  struct MethodInfo {
    /// BaseOffset - The base offset of this method.
    const CharUnits BaseOffset;

    /// BaseOffsetInLayoutClass - The base offset in the layout class of this
    /// method.
    const CharUnits BaseOffsetInLayoutClass;

    /// VTableIndex - The index in the vtable that this method has.
    /// (For destructors, this is the index of the complete destructor).
    const uint64_t VTableIndex;

    MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass,
               uint64_t VTableIndex)
      : BaseOffset(BaseOffset),
      BaseOffsetInLayoutClass(BaseOffsetInLayoutClass),
      VTableIndex(VTableIndex) { }

    MethodInfo()
      : BaseOffset(CharUnits::Zero()),
      BaseOffsetInLayoutClass(CharUnits::Zero()),
      VTableIndex(0) { }

    MethodInfo(MethodInfo const&) = default;
  };

  typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;

  /// MethodInfoMap - The information for all methods in the vtable we're
  /// currently building.
  MethodInfoMapTy MethodInfoMap;

  /// MethodVTableIndices - Contains the index (relative to the vtable address
  /// point) where the function pointer for a virtual function is stored.
  MethodVTableIndicesTy MethodVTableIndices;

  typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;

  /// VTableThunks - The thunks by vtable index in the vtable currently being
  /// built.
  VTableThunksMapTy VTableThunks;

  typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
  typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;

  /// Thunks - A map that contains all the thunks needed for all methods in the
  /// most derived class for which the vtable is currently being built.
  ThunksMapTy Thunks;

  /// AddThunk - Add a thunk for the given method.
  void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk);

  /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the
  /// part of the vtable we're currently building.
  void ComputeThisAdjustments();

  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;

  /// PrimaryVirtualBases - All known virtual bases who are a primary base of
  /// some other base.
  VisitedVirtualBasesSetTy PrimaryVirtualBases;

  /// ComputeReturnAdjustment - Compute the return adjustment given a return
  /// adjustment base offset.
  ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset);

  /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting
  /// the 'this' pointer from the base subobject to the derived subobject.
  BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
                                             BaseSubobject Derived) const;

  /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the
  /// given virtual member function, its offset in the layout class and its
  /// final overrider.
  ThisAdjustment
  ComputeThisAdjustment(const CXXMethodDecl *MD,
                        CharUnits BaseOffsetInLayoutClass,
                        FinalOverriders::OverriderInfo Overrider);

  /// AddMethod - Add a single virtual member function to the vtable
  /// components vector.
  void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment);

  /// IsOverriderUsed - Returns whether the overrider will ever be used in this
  /// part of the vtable.
  ///
  /// Itanium C++ ABI 2.5.2:
  ///
  ///   struct A { virtual void f(); };
  ///   struct B : virtual public A { int i; };
  ///   struct C : virtual public A { int j; };
  ///   struct D : public B, public C {};
  ///
  ///   When B and C are declared, A is a primary base in each case, so although
  ///   vcall offsets are allocated in the A-in-B and A-in-C vtables, no this
  ///   adjustment is required and no thunk is generated. However, inside D
  ///   objects, A is no longer a primary base of C, so if we allowed calls to
  ///   C::f() to use the copy of A's vtable in the C subobject, we would need
  ///   to adjust this from C* to B::A*, which would require a third-party
  ///   thunk. Since we require that a call to C::f() first convert to A*,
  ///   C-in-D's copy of A's vtable is never referenced, so this is not
  ///   necessary.
  bool IsOverriderUsed(const CXXMethodDecl *Overrider,
                       CharUnits BaseOffsetInLayoutClass,
                       const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
                       CharUnits FirstBaseOffsetInLayoutClass) const;


  /// AddMethods - Add the methods of this base subobject and all its
  /// primary bases to the vtable components vector.
  void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
                  const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
                  CharUnits FirstBaseOffsetInLayoutClass,
                  PrimaryBasesSetVectorTy &PrimaryBases);

  // LayoutVTable - Layout the vtable for the given base class, including its
  // secondary vtables and any vtables for virtual bases.
  void LayoutVTable();

  /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the
  /// given base subobject, as well as all its secondary vtables.
  ///
  /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
  /// or a direct or indirect base of a virtual base.
  ///
  /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual
  /// in the layout class.
  void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
                                        bool BaseIsMorallyVirtual,
                                        bool BaseIsVirtualInLayoutClass,
                                        CharUnits OffsetInLayoutClass);

  /// LayoutSecondaryVTables - Layout the secondary vtables for the given base
  /// subobject.
  ///
  /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
  /// or a direct or indirect base of a virtual base.
  void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual,
                              CharUnits OffsetInLayoutClass);

  /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this
  /// class hierarchy.
  void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
                                    CharUnits OffsetInLayoutClass,
                                    VisitedVirtualBasesSetTy &VBases);

  /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the
  /// given base (excluding any primary bases).
  void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
                                    VisitedVirtualBasesSetTy &VBases);

  /// isBuildingConstructionVTable - Return whether this vtable builder is
  /// building a construction vtable.
  bool isBuildingConstructorVTable() const {
    return MostDerivedClass != LayoutClass;
  }

public:
  /// Component indices of the first component of each of the vtables in the
  /// vtable group.
  SmallVector<size_t, 4> VTableIndices;

  ItaniumVTableBuilder(ItaniumVTableContext &VTables,
                       const CXXRecordDecl *MostDerivedClass,
                       CharUnits MostDerivedClassOffset,
                       bool MostDerivedClassIsVirtual,
                       const CXXRecordDecl *LayoutClass)
      : VTables(VTables), MostDerivedClass(MostDerivedClass),
        MostDerivedClassOffset(MostDerivedClassOffset),
        MostDerivedClassIsVirtual(MostDerivedClassIsVirtual),
        LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
        Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) {
    assert(!Context.getTargetInfo().getCXXABI().isMicrosoft());

    LayoutVTable();

    if (Context.getLangOpts().DumpVTableLayouts)
      dumpLayout(llvm::outs());
  }

  uint64_t getNumThunks() const {
    return Thunks.size();
  }

  ThunksMapTy::const_iterator thunks_begin() const {
    return Thunks.begin();
  }

  ThunksMapTy::const_iterator thunks_end() const {
    return Thunks.end();
  }

  const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
    return VBaseOffsetOffsets;
  }

  const AddressPointsMapTy &getAddressPoints() const {
    return AddressPoints;
  }

  MethodVTableIndicesTy::const_iterator vtable_indices_begin() const {
    return MethodVTableIndices.begin();
  }

  MethodVTableIndicesTy::const_iterator vtable_indices_end() const {
    return MethodVTableIndices.end();
  }

  ArrayRef<VTableComponent> vtable_components() const { return Components; }

  AddressPointsMapTy::const_iterator address_points_begin() const {
    return AddressPoints.begin();
  }

  AddressPointsMapTy::const_iterator address_points_end() const {
    return AddressPoints.end();
  }

  VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
    return VTableThunks.begin();
  }

  VTableThunksMapTy::const_iterator vtable_thunks_end() const {
    return VTableThunks.end();
  }

  /// dumpLayout - Dump the vtable layout.
  void dumpLayout(raw_ostream&);
};

void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD,
                                    const ThunkInfo &Thunk) {
  assert(!isBuildingConstructorVTable() &&
         "Can't add thunks for construction vtable");

  SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD];

  // Check if we have this thunk already.
  if (llvm::find(ThunksVector, Thunk) != ThunksVector.end())
    return;

  ThunksVector.push_back(Thunk);
}

typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy;

/// Visit all the methods overridden by the given method recursively,
/// in a depth-first pre-order. The Visitor's visitor method returns a bool
/// indicating whether to continue the recursion for the given overridden
/// method (i.e. returning false stops the iteration).
template <class VisitorTy>
static void
visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) {
  assert(VTableContextBase::hasVtableSlot(MD) && "Method is not virtual!");

  for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
    if (!Visitor(OverriddenMD))
      continue;
    visitAllOverriddenMethods(OverriddenMD, Visitor);
  }
}

/// ComputeAllOverriddenMethods - Given a method decl, will return a set of all
/// the overridden methods that the function decl overrides.
static void
ComputeAllOverriddenMethods(const CXXMethodDecl *MD,
                            OverriddenMethodsSetTy& OverriddenMethods) {
  auto OverriddenMethodsCollector = [&](const CXXMethodDecl *MD) {
    // Don't recurse on this method if we've already collected it.
    return OverriddenMethods.insert(MD).second;
  };
  visitAllOverriddenMethods(MD, OverriddenMethodsCollector);
}

void ItaniumVTableBuilder::ComputeThisAdjustments() {
  // Now go through the method info map and see if any of the methods need
  // 'this' pointer adjustments.
  for (const auto &MI : MethodInfoMap) {
    const CXXMethodDecl *MD = MI.first;
    const MethodInfo &MethodInfo = MI.second;

    // Ignore adjustments for unused function pointers.
    uint64_t VTableIndex = MethodInfo.VTableIndex;
    if (Components[VTableIndex].getKind() ==
        VTableComponent::CK_UnusedFunctionPointer)
      continue;

    // Get the final overrider for this method.
    FinalOverriders::OverriderInfo Overrider =
      Overriders.getOverrider(MD, MethodInfo.BaseOffset);

    // Check if we need an adjustment at all.
    if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) {
      // When a return thunk is needed by a derived class that overrides a
      // virtual base, gcc uses a virtual 'this' adjustment as well.
      // While the thunk itself might be needed by vtables in subclasses or
      // in construction vtables, there doesn't seem to be a reason for using
      // the thunk in this vtable. Still, we do so to match gcc.
      if (VTableThunks.lookup(VTableIndex).Return.isEmpty())
        continue;
    }

    ThisAdjustment ThisAdjustment =
      ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider);

    if (ThisAdjustment.isEmpty())
      continue;

    // Add it.
    VTableThunks[VTableIndex].This = ThisAdjustment;

    if (isa<CXXDestructorDecl>(MD)) {
      // Add an adjustment for the deleting destructor as well.
      VTableThunks[VTableIndex + 1].This = ThisAdjustment;
    }
  }

  /// Clear the method info map.
  MethodInfoMap.clear();

  if (isBuildingConstructorVTable()) {
    // We don't need to store thunk information for construction vtables.
    return;
  }

  for (const auto &TI : VTableThunks) {
    const VTableComponent &Component = Components[TI.first];
    const ThunkInfo &Thunk = TI.second;
    const CXXMethodDecl *MD;

    switch (Component.getKind()) {
    default:
      llvm_unreachable("Unexpected vtable component kind!");
    case VTableComponent::CK_FunctionPointer:
      MD = Component.getFunctionDecl();
      break;
    case VTableComponent::CK_CompleteDtorPointer:
      MD = Component.getDestructorDecl();
      break;
    case VTableComponent::CK_DeletingDtorPointer:
      // We've already added the thunk when we saw the complete dtor pointer.
      continue;
    }

    if (MD->getParent() == MostDerivedClass)
      AddThunk(MD, Thunk);
  }
}

ReturnAdjustment
ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) {
  ReturnAdjustment Adjustment;

  if (!Offset.isEmpty()) {
    if (Offset.VirtualBase) {
      // Get the virtual base offset offset.
      if (Offset.DerivedClass == MostDerivedClass) {
        // We can get the offset offset directly from our map.
        Adjustment.Virtual.Itanium.VBaseOffsetOffset =
          VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity();
      } else {
        Adjustment.Virtual.Itanium.VBaseOffsetOffset =
          VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass,
                                             Offset.VirtualBase).getQuantity();
      }
    }

    Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
  }

  return Adjustment;
}

BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset(
    BaseSubobject Base, BaseSubobject Derived) const {
  const CXXRecordDecl *BaseRD = Base.getBase();
  const CXXRecordDecl *DerivedRD = Derived.getBase();

  CXXBasePaths Paths(/*FindAmbiguities=*/true,
                     /*RecordPaths=*/true, /*DetectVirtual=*/true);

  if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
    llvm_unreachable("Class must be derived from the passed in base class!");

  // We have to go through all the paths, and see which one leads us to the
  // right base subobject.
  for (const CXXBasePath &Path : Paths) {
    BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, Path);

    CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset;

    if (Offset.VirtualBase) {
      // If we have a virtual base class, the non-virtual offset is relative
      // to the virtual base class offset.
      const ASTRecordLayout &LayoutClassLayout =
        Context.getASTRecordLayout(LayoutClass);

      /// Get the virtual base offset, relative to the most derived class
      /// layout.
      OffsetToBaseSubobject +=
        LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase);
    } else {
      // Otherwise, the non-virtual offset is relative to the derived class
      // offset.
      OffsetToBaseSubobject += Derived.getBaseOffset();
    }

    // Check if this path gives us the right base subobject.
    if (OffsetToBaseSubobject == Base.getBaseOffset()) {
      // Since we're going from the base class _to_ the derived class, we'll
      // invert the non-virtual offset here.
      Offset.NonVirtualOffset = -Offset.NonVirtualOffset;
      return Offset;
    }
  }

  return BaseOffset();
}

ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment(
    const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass,
    FinalOverriders::OverriderInfo Overrider) {
  // Ignore adjustments for pure virtual member functions.
  if (Overrider.Method->isPure())
    return ThisAdjustment();

  BaseSubobject OverriddenBaseSubobject(MD->getParent(),
                                        BaseOffsetInLayoutClass);

  BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(),
                                       Overrider.Offset);

  // Compute the adjustment offset.
  BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject,
                                                      OverriderBaseSubobject);
  if (Offset.isEmpty())
    return ThisAdjustment();

  ThisAdjustment Adjustment;

  if (Offset.VirtualBase) {
    // Get the vcall offset map for this virtual base.
    VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase];

    if (VCallOffsets.empty()) {
      // We don't have vcall offsets for this virtual base, go ahead and
      // build them.
      VCallAndVBaseOffsetBuilder Builder(
          VTables, MostDerivedClass, MostDerivedClass,
          /*Overriders=*/nullptr,
          BaseSubobject(Offset.VirtualBase, CharUnits::Zero()),
          /*BaseIsVirtual=*/true,
          /*OffsetInLayoutClass=*/
          CharUnits::Zero());

      VCallOffsets = Builder.getVCallOffsets();
    }

    Adjustment.Virtual.Itanium.VCallOffsetOffset =
      VCallOffsets.getVCallOffsetOffset(MD).getQuantity();
  }

  // Set the non-virtual part of the adjustment.
  Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();

  return Adjustment;
}

void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD,
                                     ReturnAdjustment ReturnAdjustment) {
  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
    assert(ReturnAdjustment.isEmpty() &&
           "Destructor can't have return adjustment!");

    // Add both the complete destructor and the deleting destructor.
    Components.push_back(VTableComponent::MakeCompleteDtor(DD));
    Components.push_back(VTableComponent::MakeDeletingDtor(DD));
  } else {
    // Add the return adjustment if necessary.
    if (!ReturnAdjustment.isEmpty())
      VTableThunks[Components.size()].Return = ReturnAdjustment;

    // Add the function.
    Components.push_back(VTableComponent::MakeFunction(MD));
  }
}

/// OverridesIndirectMethodInBase - Return whether the given member function
/// overrides any methods in the set of given bases.
/// Unlike OverridesMethodInBase, this checks "overriders of overriders".
/// For example, if we have:
///
/// struct A { virtual void f(); }
/// struct B : A { virtual void f(); }
/// struct C : B { virtual void f(); }
///
/// OverridesIndirectMethodInBase will return true if given C::f as the method
/// and { A } as the set of bases.
static bool OverridesIndirectMethodInBases(
    const CXXMethodDecl *MD,
    ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) {
  if (Bases.count(MD->getParent()))
    return true;

  for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
    // Check "indirect overriders".
    if (OverridesIndirectMethodInBases(OverriddenMD, Bases))
      return true;
  }

  return false;
}

bool ItaniumVTableBuilder::IsOverriderUsed(
    const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass,
    const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
    CharUnits FirstBaseOffsetInLayoutClass) const {
  // If the base and the first base in the primary base chain have the same
  // offsets, then this overrider will be used.
  if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass)
   return true;

  // We know now that Base (or a direct or indirect base of it) is a primary
  // base in part of the class hierarchy, but not a primary base in the most
  // derived class.

  // If the overrider is the first base in the primary base chain, we know
  // that the overrider will be used.
  if (Overrider->getParent() == FirstBaseInPrimaryBaseChain)
    return true;

  ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases;

  const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain;
  PrimaryBases.insert(RD);

  // Now traverse the base chain, starting with the first base, until we find
  // the base that is no longer a primary base.
  while (true) {
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();

    if (!PrimaryBase)
      break;

    if (Layout.isPrimaryBaseVirtual()) {
      assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
             "Primary base should always be at offset 0!");

      const ASTRecordLayout &LayoutClassLayout =
        Context.getASTRecordLayout(LayoutClass);

      // Now check if this is the primary base that is not a primary base in the
      // most derived class.
      if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
          FirstBaseOffsetInLayoutClass) {
        // We found it, stop walking the chain.
        break;
      }
    } else {
      assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
             "Primary base should always be at offset 0!");
    }

    if (!PrimaryBases.insert(PrimaryBase))
      llvm_unreachable("Found a duplicate primary base!");

    RD = PrimaryBase;
  }

  // If the final overrider is an override of one of the primary bases,
  // then we know that it will be used.
  return OverridesIndirectMethodInBases(Overrider, PrimaryBases);
}

typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy;

/// FindNearestOverriddenMethod - Given a method, returns the overridden method
/// from the nearest base. Returns null if no method was found.
/// The Bases are expected to be sorted in a base-to-derived order.
static const CXXMethodDecl *
FindNearestOverriddenMethod(const CXXMethodDecl *MD,
                            BasesSetVectorTy &Bases) {
  OverriddenMethodsSetTy OverriddenMethods;
  ComputeAllOverriddenMethods(MD, OverriddenMethods);

  for (const CXXRecordDecl *PrimaryBase :
       llvm::make_range(Bases.rbegin(), Bases.rend())) {
    // Now check the overridden methods.
    for (const CXXMethodDecl *OverriddenMD : OverriddenMethods) {
      // We found our overridden method.
      if (OverriddenMD->getParent() == PrimaryBase)
        return OverriddenMD;
    }
  }

  return nullptr;
}

void ItaniumVTableBuilder::AddMethods(
    BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
    const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
    CharUnits FirstBaseOffsetInLayoutClass,
    PrimaryBasesSetVectorTy &PrimaryBases) {
  // Itanium C++ ABI 2.5.2:
  //   The order of the virtual function pointers in a virtual table is the
  //   order of declaration of the corresponding member functions in the class.
  //
  //   There is an entry for any virtual function declared in a class,
  //   whether it is a new function or overrides a base class function,
  //   unless it overrides a function from the primary base, and conversion
  //   between their return types does not require an adjustment.

  const CXXRecordDecl *RD = Base.getBase();
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);

  if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
    CharUnits PrimaryBaseOffset;
    CharUnits PrimaryBaseOffsetInLayoutClass;
    if (Layout.isPrimaryBaseVirtual()) {
      assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
             "Primary vbase should have a zero offset!");

      const ASTRecordLayout &MostDerivedClassLayout =
        Context.getASTRecordLayout(MostDerivedClass);

      PrimaryBaseOffset =
        MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);

      const ASTRecordLayout &LayoutClassLayout =
        Context.getASTRecordLayout(LayoutClass);

      PrimaryBaseOffsetInLayoutClass =
        LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
    } else {
      assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
             "Primary base should have a zero offset!");

      PrimaryBaseOffset = Base.getBaseOffset();
      PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass;
    }

    AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset),
               PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain,
               FirstBaseOffsetInLayoutClass, PrimaryBases);

    if (!PrimaryBases.insert(PrimaryBase))
      llvm_unreachable("Found a duplicate primary base!");
  }

  typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy;
  NewVirtualFunctionsTy NewVirtualFunctions;

  llvm::SmallVector<const CXXMethodDecl*, 4> NewImplicitVirtualFunctions;

  // Now go through all virtual member functions and add them.
  for (const auto *MD : RD->methods()) {
    if (!ItaniumVTableContext::hasVtableSlot(MD))
      continue;
    MD = MD->getCanonicalDecl();

    // Get the final overrider.
    FinalOverriders::OverriderInfo Overrider =
      Overriders.getOverrider(MD, Base.getBaseOffset());

    // Check if this virtual member function overrides a method in a primary
    // base. If this is the case, and the return type doesn't require adjustment
    // then we can just use the member function from the primary base.
    if (const CXXMethodDecl *OverriddenMD =
          FindNearestOverriddenMethod(MD, PrimaryBases)) {
      if (ComputeReturnAdjustmentBaseOffset(Context, MD,
                                            OverriddenMD).isEmpty()) {
        // Replace the method info of the overridden method with our own
        // method.
        assert(MethodInfoMap.count(OverriddenMD) &&
               "Did not find the overridden method!");
        MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD];

        MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
                              OverriddenMethodInfo.VTableIndex);

        assert(!MethodInfoMap.count(MD) &&
               "Should not have method info for this method yet!");

        MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
        MethodInfoMap.erase(OverriddenMD);

        // If the overridden method exists in a virtual base class or a direct
        // or indirect base class of a virtual base class, we need to emit a
        // thunk if we ever have a class hierarchy where the base class is not
        // a primary base in the complete object.
        if (!isBuildingConstructorVTable() && OverriddenMD != MD) {
          // Compute the this adjustment.
          ThisAdjustment ThisAdjustment =
            ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass,
                                  Overrider);

          if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset &&
              Overrider.Method->getParent() == MostDerivedClass) {

            // There's no return adjustment from OverriddenMD and MD,
            // but that doesn't mean there isn't one between MD and
            // the final overrider.
            BaseOffset ReturnAdjustmentOffset =
              ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
            ReturnAdjustment ReturnAdjustment =
              ComputeReturnAdjustment(ReturnAdjustmentOffset);

            // This is a virtual thunk for the most derived class, add it.
            AddThunk(Overrider.Method,
                     ThunkInfo(ThisAdjustment, ReturnAdjustment));
          }
        }

        continue;
      }
    }

    if (MD->isImplicit())
      NewImplicitVirtualFunctions.push_back(MD);
    else
      NewVirtualFunctions.push_back(MD);
  }

  std::stable_sort(
      NewImplicitVirtualFunctions.begin(), NewImplicitVirtualFunctions.end(),
      [](const CXXMethodDecl *A, const CXXMethodDecl *B) {
        if (A->isCopyAssignmentOperator() != B->isCopyAssignmentOperator())
          return A->isCopyAssignmentOperator();
        if (A->isMoveAssignmentOperator() != B->isMoveAssignmentOperator())
          return A->isMoveAssignmentOperator();
        if (isa<CXXDestructorDecl>(A) != isa<CXXDestructorDecl>(B))
          return isa<CXXDestructorDecl>(A);
        assert(A->getOverloadedOperator() == OO_EqualEqual &&
               B->getOverloadedOperator() == OO_EqualEqual &&
               "unexpected or duplicate implicit virtual function");
        // We rely on Sema to have declared the operator== members in the
        // same order as the corresponding operator<=> members.
        return false;
      });
  NewVirtualFunctions.append(NewImplicitVirtualFunctions.begin(),
                             NewImplicitVirtualFunctions.end());

  for (const CXXMethodDecl *MD : NewVirtualFunctions) {
    // Get the final overrider.
    FinalOverriders::OverriderInfo Overrider =
      Overriders.getOverrider(MD, Base.getBaseOffset());

    // Insert the method info for this method.
    MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
                          Components.size());

    assert(!MethodInfoMap.count(MD) &&
           "Should not have method info for this method yet!");
    MethodInfoMap.insert(std::make_pair(MD, MethodInfo));

    // Check if this overrider is going to be used.
    const CXXMethodDecl *OverriderMD = Overrider.Method;
    if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass,
                         FirstBaseInPrimaryBaseChain,
                         FirstBaseOffsetInLayoutClass)) {
      Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD));
      continue;
    }

    // Check if this overrider needs a return adjustment.
    // We don't want to do this for pure virtual member functions.
    BaseOffset ReturnAdjustmentOffset;
    if (!OverriderMD->isPure()) {
      ReturnAdjustmentOffset =
        ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
    }

    ReturnAdjustment ReturnAdjustment =
      ComputeReturnAdjustment(ReturnAdjustmentOffset);

    AddMethod(Overrider.Method, ReturnAdjustment);
  }
}

void ItaniumVTableBuilder::LayoutVTable() {
  LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass,
                                                 CharUnits::Zero()),
                                   /*BaseIsMorallyVirtual=*/false,
                                   MostDerivedClassIsVirtual,
                                   MostDerivedClassOffset);

  VisitedVirtualBasesSetTy VBases;

  // Determine the primary virtual bases.
  DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset,
                               VBases);
  VBases.clear();

  LayoutVTablesForVirtualBases(MostDerivedClass, VBases);

  // -fapple-kext adds an extra entry at end of vtbl.
  bool IsAppleKext = Context.getLangOpts().AppleKext;
  if (IsAppleKext)
    Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero()));
}

void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables(
    BaseSubobject Base, bool BaseIsMorallyVirtual,
    bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) {
  assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!");

  unsigned VTableIndex = Components.size();
  VTableIndices.push_back(VTableIndex);

  // Add vcall and vbase offsets for this vtable.
  VCallAndVBaseOffsetBuilder Builder(
      VTables, MostDerivedClass, LayoutClass, &Overriders, Base,
      BaseIsVirtualInLayoutClass, OffsetInLayoutClass);
  Components.append(Builder.components_begin(), Builder.components_end());

  // Check if we need to add these vcall offsets.
  if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) {
    VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()];

    if (VCallOffsets.empty())
      VCallOffsets = Builder.getVCallOffsets();
  }

  // If we're laying out the most derived class we want to keep track of the
  // virtual base class offset offsets.
  if (Base.getBase() == MostDerivedClass)
    VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets();

  // Add the offset to top.
  CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass;
  Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop));

  // Next, add the RTTI.
  Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));

  uint64_t AddressPoint = Components.size();

  // Now go through all virtual member functions and add them.
  PrimaryBasesSetVectorTy PrimaryBases;
  AddMethods(Base, OffsetInLayoutClass,
             Base.getBase(), OffsetInLayoutClass,
             PrimaryBases);

  const CXXRecordDecl *RD = Base.getBase();
  if (RD == MostDerivedClass) {
    assert(MethodVTableIndices.empty());
    for (const auto &I : MethodInfoMap) {
      const CXXMethodDecl *MD = I.first;
      const MethodInfo &MI = I.second;
      if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
        MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)]
            = MI.VTableIndex - AddressPoint;
        MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)]
            = MI.VTableIndex + 1 - AddressPoint;
      } else {
        MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint;
      }
    }
  }

  // Compute 'this' pointer adjustments.
  ComputeThisAdjustments();

  // Add all address points.
  while (true) {
    AddressPoints.insert(
        std::make_pair(BaseSubobject(RD, OffsetInLayoutClass),
                       VTableLayout::AddressPointLocation{
                           unsigned(VTableIndices.size() - 1),
                           unsigned(AddressPoint - VTableIndex)}));

    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();

    if (!PrimaryBase)
      break;

    if (Layout.isPrimaryBaseVirtual()) {
      // Check if this virtual primary base is a primary base in the layout
      // class. If it's not, we don't want to add it.
      const ASTRecordLayout &LayoutClassLayout =
        Context.getASTRecordLayout(LayoutClass);

      if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
          OffsetInLayoutClass) {
        // We don't want to add this class (or any of its primary bases).
        break;
      }
    }

    RD = PrimaryBase;
  }

  // Layout secondary vtables.
  LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass);
}

void
ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base,
                                             bool BaseIsMorallyVirtual,
                                             CharUnits OffsetInLayoutClass) {
  // Itanium C++ ABI 2.5.2:
  //   Following the primary virtual table of a derived class are secondary
  //   virtual tables for each of its proper base classes, except any primary
  //   base(s) with which it shares its primary virtual table.

  const CXXRecordDecl *RD = Base.getBase();
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
  const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();

  for (const auto &B : RD->bases()) {
    // Ignore virtual bases, we'll emit them later.
    if (B.isVirtual())
      continue;

    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();

    // Ignore bases that don't have a vtable.
    if (!BaseDecl->isDynamicClass())
      continue;

    if (isBuildingConstructorVTable()) {
      // Itanium C++ ABI 2.6.4:
      //   Some of the base class subobjects may not need construction virtual
      //   tables, which will therefore not be present in the construction
      //   virtual table group, even though the subobject virtual tables are
      //   present in the main virtual table group for the complete object.
      if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases())
        continue;
    }

    // Get the base offset of this base.
    CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl);
    CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset;

    CharUnits BaseOffsetInLayoutClass =
      OffsetInLayoutClass + RelativeBaseOffset;

    // Don't emit a secondary vtable for a primary base. We might however want
    // to emit secondary vtables for other bases of this base.
    if (BaseDecl == PrimaryBase) {
      LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset),
                             BaseIsMorallyVirtual, BaseOffsetInLayoutClass);
      continue;
    }

    // Layout the primary vtable (and any secondary vtables) for this base.
    LayoutPrimaryAndSecondaryVTables(
      BaseSubobject(BaseDecl, BaseOffset),
      BaseIsMorallyVirtual,
      /*BaseIsVirtualInLayoutClass=*/false,
      BaseOffsetInLayoutClass);
  }
}

void ItaniumVTableBuilder::DeterminePrimaryVirtualBases(
    const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass,
    VisitedVirtualBasesSetTy &VBases) {
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);

  // Check if this base has a primary base.
  if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {

    // Check if it's virtual.
    if (Layout.isPrimaryBaseVirtual()) {
      bool IsPrimaryVirtualBase = true;

      if (isBuildingConstructorVTable()) {
        // Check if the base is actually a primary base in the class we use for
        // layout.
        const ASTRecordLayout &LayoutClassLayout =
          Context.getASTRecordLayout(LayoutClass);

        CharUnits PrimaryBaseOffsetInLayoutClass =
          LayoutClassLayout.getVBaseClassOffset(PrimaryBase);

        // We know that the base is not a primary base in the layout class if
        // the base offsets are different.
        if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass)
          IsPrimaryVirtualBase = false;
      }

      if (IsPrimaryVirtualBase)
        PrimaryVirtualBases.insert(PrimaryBase);
    }
  }

  // Traverse bases, looking for more primary virtual bases.
  for (const auto &B : RD->bases()) {
    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();

    CharUnits BaseOffsetInLayoutClass;

    if (B.isVirtual()) {
      if (!VBases.insert(BaseDecl).second)
        continue;

      const ASTRecordLayout &LayoutClassLayout =
        Context.getASTRecordLayout(LayoutClass);

      BaseOffsetInLayoutClass =
        LayoutClassLayout.getVBaseClassOffset(BaseDecl);
    } else {
      BaseOffsetInLayoutClass =
        OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl);
    }

    DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases);
  }
}

void ItaniumVTableBuilder::LayoutVTablesForVirtualBases(
    const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) {
  // Itanium C++ ABI 2.5.2:
  //   Then come the virtual base virtual tables, also in inheritance graph
  //   order, and again excluding primary bases (which share virtual tables with
  //   the classes for which they are primary).
  for (const auto &B : RD->bases()) {
    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();

    // Check if this base needs a vtable. (If it's virtual, not a primary base
    // of some other class, and we haven't visited it before).
    if (B.isVirtual() && BaseDecl->isDynamicClass() &&
        !PrimaryVirtualBases.count(BaseDecl) &&
        VBases.insert(BaseDecl).second) {
      const ASTRecordLayout &MostDerivedClassLayout =
        Context.getASTRecordLayout(MostDerivedClass);
      CharUnits BaseOffset =
        MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);

      const ASTRecordLayout &LayoutClassLayout =
        Context.getASTRecordLayout(LayoutClass);
      CharUnits BaseOffsetInLayoutClass =
        LayoutClassLayout.getVBaseClassOffset(BaseDecl);

      LayoutPrimaryAndSecondaryVTables(
        BaseSubobject(BaseDecl, BaseOffset),
        /*BaseIsMorallyVirtual=*/true,
        /*BaseIsVirtualInLayoutClass=*/true,
        BaseOffsetInLayoutClass);
    }

    // We only need to check the base for virtual base vtables if it actually
    // has virtual bases.
    if (BaseDecl->getNumVBases())
      LayoutVTablesForVirtualBases(BaseDecl, VBases);
  }
}

/// dumpLayout - Dump the vtable layout.
void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) {
  // FIXME: write more tests that actually use the dumpLayout output to prevent
  // ItaniumVTableBuilder regressions.

  if (isBuildingConstructorVTable()) {
    Out << "Construction vtable for ('";
    MostDerivedClass->printQualifiedName(Out);
    Out << "', ";
    Out << MostDerivedClassOffset.getQuantity() << ") in '";
    LayoutClass->printQualifiedName(Out);
  } else {
    Out << "Vtable for '";
    MostDerivedClass->printQualifiedName(Out);
  }
  Out << "' (" << Components.size() << " entries).\n";

  // Iterate through the address points and insert them into a new map where
  // they are keyed by the index and not the base object.
  // Since an address point can be shared by multiple subobjects, we use an
  // STL multimap.
  std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex;
  for (const auto &AP : AddressPoints) {
    const BaseSubobject &Base = AP.first;
    uint64_t Index =
        VTableIndices[AP.second.VTableIndex] + AP.second.AddressPointIndex;

    AddressPointsByIndex.insert(std::make_pair(Index, Base));
  }

  for (unsigned I = 0, E = Components.size(); I != E; ++I) {
    uint64_t Index = I;

    Out << llvm::format("%4d | ", I);

    const VTableComponent &Component = Components[I];

    // Dump the component.
    switch (Component.getKind()) {

    case VTableComponent::CK_VCallOffset:
      Out << "vcall_offset ("
          << Component.getVCallOffset().getQuantity()
          << ")";
      break;

    case VTableComponent::CK_VBaseOffset:
      Out << "vbase_offset ("
          << Component.getVBaseOffset().getQuantity()
          << ")";
      break;

    case VTableComponent::CK_OffsetToTop:
      Out << "offset_to_top ("
          << Component.getOffsetToTop().getQuantity()
          << ")";
      break;

    case VTableComponent::CK_RTTI:
      Component.getRTTIDecl()->printQualifiedName(Out);
      Out << " RTTI";
      break;

    case VTableComponent::CK_FunctionPointer: {
      const CXXMethodDecl *MD = Component.getFunctionDecl();

      std::string Str =
        PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
                                    MD);
      Out << Str;
      if (MD->isPure())
        Out << " [pure]";

      if (MD->isDeleted())
        Out << " [deleted]";

      ThunkInfo Thunk = VTableThunks.lookup(I);
      if (!Thunk.isEmpty()) {
        // If this function pointer has a return adjustment, dump it.
        if (!Thunk.Return.isEmpty()) {
          Out << "\n       [return adjustment: ";
          Out << Thunk.Return.NonVirtual << " non-virtual";

          if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
            Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
            Out << " vbase offset offset";
          }

          Out << ']';
        }

        // If this function pointer has a 'this' pointer adjustment, dump it.
        if (!Thunk.This.isEmpty()) {
          Out << "\n       [this adjustment: ";
          Out << Thunk.This.NonVirtual << " non-virtual";

          if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
            Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
            Out << " vcall offset offset";
          }

          Out << ']';
        }
      }

      break;
    }

    case VTableComponent::CK_CompleteDtorPointer:
    case VTableComponent::CK_DeletingDtorPointer: {
      bool IsComplete =
        Component.getKind() == VTableComponent::CK_CompleteDtorPointer;

      const CXXDestructorDecl *DD = Component.getDestructorDecl();

      DD->printQualifiedName(Out);
      if (IsComplete)
        Out << "() [complete]";
      else
        Out << "() [deleting]";

      if (DD->isPure())
        Out << " [pure]";

      ThunkInfo Thunk = VTableThunks.lookup(I);
      if (!Thunk.isEmpty()) {
        // If this destructor has a 'this' pointer adjustment, dump it.
        if (!Thunk.This.isEmpty()) {
          Out << "\n       [this adjustment: ";
          Out << Thunk.This.NonVirtual << " non-virtual";

          if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
            Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
            Out << " vcall offset offset";
          }

          Out << ']';
        }
      }

      break;
    }

    case VTableComponent::CK_UnusedFunctionPointer: {
      const CXXMethodDecl *MD = Component.getUnusedFunctionDecl();

      std::string Str =
        PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
                                    MD);
      Out << "[unused] " << Str;
      if (MD->isPure())
        Out << " [pure]";
    }

    }

    Out << '\n';

    // Dump the next address point.
    uint64_t NextIndex = Index + 1;
    if (AddressPointsByIndex.count(NextIndex)) {
      if (AddressPointsByIndex.count(NextIndex) == 1) {
        const BaseSubobject &Base =
          AddressPointsByIndex.find(NextIndex)->second;

        Out << "       -- (";
        Base.getBase()->printQualifiedName(Out);
        Out << ", " << Base.getBaseOffset().getQuantity();
        Out << ") vtable address --\n";
      } else {
        CharUnits BaseOffset =
          AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset();

        // We store the class names in a set to get a stable order.
        std::set<std::string> ClassNames;
        for (const auto &I :
             llvm::make_range(AddressPointsByIndex.equal_range(NextIndex))) {
          assert(I.second.getBaseOffset() == BaseOffset &&
                 "Invalid base offset!");
          const CXXRecordDecl *RD = I.second.getBase();
          ClassNames.insert(RD->getQualifiedNameAsString());
        }

        for (const std::string &Name : ClassNames) {
          Out << "       -- (" << Name;
          Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n";
        }
      }
    }
  }

  Out << '\n';

  if (isBuildingConstructorVTable())
    return;

  if (MostDerivedClass->getNumVBases()) {
    // We store the virtual base class names and their offsets in a map to get
    // a stable order.

    std::map<std::string, CharUnits> ClassNamesAndOffsets;
    for (const auto &I : VBaseOffsetOffsets) {
      std::string ClassName = I.first->getQualifiedNameAsString();
      CharUnits OffsetOffset = I.second;
      ClassNamesAndOffsets.insert(std::make_pair(ClassName, OffsetOffset));
    }

    Out << "Virtual base offset offsets for '";
    MostDerivedClass->printQualifiedName(Out);
    Out << "' (";
    Out << ClassNamesAndOffsets.size();
    Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n";

    for (const auto &I : ClassNamesAndOffsets)
      Out << "   " << I.first << " | " << I.second.getQuantity() << '\n';

    Out << "\n";
  }

  if (!Thunks.empty()) {
    // We store the method names in a map to get a stable order.
    std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;

    for (const auto &I : Thunks) {
      const CXXMethodDecl *MD = I.first;
      std::string MethodName =
        PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
                                    MD);

      MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
    }

    for (const auto &I : MethodNamesAndDecls) {
      const std::string &MethodName = I.first;
      const CXXMethodDecl *MD = I.second;

      ThunkInfoVectorTy ThunksVector = Thunks[MD];
      llvm::sort(ThunksVector, [](const ThunkInfo &LHS, const ThunkInfo &RHS) {
        assert(LHS.Method == nullptr && RHS.Method == nullptr);
        return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
      });

      Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
      Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";

      for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
        const ThunkInfo &Thunk = ThunksVector[I];

        Out << llvm::format("%4d | ", I);

        // If this function pointer has a return pointer adjustment, dump it.
        if (!Thunk.Return.isEmpty()) {
          Out << "return adjustment: " << Thunk.Return.NonVirtual;
          Out << " non-virtual";
          if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
            Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
            Out << " vbase offset offset";
          }

          if (!Thunk.This.isEmpty())
            Out << "\n       ";
        }

        // If this function pointer has a 'this' pointer adjustment, dump it.
        if (!Thunk.This.isEmpty()) {
          Out << "this adjustment: ";
          Out << Thunk.This.NonVirtual << " non-virtual";

          if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
            Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
            Out << " vcall offset offset";
          }
        }

        Out << '\n';
      }

      Out << '\n';
    }
  }

  // Compute the vtable indices for all the member functions.
  // Store them in a map keyed by the index so we'll get a sorted table.
  std::map<uint64_t, std::string> IndicesMap;

  for (const auto *MD : MostDerivedClass->methods()) {
    // We only want virtual member functions.
    if (!ItaniumVTableContext::hasVtableSlot(MD))
      continue;
    MD = MD->getCanonicalDecl();

    std::string MethodName =
      PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
                                  MD);

    if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
      GlobalDecl GD(DD, Dtor_Complete);
      assert(MethodVTableIndices.count(GD));
      uint64_t VTableIndex = MethodVTableIndices[GD];
      IndicesMap[VTableIndex] = MethodName + " [complete]";
      IndicesMap[VTableIndex + 1] = MethodName + " [deleting]";
    } else {
      assert(MethodVTableIndices.count(MD));
      IndicesMap[MethodVTableIndices[MD]] = MethodName;
    }
  }

  // Print the vtable indices for all the member functions.
  if (!IndicesMap.empty()) {
    Out << "VTable indices for '";
    MostDerivedClass->printQualifiedName(Out);
    Out << "' (" << IndicesMap.size() << " entries).\n";

    for (const auto &I : IndicesMap) {
      uint64_t VTableIndex = I.first;
      const std::string &MethodName = I.second;

      Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName
          << '\n';
    }
  }

  Out << '\n';
}
}

static VTableLayout::AddressPointsIndexMapTy
MakeAddressPointIndices(const VTableLayout::AddressPointsMapTy &addressPoints,
                        unsigned numVTables) {
  VTableLayout::AddressPointsIndexMapTy indexMap(numVTables);

  for (auto it = addressPoints.begin(); it != addressPoints.end(); ++it) {
    const auto &addressPointLoc = it->second;
    unsigned vtableIndex = addressPointLoc.VTableIndex;
    unsigned addressPoint = addressPointLoc.AddressPointIndex;
    if (indexMap[vtableIndex]) {
      // Multiple BaseSubobjects can map to the same AddressPointLocation, but
      // every vtable index should have a unique address point.
      assert(indexMap[vtableIndex] == addressPoint &&
             "Every vtable index should have a unique address point. Found a "
             "vtable that has two different address points.");
    } else {
      indexMap[vtableIndex] = addressPoint;
    }
  }

  // Note that by this point, not all the address may be initialized if the
  // AddressPoints map is empty. This is ok if the map isn't needed. See
  // MicrosoftVTableContext::computeVTableRelatedInformation() which uses an
  // emprt map.
  return indexMap;
}

VTableLayout::VTableLayout(ArrayRef<size_t> VTableIndices,
                           ArrayRef<VTableComponent> VTableComponents,
                           ArrayRef<VTableThunkTy> VTableThunks,
                           const AddressPointsMapTy &AddressPoints)
    : VTableComponents(VTableComponents), VTableThunks(VTableThunks),
      AddressPoints(AddressPoints), AddressPointIndices(MakeAddressPointIndices(
                                        AddressPoints, VTableIndices.size())) {
  if (VTableIndices.size() <= 1)
    assert(VTableIndices.size() == 1 && VTableIndices[0] == 0);
  else
    this->VTableIndices = OwningArrayRef<size_t>(VTableIndices);

  llvm::sort(this->VTableThunks, [](const VTableLayout::VTableThunkTy &LHS,
                                    const VTableLayout::VTableThunkTy &RHS) {
    assert((LHS.first != RHS.first || LHS.second == RHS.second) &&
           "Different thunks should have unique indices!");
    return LHS.first < RHS.first;
  });
}

VTableLayout::~VTableLayout() { }

bool VTableContextBase::hasVtableSlot(const CXXMethodDecl *MD) {
  return MD->isVirtual() && !MD->isConsteval();
}

ItaniumVTableContext::ItaniumVTableContext(
    ASTContext &Context, VTableComponentLayout ComponentLayout)
    : VTableContextBase(/*MS=*/false), ComponentLayout(ComponentLayout) {}

ItaniumVTableContext::~ItaniumVTableContext() {}

uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) {
  GD = GD.getCanonicalDecl();
  MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD);
  if (I != MethodVTableIndices.end())
    return I->second;

  const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();

  computeVTableRelatedInformation(RD);

  I = MethodVTableIndices.find(GD);
  assert(I != MethodVTableIndices.end() && "Did not find index!");
  return I->second;
}

CharUnits
ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
                                                 const CXXRecordDecl *VBase) {
  ClassPairTy ClassPair(RD, VBase);

  VirtualBaseClassOffsetOffsetsMapTy::iterator I =
    VirtualBaseClassOffsetOffsets.find(ClassPair);
  if (I != VirtualBaseClassOffsetOffsets.end())
    return I->second;

  VCallAndVBaseOffsetBuilder Builder(*this, RD, RD, /*Overriders=*/nullptr,
                                     BaseSubobject(RD, CharUnits::Zero()),
                                     /*BaseIsVirtual=*/false,
                                     /*OffsetInLayoutClass=*/CharUnits::Zero());

  for (const auto &I : Builder.getVBaseOffsetOffsets()) {
    // Insert all types.
    ClassPairTy ClassPair(RD, I.first);

    VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
  }

  I = VirtualBaseClassOffsetOffsets.find(ClassPair);
  assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!");

  return I->second;
}

static std::unique_ptr<VTableLayout>
CreateVTableLayout(const ItaniumVTableBuilder &Builder) {
  SmallVector<VTableLayout::VTableThunkTy, 1>
    VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());

  return std::make_unique<VTableLayout>(
      Builder.VTableIndices, Builder.vtable_components(), VTableThunks,
      Builder.getAddressPoints());
}

void
ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) {
  std::unique_ptr<const VTableLayout> &Entry = VTableLayouts[RD];

  // Check if we've computed this information before.
  if (Entry)
    return;

  ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(),
                               /*MostDerivedClassIsVirtual=*/0, RD);
  Entry = CreateVTableLayout(Builder);

  MethodVTableIndices.insert(Builder.vtable_indices_begin(),
                             Builder.vtable_indices_end());

  // Add the known thunks.
  Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());

  // If we don't have the vbase information for this class, insert it.
  // getVirtualBaseOffsetOffset will compute it separately without computing
  // the rest of the vtable related information.
  if (!RD->getNumVBases())
    return;

  const CXXRecordDecl *VBase =
    RD->vbases_begin()->getType()->getAsCXXRecordDecl();

  if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase)))
    return;

  for (const auto &I : Builder.getVBaseOffsetOffsets()) {
    // Insert all types.
    ClassPairTy ClassPair(RD, I.first);

    VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
  }
}

std::unique_ptr<VTableLayout>
ItaniumVTableContext::createConstructionVTableLayout(
    const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset,
    bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) {
  ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset,
                               MostDerivedClassIsVirtual, LayoutClass);
  return CreateVTableLayout(Builder);
}

namespace {

// Vtables in the Microsoft ABI are different from the Itanium ABI.
//
// The main differences are:
//  1. Separate vftable and vbtable.
//
//  2. Each subobject with a vfptr gets its own vftable rather than an address
//     point in a single vtable shared between all the subobjects.
//     Each vftable is represented by a separate section and virtual calls
//     must be done using the vftable which has a slot for the function to be
//     called.
//
//  3. Virtual method definitions expect their 'this' parameter to point to the
//     first vfptr whose table provides a compatible overridden method.  In many
//     cases, this permits the original vf-table entry to directly call
//     the method instead of passing through a thunk.
//     See example before VFTableBuilder::ComputeThisOffset below.
//
//     A compatible overridden method is one which does not have a non-trivial
//     covariant-return adjustment.
//
//     The first vfptr is the one with the lowest offset in the complete-object
//     layout of the defining class, and the method definition will subtract
//     that constant offset from the parameter value to get the real 'this'
//     value.  Therefore, if the offset isn't really constant (e.g. if a virtual
//     function defined in a virtual base is overridden in a more derived
//     virtual base and these bases have a reverse order in the complete
//     object), the vf-table may require a this-adjustment thunk.
//
//  4. vftables do not contain new entries for overrides that merely require
//     this-adjustment.  Together with #3, this keeps vf-tables smaller and
//     eliminates the need for this-adjustment thunks in many cases, at the cost
//     of often requiring redundant work to adjust the "this" pointer.
//
//  5. Instead of VTT and constructor vtables, vbtables and vtordisps are used.
//     Vtordisps are emitted into the class layout if a class has
//      a) a user-defined ctor/dtor
//     and
//      b) a method overriding a method in a virtual base.
//
//  To get a better understanding of this code,
//  you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp

class VFTableBuilder {
public:
  typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
    MethodVFTableLocationsTy;

  typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator>
    method_locations_range;

private:
  /// VTables - Global vtable information.
  MicrosoftVTableContext &VTables;

  /// Context - The ASTContext which we will use for layout information.
  ASTContext &Context;

  /// MostDerivedClass - The most derived class for which we're building this
  /// vtable.
  const CXXRecordDecl *MostDerivedClass;

  const ASTRecordLayout &MostDerivedClassLayout;

  const VPtrInfo &WhichVFPtr;

  /// FinalOverriders - The final overriders of the most derived class.
  const FinalOverriders Overriders;

  /// Components - The components of the vftable being built.
  SmallVector<VTableComponent, 64> Components;

  MethodVFTableLocationsTy MethodVFTableLocations;

  /// Does this class have an RTTI component?
  bool HasRTTIComponent = false;

  /// MethodInfo - Contains information about a method in a vtable.
  /// (Used for computing 'this' pointer adjustment thunks.
  struct MethodInfo {
    /// VBTableIndex - The nonzero index in the vbtable that
    /// this method's base has, or zero.
    const uint64_t VBTableIndex;

    /// VFTableIndex - The index in the vftable that this method has.
    const uint64_t VFTableIndex;

    /// Shadowed - Indicates if this vftable slot is shadowed by
    /// a slot for a covariant-return override. If so, it shouldn't be printed
    /// or used for vcalls in the most derived class.
    bool Shadowed;

    /// UsesExtraSlot - Indicates if this vftable slot was created because
    /// any of the overridden slots required a return adjusting thunk.
    bool UsesExtraSlot;

    MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex,
               bool UsesExtraSlot = false)
        : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex),
          Shadowed(false), UsesExtraSlot(UsesExtraSlot) {}

    MethodInfo()
        : VBTableIndex(0), VFTableIndex(0), Shadowed(false),
          UsesExtraSlot(false) {}
  };

  typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;

  /// MethodInfoMap - The information for all methods in the vftable we're
  /// currently building.
  MethodInfoMapTy MethodInfoMap;

  typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;

  /// VTableThunks - The thunks by vftable index in the vftable currently being
  /// built.
  VTableThunksMapTy VTableThunks;

  typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
  typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;

  /// Thunks - A map that contains all the thunks needed for all methods in the
  /// most derived class for which the vftable is currently being built.
  ThunksMapTy Thunks;

  /// AddThunk - Add a thunk for the given method.
  void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
    SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD];

    // Check if we have this thunk already.
    if (llvm::find(ThunksVector, Thunk) != ThunksVector.end())
      return;

    ThunksVector.push_back(Thunk);
  }

  /// ComputeThisOffset - Returns the 'this' argument offset for the given
  /// method, relative to the beginning of the MostDerivedClass.
  CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider);

  void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,
                                   CharUnits ThisOffset, ThisAdjustment &TA);

  /// AddMethod - Add a single virtual member function to the vftable
  /// components vector.
  void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) {
    if (!TI.isEmpty()) {
      VTableThunks[Components.size()] = TI;
      AddThunk(MD, TI);
    }
    if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
      assert(TI.Return.isEmpty() &&
             "Destructor can't have return adjustment!");
      Components.push_back(VTableComponent::MakeDeletingDtor(DD));
    } else {
      Components.push_back(VTableComponent::MakeFunction(MD));
    }
  }

  /// AddMethods - Add the methods of this base subobject and the relevant
  /// subbases to the vftable we're currently laying out.
  void AddMethods(BaseSubobject Base, unsigned BaseDepth,
                  const CXXRecordDecl *LastVBase,
                  BasesSetVectorTy &VisitedBases);

  void LayoutVFTable() {
    // RTTI data goes before all other entries.
    if (HasRTTIComponent)
      Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));

    BasesSetVectorTy VisitedBases;
    AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, nullptr,
               VisitedBases);
    // Note that it is possible for the vftable to contain only an RTTI
    // pointer, if all virtual functions are constewval.
    assert(!Components.empty() && "vftable can't be empty");

    assert(MethodVFTableLocations.empty());
    for (const auto &I : MethodInfoMap) {
      const CXXMethodDecl *MD = I.first;
      const MethodInfo &MI = I.second;
      assert(MD == MD->getCanonicalDecl());

      // Skip the methods that the MostDerivedClass didn't override
      // and the entries shadowed by return adjusting thunks.
      if (MD->getParent() != MostDerivedClass || MI.Shadowed)
        continue;
      MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(),
                                WhichVFPtr.NonVirtualOffset, MI.VFTableIndex);
      if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
        MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc;
      } else {
        MethodVFTableLocations[MD] = Loc;
      }
    }
  }

public:
  VFTableBuilder(MicrosoftVTableContext &VTables,
                 const CXXRecordDecl *MostDerivedClass, const VPtrInfo &Which)
      : VTables(VTables),
        Context(MostDerivedClass->getASTContext()),
        MostDerivedClass(MostDerivedClass),
        MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)),
        WhichVFPtr(Which),
        Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) {
    // Provide the RTTI component if RTTIData is enabled. If the vftable would
    // be available externally, we should not provide the RTTI componenent. It
    // is currently impossible to get available externally vftables with either
    // dllimport or extern template instantiations, but eventually we may add a
    // flag to support additional devirtualization that needs this.
    if (Context.getLangOpts().RTTIData)
      HasRTTIComponent = true;

    LayoutVFTable();

    if (Context.getLangOpts().DumpVTableLayouts)
      dumpLayout(llvm::outs());
  }

  uint64_t getNumThunks() const { return Thunks.size(); }

  ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); }

  ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); }

  method_locations_range vtable_locations() const {
    return method_locations_range(MethodVFTableLocations.begin(),
                                  MethodVFTableLocations.end());
  }

  ArrayRef<VTableComponent> vtable_components() const { return Components; }

  VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
    return VTableThunks.begin();
  }

  VTableThunksMapTy::const_iterator vtable_thunks_end() const {
    return VTableThunks.end();
  }

  void dumpLayout(raw_ostream &);
};

} // end namespace

// Let's study one class hierarchy as an example:
//   struct A {
//     virtual void f();
//     int x;
//   };
//
//   struct B : virtual A {
//     virtual void f();
//   };
//
// Record layouts:
//   struct A:
//   0 |   (A vftable pointer)
//   4 |   int x
//
//   struct B:
//   0 |   (B vbtable pointer)
//   4 |   struct A (virtual base)
//   4 |     (A vftable pointer)
//   8 |     int x
//
// Let's assume we have a pointer to the A part of an object of dynamic type B:
//   B b;
//   A *a = (A*)&b;
//   a->f();
//
// In this hierarchy, f() belongs to the vftable of A, so B::f() expects
// "this" parameter to point at the A subobject, which is B+4.
// In the B::f() prologue, it adjusts "this" back to B by subtracting 4,
// performed as a *static* adjustment.
//
// Interesting thing happens when we alter the relative placement of A and B
// subobjects in a class:
//   struct C : virtual B { };
//
//   C c;
//   A *a = (A*)&c;
//   a->f();
//
// Respective record layout is:
//   0 |   (C vbtable pointer)
//   4 |   struct A (virtual base)
//   4 |     (A vftable pointer)
//   8 |     int x
//  12 |   struct B (virtual base)
//  12 |     (B vbtable pointer)
//
// The final overrider of f() in class C is still B::f(), so B+4 should be
// passed as "this" to that code.  However, "a" points at B-8, so the respective
// vftable entry should hold a thunk that adds 12 to the "this" argument before
// performing a tail call to B::f().
//
// With this example in mind, we can now calculate the 'this' argument offset
// for the given method, relative to the beginning of the MostDerivedClass.
CharUnits
VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) {
  BasesSetVectorTy Bases;

  {
    // Find the set of least derived bases that define the given method.
    OverriddenMethodsSetTy VisitedOverriddenMethods;
    auto InitialOverriddenDefinitionCollector = [&](
        const CXXMethodDecl *OverriddenMD) {
      if (OverriddenMD->size_overridden_methods() == 0)
        Bases.insert(OverriddenMD->getParent());
      // Don't recurse on this method if we've already collected it.
      return VisitedOverriddenMethods.insert(OverriddenMD).second;
    };
    visitAllOverriddenMethods(Overrider.Method,
                              InitialOverriddenDefinitionCollector);
  }

  // If there are no overrides then 'this' is located
  // in the base that defines the method.
  if (Bases.size() == 0)
    return Overrider.Offset;

  CXXBasePaths Paths;
  Overrider.Method->getParent()->lookupInBases(
      [&Bases](const CXXBaseSpecifier *Specifier, CXXBasePath &) {
        return Bases.count(Specifier->getType()->getAsCXXRecordDecl());
      },
      Paths);

  // This will hold the smallest this offset among overridees of MD.
  // This implies that an offset of a non-virtual base will dominate an offset
  // of a virtual base to potentially reduce the number of thunks required
  // in the derived classes that inherit this method.
  CharUnits Ret;
  bool First = true;

  const ASTRecordLayout &OverriderRDLayout =
      Context.getASTRecordLayout(Overrider.Method->getParent());
  for (const CXXBasePath &Path : Paths) {
    CharUnits ThisOffset = Overrider.Offset;
    CharUnits LastVBaseOffset;

    // For each path from the overrider to the parents of the overridden
    // methods, traverse the path, calculating the this offset in the most
    // derived class.
    for (const CXXBasePathElement &Element : Path) {
      QualType CurTy = Element.Base->getType();
      const CXXRecordDecl *PrevRD = Element.Class,
                          *CurRD = CurTy->getAsCXXRecordDecl();
      const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD);

      if (Element.Base->isVirtual()) {
        // The interesting things begin when you have virtual inheritance.
        // The final overrider will use a static adjustment equal to the offset
        // of the vbase in the final overrider class.
        // For example, if the final overrider is in a vbase B of the most
        // derived class and it overrides a method of the B's own vbase A,
        // it uses A* as "this".  In its prologue, it can cast A* to B* with
        // a static offset.  This offset is used regardless of the actual
        // offset of A from B in the most derived class, requiring an
        // this-adjusting thunk in the vftable if A and B are laid out
        // differently in the most derived class.
        LastVBaseOffset = ThisOffset =
            Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(CurRD);
      } else {
        ThisOffset += Layout.getBaseClassOffset(CurRD);
      }
    }

    if (isa<CXXDestructorDecl>(Overrider.Method)) {
      if (LastVBaseOffset.isZero()) {
        // If a "Base" class has at least one non-virtual base with a virtual
        // destructor, the "Base" virtual destructor will take the address
        // of the "Base" subobject as the "this" argument.
        ThisOffset = Overrider.Offset;
      } else {
        // A virtual destructor of a virtual base takes the address of the
        // virtual base subobject as the "this" argument.
        ThisOffset = LastVBaseOffset;
      }
    }

    if (Ret > ThisOffset || First) {
      First = false;
      Ret = ThisOffset;
    }
  }

  assert(!First && "Method not found in the given subobject?");
  return Ret;
}

// Things are getting even more complex when the "this" adjustment has to
// use a dynamic offset instead of a static one, or even two dynamic offsets.
// This is sometimes required when a virtual call happens in the middle of
// a non-most-derived class construction or destruction.
//
// Let's take a look at the following example:
//   struct A {
//     virtual void f();
//   };
//
//   void foo(A *a) { a->f(); }  // Knows nothing about siblings of A.
//
//   struct B : virtual A {
//     virtual void f();
//     B() {
//       foo(this);
//     }
//   };
//
//   struct C : virtual B {
//     virtual void f();
//   };
//
// Record layouts for these classes are:
//   struct A
//   0 |   (A vftable pointer)
//
//   struct B
//   0 |   (B vbtable pointer)
//   4 |   (vtordisp for vbase A)
//   8 |   struct A (virtual base)
//   8 |     (A vftable pointer)
//
//   struct C
//   0 |   (C vbtable pointer)
//   4 |   (vtordisp for vbase A)
//   8 |   struct A (virtual base)  // A precedes B!
//   8 |     (A vftable pointer)
//  12 |   struct B (virtual base)
//  12 |     (B vbtable pointer)
//
// When one creates an object of type C, the C constructor:
// - initializes all the vbptrs, then
// - calls the A subobject constructor
//   (initializes A's vfptr with an address of A vftable), then
// - calls the B subobject constructor
//   (initializes A's vfptr with an address of B vftable and vtordisp for A),
//   that in turn calls foo(), then
// - initializes A's vfptr with an address of C vftable and zeroes out the
//   vtordisp
//   FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable
//   without vtordisp thunks?
//   FIXME: how are vtordisp handled in the presence of nooverride/final?
//
// When foo() is called, an object with a layout of class C has a vftable
// referencing B::f() that assumes a B layout, so the "this" adjustments are
// incorrect, unless an extra adjustment is done.  This adjustment is called
// "vtordisp adjustment".  Vtordisp basically holds the difference between the
// actual location of a vbase in the layout class and the location assumed by
// the vftable of the class being constructed/destructed.  Vtordisp is only
// needed if "this" escapes a
// structor (or we can't prove otherwise).
// [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an
// estimation of a dynamic adjustment]
//
// foo() gets a pointer to the A vbase and doesn't know anything about B or C,
// so it just passes that pointer as "this" in a virtual call.
// If there was no vtordisp, that would just dispatch to B::f().
// However, B::f() assumes B+8 is passed as "this",
// yet the pointer foo() passes along is B-4 (i.e. C+8).
// An extra adjustment is needed, so we emit a thunk into the B vftable.
// This vtordisp thunk subtracts the value of vtordisp
// from the "this" argument (-12) before making a tailcall to B::f().
//
// Let's consider an even more complex example:
//   struct D : virtual B, virtual C {
//     D() {
//       foo(this);
//     }
//   };
//
//   struct D
//   0 |   (D vbtable pointer)
//   4 |   (vtordisp for vbase A)
//   8 |   struct A (virtual base)  // A precedes both B and C!
//   8 |     (A vftable pointer)
//  12 |   struct B (virtual base)  // B precedes C!
//  12 |     (B vbtable pointer)
//  16 |   struct C (virtual base)
//  16 |     (C vbtable pointer)
//
// When D::D() calls foo(), we find ourselves in a thunk that should tailcall
// to C::f(), which assumes C+8 as its "this" parameter.  This time, foo()
// passes along A, which is C-8.  The A vtordisp holds
//   "D.vbptr[index_of_A] - offset_of_A_in_D"
// and we statically know offset_of_A_in_D, so can get a pointer to D.
// When we know it, we can make an extra vbtable lookup to locate the C vbase
// and one extra static adjustment to calculate the expected value of C+8.
void VFTableBuilder::CalculateVtordispAdjustment(
    FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset,
    ThisAdjustment &TA) {
  const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap =
      MostDerivedClassLayout.getVBaseOffsetsMap();
  const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry =
      VBaseMap.find(WhichVFPtr.getVBaseWithVPtr());
  assert(VBaseMapEntry != VBaseMap.end());

  // If there's no vtordisp or the final overrider is defined in the same vbase
  // as the initial declaration, we don't need any vtordisp adjustment.
  if (!VBaseMapEntry->second.hasVtorDisp() ||
      Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr())
    return;

  // OK, now we know we need to use a vtordisp thunk.
  // The implicit vtordisp field is located right before the vbase.
  CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset;
  TA.Virtual.Microsoft.VtordispOffset =
      (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4;

  // A simple vtordisp thunk will suffice if the final overrider is defined
  // in either the most derived class or its non-virtual base.
  if (Overrider.Method->getParent() == MostDerivedClass ||
      !Overrider.VirtualBase)
    return;

  // Otherwise, we need to do use the dynamic offset of the final overrider
  // in order to get "this" adjustment right.
  TA.Virtual.Microsoft.VBPtrOffset =
      (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset -
       MostDerivedClassLayout.getVBPtrOffset()).getQuantity();
  TA.Virtual.Microsoft.VBOffsetOffset =
      Context.getTypeSizeInChars(Context.IntTy).getQuantity() *
      VTables.getVBTableIndex(MostDerivedClass, Overrider.VirtualBase);

  TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity();
}

static void GroupNewVirtualOverloads(
    const CXXRecordDecl *RD,
    SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) {
  // Put the virtual methods into VirtualMethods in the proper order:
  // 1) Group overloads by declaration name. New groups are added to the
  //    vftable in the order of their first declarations in this class
  //    (including overrides, non-virtual methods and any other named decl that
  //    might be nested within the class).
  // 2) In each group, new overloads appear in the reverse order of declaration.
  typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup;
  SmallVector<MethodGroup, 10> Groups;
  typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy;
  VisitedGroupIndicesTy VisitedGroupIndices;
  for (const auto *D : RD->decls()) {
    const auto *ND = dyn_cast<NamedDecl>(D);
    if (!ND)
      continue;
    VisitedGroupIndicesTy::iterator J;
    bool Inserted;
    std::tie(J, Inserted) = VisitedGroupIndices.insert(
        std::make_pair(ND->getDeclName(), Groups.size()));
    if (Inserted)
      Groups.push_back(MethodGroup());
    if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
      if (MicrosoftVTableContext::hasVtableSlot(MD))
        Groups[J->second].push_back(MD->getCanonicalDecl());
  }

  for (const MethodGroup &Group : Groups)
    VirtualMethods.append(Group.rbegin(), Group.rend());
}

static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) {
  for (const auto &B : RD->bases()) {
    if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base)
      return true;
  }
  return false;
}

void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth,
                                const CXXRecordDecl *LastVBase,
                                BasesSetVectorTy &VisitedBases) {
  const CXXRecordDecl *RD = Base.getBase();
  if (!RD->isPolymorphic())
    return;

  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);

  // See if this class expands a vftable of the base we look at, which is either
  // the one defined by the vfptr base path or the primary base of the current
  // class.
  const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase;
  CharUnits NextBaseOffset;
  if (BaseDepth < WhichVFPtr.PathToIntroducingObject.size()) {
    NextBase = WhichVFPtr.PathToIntroducingObject[BaseDepth];
    if (isDirectVBase(NextBase, RD)) {
      NextLastVBase = NextBase;
      NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase);
    } else {
      NextBaseOffset =
          Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase);
    }
  } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
    assert(!Layout.isPrimaryBaseVirtual() &&
           "No primary virtual bases in this ABI");
    NextBase = PrimaryBase;
    NextBaseOffset = Base.getBaseOffset();
  }

  if (NextBase) {
    AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1,
               NextLastVBase, VisitedBases);
    if (!VisitedBases.insert(NextBase))
      llvm_unreachable("Found a duplicate primary base!");
  }

  SmallVector<const CXXMethodDecl*, 10> VirtualMethods;
  // Put virtual methods in the proper order.
  GroupNewVirtualOverloads(RD, VirtualMethods);

  // Now go through all virtual member functions and add them to the current
  // vftable. This is done by
  //  - replacing overridden methods in their existing slots, as long as they
  //    don't require return adjustment; calculating This adjustment if needed.
  //  - adding new slots for methods of the current base not present in any
  //    sub-bases;
  //  - adding new slots for methods that require Return adjustment.
  // We keep track of the methods visited in the sub-bases in MethodInfoMap.
  for (const CXXMethodDecl *MD : VirtualMethods) {
    FinalOverriders::OverriderInfo FinalOverrider =
        Overriders.getOverrider(MD, Base.getBaseOffset());
    const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method;
    const CXXMethodDecl *OverriddenMD =
        FindNearestOverriddenMethod(MD, VisitedBases);

    ThisAdjustment ThisAdjustmentOffset;
    bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false;
    CharUnits ThisOffset = ComputeThisOffset(FinalOverrider);
    ThisAdjustmentOffset.NonVirtual =
        (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity();
    if ((OverriddenMD || FinalOverriderMD != MD) &&
        WhichVFPtr.getVBaseWithVPtr())
      CalculateVtordispAdjustment(FinalOverrider, ThisOffset,
                                  ThisAdjustmentOffset);

    unsigned VBIndex =
        LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0;

    if (OverriddenMD) {
      // If MD overrides anything in this vftable, we need to update the
      // entries.
      MethodInfoMapTy::iterator OverriddenMDIterator =
          MethodInfoMap.find(OverriddenMD);

      // If the overridden method went to a different vftable, skip it.
      if (OverriddenMDIterator == MethodInfoMap.end())
        continue;

      MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second;

      VBIndex = OverriddenMethodInfo.VBTableIndex;

      // Let's check if the overrider requires any return adjustments.
      // We must create a new slot if the MD's return type is not trivially
      // convertible to the OverriddenMD's one.
      // Once a chain of method overrides adds a return adjusting vftable slot,
      // all subsequent overrides will also use an extra method slot.
      ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset(
                                  Context, MD, OverriddenMD).isEmpty() ||
                             OverriddenMethodInfo.UsesExtraSlot;

      if (!ReturnAdjustingThunk) {
        // No return adjustment needed - just replace the overridden method info
        // with the current info.
        MethodInfo MI(VBIndex, OverriddenMethodInfo.VFTableIndex);
        MethodInfoMap.erase(OverriddenMDIterator);

        assert(!MethodInfoMap.count(MD) &&
               "Should not have method info for this method yet!");
        MethodInfoMap.insert(std::make_pair(MD, MI));
        continue;
      }

      // In case we need a return adjustment, we'll add a new slot for
      // the overrider. Mark the overridden method as shadowed by the new slot.
      OverriddenMethodInfo.Shadowed = true;

      // Force a special name mangling for a return-adjusting thunk
      // unless the method is the final overrider without this adjustment.
      ForceReturnAdjustmentMangling =
          !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty());
    } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC ||
               MD->size_overridden_methods()) {
      // Skip methods that don't belong to the vftable of the current class,
      // e.g. each method that wasn't seen in any of the visited sub-bases
      // but overrides multiple methods of other sub-bases.
      continue;
    }

    // If we got here, MD is a method not seen in any of the sub-bases or
    // it requires return adjustment. Insert the method info for this method.
    MethodInfo MI(VBIndex,
                  HasRTTIComponent ? Components.size() - 1 : Components.size(),
                  ReturnAdjustingThunk);

    assert(!MethodInfoMap.count(MD) &&
           "Should not have method info for this method yet!");
    MethodInfoMap.insert(std::make_pair(MD, MI));

    // Check if this overrider needs a return adjustment.
    // We don't want to do this for pure virtual member functions.
    BaseOffset ReturnAdjustmentOffset;
    ReturnAdjustment ReturnAdjustment;
    if (!FinalOverriderMD->isPure()) {
      ReturnAdjustmentOffset =
          ComputeReturnAdjustmentBaseOffset(Context, FinalOverriderMD, MD);
    }
    if (!ReturnAdjustmentOffset.isEmpty()) {
      ForceReturnAdjustmentMangling = true;
      ReturnAdjustment.NonVirtual =
          ReturnAdjustmentOffset.NonVirtualOffset.getQuantity();
      if (ReturnAdjustmentOffset.VirtualBase) {
        const ASTRecordLayout &DerivedLayout =
            Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass);
        ReturnAdjustment.Virtual.Microsoft.VBPtrOffset =
            DerivedLayout.getVBPtrOffset().getQuantity();
        ReturnAdjustment.Virtual.Microsoft.VBIndex =
            VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass,
                                    ReturnAdjustmentOffset.VirtualBase);
      }
    }

    AddMethod(FinalOverriderMD,
              ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment,
                        ForceReturnAdjustmentMangling ? MD : nullptr));
  }
}

static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) {
  for (const CXXRecordDecl *Elem :
       llvm::make_range(Path.rbegin(), Path.rend())) {
    Out << "'";
    Elem->printQualifiedName(Out);
    Out << "' in ";
  }
}

static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out,
                                         bool ContinueFirstLine) {
  const ReturnAdjustment &R = TI.Return;
  bool Multiline = false;
  const char *LinePrefix = "\n       ";
  if (!R.isEmpty() || TI.Method) {
    if (!ContinueFirstLine)
      Out << LinePrefix;
    Out << "[return adjustment (to type '"
        << TI.Method->getReturnType().getCanonicalType().getAsString()
        << "'): ";
    if (R.Virtual.Microsoft.VBPtrOffset)
      Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", ";
    if (R.Virtual.Microsoft.VBIndex)
      Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", ";
    Out << R.NonVirtual << " non-virtual]";
    Multiline = true;
  }

  const ThisAdjustment &T = TI.This;
  if (!T.isEmpty()) {
    if (Multiline || !ContinueFirstLine)
      Out << LinePrefix;
    Out << "[this adjustment: ";
    if (!TI.This.Virtual.isEmpty()) {
      assert(T.Virtual.Microsoft.VtordispOffset < 0);
      Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", ";
      if (T.Virtual.Microsoft.VBPtrOffset) {
        Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset
            << " to the left,";
        assert(T.Virtual.Microsoft.VBOffsetOffset > 0);
        Out << LinePrefix << " vboffset at "
            << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, ";
      }
    }
    Out << T.NonVirtual << " non-virtual]";
  }
}

void VFTableBuilder::dumpLayout(raw_ostream &Out) {
  Out << "VFTable for ";
  PrintBasePath(WhichVFPtr.PathToIntroducingObject, Out);
  Out << "'";
  MostDerivedClass->printQualifiedName(Out);
  Out << "' (" << Components.size()
      << (Components.size() == 1 ? " entry" : " entries") << ").\n";

  for (unsigned I = 0, E = Components.size(); I != E; ++I) {
    Out << llvm::format("%4d | ", I);

    const VTableComponent &Component = Components[I];

    // Dump the component.
    switch (Component.getKind()) {
    case VTableComponent::CK_RTTI:
      Component.getRTTIDecl()->printQualifiedName(Out);
      Out << " RTTI";
      break;

    case VTableComponent::CK_FunctionPointer: {
      const CXXMethodDecl *MD = Component.getFunctionDecl();

      // FIXME: Figure out how to print the real thunk type, since they can
      // differ in the return type.
      std::string Str = PredefinedExpr::ComputeName(
          PredefinedExpr::PrettyFunctionNoVirtual, MD);
      Out << Str;
      if (MD->isPure())
        Out << " [pure]";

      if (MD->isDeleted())
        Out << " [deleted]";

      ThunkInfo Thunk = VTableThunks.lookup(I);
      if (!Thunk.isEmpty())
        dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);

      break;
    }

    case VTableComponent::CK_DeletingDtorPointer: {
      const CXXDestructorDecl *DD = Component.getDestructorDecl();

      DD->printQualifiedName(Out);
      Out << "() [scalar deleting]";

      if (DD->isPure())
        Out << " [pure]";

      ThunkInfo Thunk = VTableThunks.lookup(I);
      if (!Thunk.isEmpty()) {
        assert(Thunk.Return.isEmpty() &&
               "No return adjustment needed for destructors!");
        dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
      }

      break;
    }

    default:
      DiagnosticsEngine &Diags = Context.getDiagnostics();
      unsigned DiagID = Diags.getCustomDiagID(
          DiagnosticsEngine::Error,
          "Unexpected vftable component type %0 for component number %1");
      Diags.Report(MostDerivedClass->getLocation(), DiagID)
          << I << Component.getKind();
    }

    Out << '\n';
  }

  Out << '\n';

  if (!Thunks.empty()) {
    // We store the method names in a map to get a stable order.
    std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;

    for (const auto &I : Thunks) {
      const CXXMethodDecl *MD = I.first;
      std::string MethodName = PredefinedExpr::ComputeName(
          PredefinedExpr::PrettyFunctionNoVirtual, MD);

      MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
    }

    for (const auto &MethodNameAndDecl : MethodNamesAndDecls) {
      const std::string &MethodName = MethodNameAndDecl.first;
      const CXXMethodDecl *MD = MethodNameAndDecl.second;

      ThunkInfoVectorTy ThunksVector = Thunks[MD];
      llvm::stable_sort(ThunksVector, [](const ThunkInfo &LHS,
                                         const ThunkInfo &RHS) {
        // Keep different thunks with the same adjustments in the order they
        // were put into the vector.
        return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
      });

      Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
      Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";

      for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
        const ThunkInfo &Thunk = ThunksVector[I];

        Out << llvm::format("%4d | ", I);
        dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true);
        Out << '\n';
      }

      Out << '\n';
    }
  }

  Out.flush();
}

static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A,
                          ArrayRef<const CXXRecordDecl *> B) {
  for (const CXXRecordDecl *Decl : B) {
    if (A.count(Decl))
      return true;
  }
  return false;
}

static bool rebucketPaths(VPtrInfoVector &Paths);

/// Produces MSVC-compatible vbtable data.  The symbols produced by this
/// algorithm match those produced by MSVC 2012 and newer, which is different
/// from MSVC 2010.
///
/// MSVC 2012 appears to minimize the vbtable names using the following
/// algorithm.  First, walk the class hierarchy in the usual order, depth first,
/// left to right, to find all of the subobjects which contain a vbptr field.
/// Visiting each class node yields a list of inheritance paths to vbptrs.  Each
/// record with a vbptr creates an initially empty path.
///
/// To combine paths from child nodes, the paths are compared to check for
/// ambiguity.  Paths are "ambiguous" if multiple paths have the same set of
/// components in the same order.  Each group of ambiguous paths is extended by
/// appending the class of the base from which it came.  If the current class
/// node produced an ambiguous path, its path is extended with the current class.
/// After extending paths, MSVC again checks for ambiguity, and extends any
/// ambiguous path which wasn't already extended.  Because each node yields an
/// unambiguous set of paths, MSVC doesn't need to extend any path more than once
/// to produce an unambiguous set of paths.
///
/// TODO: Presumably vftables use the same algorithm.
void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables,
                                                const CXXRecordDecl *RD,
                                                VPtrInfoVector &Paths) {
  assert(Paths.empty());
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);

  // Base case: this subobject has its own vptr.
  if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr())
    Paths.push_back(std::make_unique<VPtrInfo>(RD));

  // Recursive case: get all the vbtables from our bases and remove anything
  // that shares a virtual base.
  llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen;
  for (const auto &B : RD->bases()) {
    const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
    if (B.isVirtual() && VBasesSeen.count(Base))
      continue;

    if (!Base->isDynamicClass())
      continue;

    const VPtrInfoVector &BasePaths =
        ForVBTables ? enumerateVBTables(Base) : getVFPtrOffsets(Base);

    for (const std::unique_ptr<VPtrInfo> &BaseInfo : BasePaths) {
      // Don't include the path if it goes through a virtual base that we've
      // already included.
      if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases))
        continue;

      // Copy the path and adjust it as necessary.
      auto P = std::make_unique<VPtrInfo>(*BaseInfo);

      // We mangle Base into the path if the path would've been ambiguous and it
      // wasn't already extended with Base.
      if (P->MangledPath.empty() || P->MangledPath.back() != Base)
        P->NextBaseToMangle = Base;

      // Keep track of which vtable the derived class is going to extend with
      // new methods or bases.  We append to either the vftable of our primary
      // base, or the first non-virtual base that has a vbtable.
      if (P->ObjectWithVPtr == Base &&
          Base == (ForVBTables ? Layout.getBaseSharingVBPtr()
                               : Layout.getPrimaryBase()))
        P->ObjectWithVPtr = RD;

      // Keep track of the full adjustment from the MDC to this vtable.  The
      // adjustment is captured by an optional vbase and a non-virtual offset.
      if (B.isVirtual())
        P->ContainingVBases.push_back(Base);
      else if (P->ContainingVBases.empty())
        P->NonVirtualOffset += Layout.getBaseClassOffset(Base);

      // Update the full offset in the MDC.
      P->FullOffsetInMDC = P->NonVirtualOffset;
      if (const CXXRecordDecl *VB = P->getVBaseWithVPtr())
        P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB);

      Paths.push_back(std::move(P));
    }

    if (B.isVirtual())
      VBasesSeen.insert(Base);

    // After visiting any direct base, we've transitively visited all of its
    // morally virtual bases.
    for (const auto &VB : Base->vbases())
      VBasesSeen.insert(VB.getType()->getAsCXXRecordDecl());
  }

  // Sort the paths into buckets, and if any of them are ambiguous, extend all
  // paths in ambiguous buckets.
  bool Changed = true;
  while (Changed)
    Changed = rebucketPaths(Paths);
}

static bool extendPath(VPtrInfo &P) {
  if (P.NextBaseToMangle) {
    P.MangledPath.push_back(P.NextBaseToMangle);
    P.NextBaseToMangle = nullptr;// Prevent the path from being extended twice.
    return true;
  }
  return false;
}

static bool rebucketPaths(VPtrInfoVector &Paths) {
  // What we're essentially doing here is bucketing together ambiguous paths.
  // Any bucket with more than one path in it gets extended by NextBase, which
  // is usually the direct base of the inherited the vbptr.  This code uses a
  // sorted vector to implement a multiset to form the buckets.  Note that the
  // ordering is based on pointers, but it doesn't change our output order.  The
  // current algorithm is designed to match MSVC 2012's names.
  llvm::SmallVector<std::reference_wrapper<VPtrInfo>, 2> PathsSorted;
  PathsSorted.reserve(Paths.size());
  for (auto& P : Paths)
    PathsSorted.push_back(*P);
  llvm::sort(PathsSorted, [](const VPtrInfo &LHS, const VPtrInfo &RHS) {
    return LHS.MangledPath < RHS.MangledPath;
  });
  bool Changed = false;
  for (size_t I = 0, E = PathsSorted.size(); I != E;) {
    // Scan forward to find the end of the bucket.
    size_t BucketStart = I;
    do {
      ++I;
    } while (I != E &&
             PathsSorted[BucketStart].get().MangledPath ==
                 PathsSorted[I].get().MangledPath);

    // If this bucket has multiple paths, extend them all.
    if (I - BucketStart > 1) {
      for (size_t II = BucketStart; II != I; ++II)
        Changed |= extendPath(PathsSorted[II]);
      assert(Changed && "no paths were extended to fix ambiguity");
    }
  }
  return Changed;
}

MicrosoftVTableContext::~MicrosoftVTableContext() {}

namespace {
typedef llvm::SetVector<BaseSubobject, std::vector<BaseSubobject>,
                        llvm::DenseSet<BaseSubobject>> FullPathTy;
}

// This recursive function finds all paths from a subobject centered at
// (RD, Offset) to the subobject located at IntroducingObject.
static void findPathsToSubobject(ASTContext &Context,
                                 const ASTRecordLayout &MostDerivedLayout,
                                 const CXXRecordDecl *RD, CharUnits Offset,
                                 BaseSubobject IntroducingObject,
                                 FullPathTy &FullPath,
                                 std::list<FullPathTy> &Paths) {
  if (BaseSubobject(RD, Offset) == IntroducingObject) {
    Paths.push_back(FullPath);
    return;
  }

  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);

  for (const CXXBaseSpecifier &BS : RD->bases()) {
    const CXXRecordDecl *Base = BS.getType()->getAsCXXRecordDecl();
    CharUnits NewOffset = BS.isVirtual()
                              ? MostDerivedLayout.getVBaseClassOffset(Base)
                              : Offset + Layout.getBaseClassOffset(Base);
    FullPath.insert(BaseSubobject(Base, NewOffset));
    findPathsToSubobject(Context, MostDerivedLayout, Base, NewOffset,
                         IntroducingObject, FullPath, Paths);
    FullPath.pop_back();
  }
}

// Return the paths which are not subsets of other paths.
static void removeRedundantPaths(std::list<FullPathTy> &FullPaths) {
  FullPaths.remove_if([&](const FullPathTy &SpecificPath) {
    for (const FullPathTy &OtherPath : FullPaths) {
      if (&SpecificPath == &OtherPath)
        continue;
      if (llvm::all_of(SpecificPath, [&](const BaseSubobject &BSO) {
            return OtherPath.count(BSO) != 0;
          })) {
        return true;
      }
    }
    return false;
  });
}

static CharUnits getOffsetOfFullPath(ASTContext &Context,
                                     const CXXRecordDecl *RD,
                                     const FullPathTy &FullPath) {
  const ASTRecordLayout &MostDerivedLayout =
      Context.getASTRecordLayout(RD);
  CharUnits Offset = CharUnits::fromQuantity(-1);
  for (const BaseSubobject &BSO : FullPath) {
    const CXXRecordDecl *Base = BSO.getBase();
    // The first entry in the path is always the most derived record, skip it.
    if (Base == RD) {
      assert(Offset.getQuantity() == -1);
      Offset = CharUnits::Zero();
      continue;
    }
    assert(Offset.getQuantity() != -1);
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    // While we know which base has to be traversed, we don't know if that base
    // was a virtual base.
    const CXXBaseSpecifier *BaseBS = std::find_if(
        RD->bases_begin(), RD->bases_end(), [&](const CXXBaseSpecifier &BS) {
          return BS.getType()->getAsCXXRecordDecl() == Base;
        });
    Offset = BaseBS->isVirtual() ? MostDerivedLayout.getVBaseClassOffset(Base)
                                 : Offset + Layout.getBaseClassOffset(Base);
    RD = Base;
  }
  return Offset;
}

// We want to select the path which introduces the most covariant overrides.  If
// two paths introduce overrides which the other path doesn't contain, issue a
// diagnostic.
static const FullPathTy *selectBestPath(ASTContext &Context,
                                        const CXXRecordDecl *RD,
                                        const VPtrInfo &Info,
                                        std::list<FullPathTy> &FullPaths) {
  // Handle some easy cases first.
  if (FullPaths.empty())
    return nullptr;
  if (FullPaths.size() == 1)
    return &FullPaths.front();

  const FullPathTy *BestPath = nullptr;
  typedef std::set<const CXXMethodDecl *> OverriderSetTy;
  OverriderSetTy LastOverrides;
  for (const FullPathTy &SpecificPath : FullPaths) {
    assert(!SpecificPath.empty());
    OverriderSetTy CurrentOverrides;
    const CXXRecordDecl *TopLevelRD = SpecificPath.begin()->getBase();
    // Find the distance from the start of the path to the subobject with the
    // VPtr.
    CharUnits BaseOffset =
        getOffsetOfFullPath(Context, TopLevelRD, SpecificPath);
    FinalOverriders Overriders(TopLevelRD, CharUnits::Zero(), TopLevelRD);
    for (const CXXMethodDecl *MD : Info.IntroducingObject->methods()) {
      if (!MicrosoftVTableContext::hasVtableSlot(MD))
        continue;
      FinalOverriders::OverriderInfo OI =
          Overriders.getOverrider(MD->getCanonicalDecl(), BaseOffset);
      const CXXMethodDecl *OverridingMethod = OI.Method;
      // Only overriders which have a return adjustment introduce problematic
      // thunks.
      if (ComputeReturnAdjustmentBaseOffset(Context, OverridingMethod, MD)
              .isEmpty())
        continue;
      // It's possible that the overrider isn't in this path.  If so, skip it
      // because this path didn't introduce it.
      const CXXRecordDecl *OverridingParent = OverridingMethod->getParent();
      if (llvm::none_of(SpecificPath, [&](const BaseSubobject &BSO) {
            return BSO.getBase() == OverridingParent;
          }))
        continue;
      CurrentOverrides.insert(OverridingMethod);
    }
    OverriderSetTy NewOverrides =
        llvm::set_difference(CurrentOverrides, LastOverrides);
    if (NewOverrides.empty())
      continue;
    OverriderSetTy MissingOverrides =
        llvm::set_difference(LastOverrides, CurrentOverrides);
    if (MissingOverrides.empty()) {
      // This path is a strict improvement over the last path, let's use it.
      BestPath = &SpecificPath;
      std::swap(CurrentOverrides, LastOverrides);
    } else {
      // This path introduces an overrider with a conflicting covariant thunk.
      DiagnosticsEngine &Diags = Context.getDiagnostics();
      const CXXMethodDecl *CovariantMD = *NewOverrides.begin();
      const CXXMethodDecl *ConflictMD = *MissingOverrides.begin();
      Diags.Report(RD->getLocation(), diag::err_vftable_ambiguous_component)
          << RD;
      Diags.Report(CovariantMD->getLocation(), diag::note_covariant_thunk)
          << CovariantMD;
      Diags.Report(ConflictMD->getLocation(), diag::note_covariant_thunk)
          << ConflictMD;
    }
  }
  // Go with the path that introduced the most covariant overrides.  If there is
  // no such path, pick the first path.
  return BestPath ? BestPath : &FullPaths.front();
}

static void computeFullPathsForVFTables(ASTContext &Context,
                                        const CXXRecordDecl *RD,
                                        VPtrInfoVector &Paths) {
  const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD);
  FullPathTy FullPath;
  std::list<FullPathTy> FullPaths;
  for (const std::unique_ptr<VPtrInfo>& Info : Paths) {
    findPathsToSubobject(
        Context, MostDerivedLayout, RD, CharUnits::Zero(),
        BaseSubobject(Info->IntroducingObject, Info->FullOffsetInMDC), FullPath,
        FullPaths);
    FullPath.clear();
    removeRedundantPaths(FullPaths);
    Info->PathToIntroducingObject.clear();
    if (const FullPathTy *BestPath =
            selectBestPath(Context, RD, *Info, FullPaths))
      for (const BaseSubobject &BSO : *BestPath)
        Info->PathToIntroducingObject.push_back(BSO.getBase());
    FullPaths.clear();
  }
}

static bool vfptrIsEarlierInMDC(const ASTRecordLayout &Layout,
                                const MethodVFTableLocation &LHS,
                                const MethodVFTableLocation &RHS) {
  CharUnits L = LHS.VFPtrOffset;
  CharUnits R = RHS.VFPtrOffset;
  if (LHS.VBase)
    L += Layout.getVBaseClassOffset(LHS.VBase);
  if (RHS.VBase)
    R += Layout.getVBaseClassOffset(RHS.VBase);
  return L < R;
}

void MicrosoftVTableContext::computeVTableRelatedInformation(
    const CXXRecordDecl *RD) {
  assert(RD->isDynamicClass());

  // Check if we've computed this information before.
  if (VFPtrLocations.count(RD))
    return;

  const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap;

  {
    auto VFPtrs = std::make_unique<VPtrInfoVector>();
    computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs);
    computeFullPathsForVFTables(Context, RD, *VFPtrs);
    VFPtrLocations[RD] = std::move(VFPtrs);
  }

  MethodVFTableLocationsTy NewMethodLocations;
  for (const std::unique_ptr<VPtrInfo> &VFPtr : *VFPtrLocations[RD]) {
    VFTableBuilder Builder(*this, RD, *VFPtr);

    VFTableIdTy id(RD, VFPtr->FullOffsetInMDC);
    assert(VFTableLayouts.count(id) == 0);
    SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks(
        Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
    VFTableLayouts[id] = std::make_unique<VTableLayout>(
        ArrayRef<size_t>{0}, Builder.vtable_components(), VTableThunks,
        EmptyAddressPointsMap);
    Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());

    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    for (const auto &Loc : Builder.vtable_locations()) {
      auto Insert = NewMethodLocations.insert(Loc);
      if (!Insert.second) {
        const MethodVFTableLocation &NewLoc = Loc.second;
        MethodVFTableLocation &OldLoc = Insert.first->second;
        if (vfptrIsEarlierInMDC(Layout, NewLoc, OldLoc))
          OldLoc = NewLoc;
      }
    }
  }

  MethodVFTableLocations.insert(NewMethodLocations.begin(),
                                NewMethodLocations.end());
  if (Context.getLangOpts().DumpVTableLayouts)
    dumpMethodLocations(RD, NewMethodLocations, llvm::outs());
}

void MicrosoftVTableContext::dumpMethodLocations(
    const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods,
    raw_ostream &Out) {
  // Compute the vtable indices for all the member functions.
  // Store them in a map keyed by the location so we'll get a sorted table.
  std::map<MethodVFTableLocation, std::string> IndicesMap;
  bool HasNonzeroOffset = false;

  for (const auto &I : NewMethods) {
    const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I.first.getDecl());
    assert(hasVtableSlot(MD));

    std::string MethodName = PredefinedExpr::ComputeName(
        PredefinedExpr::PrettyFunctionNoVirtual, MD);

    if (isa<CXXDestructorDecl>(MD)) {
      IndicesMap[I.second] = MethodName + " [scalar deleting]";
    } else {
      IndicesMap[I.second] = MethodName;
    }

    if (!I.second.VFPtrOffset.isZero() || I.second.VBTableIndex != 0)
      HasNonzeroOffset = true;
  }

  // Print the vtable indices for all the member functions.
  if (!IndicesMap.empty()) {
    Out << "VFTable indices for ";
    Out << "'";
    RD->printQualifiedName(Out);
    Out << "' (" << IndicesMap.size()
        << (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n";

    CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1);
    uint64_t LastVBIndex = 0;
    for (const auto &I : IndicesMap) {
      CharUnits VFPtrOffset = I.first.VFPtrOffset;
      uint64_t VBIndex = I.first.VBTableIndex;
      if (HasNonzeroOffset &&
          (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) {
        assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset);
        Out << " -- accessible via ";
        if (VBIndex)
          Out << "vbtable index " << VBIndex << ", ";
        Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n";
        LastVFPtrOffset = VFPtrOffset;
        LastVBIndex = VBIndex;
      }

      uint64_t VTableIndex = I.first.Index;
      const std::string &MethodName = I.second;
      Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n';
    }
    Out << '\n';
  }

  Out.flush();
}

const VirtualBaseInfo &MicrosoftVTableContext::computeVBTableRelatedInformation(
    const CXXRecordDecl *RD) {
  VirtualBaseInfo *VBI;

  {
    // Get or create a VBI for RD.  Don't hold a reference to the DenseMap cell,
    // as it may be modified and rehashed under us.
    std::unique_ptr<VirtualBaseInfo> &Entry = VBaseInfo[RD];
    if (Entry)
      return *Entry;
    Entry = std::make_unique<VirtualBaseInfo>();
    VBI = Entry.get();
  }

  computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths);

  // First, see if the Derived class shared the vbptr with a non-virtual base.
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
  if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) {
    // If the Derived class shares the vbptr with a non-virtual base, the shared
    // virtual bases come first so that the layout is the same.
    const VirtualBaseInfo &BaseInfo =
        computeVBTableRelatedInformation(VBPtrBase);
    VBI->VBTableIndices.insert(BaseInfo.VBTableIndices.begin(),
                               BaseInfo.VBTableIndices.end());
  }

  // New vbases are added to the end of the vbtable.
  // Skip the self entry and vbases visited in the non-virtual base, if any.
  unsigned VBTableIndex = 1 + VBI->VBTableIndices.size();
  for (const auto &VB : RD->vbases()) {
    const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl();
    if (!VBI->VBTableIndices.count(CurVBase))
      VBI->VBTableIndices[CurVBase] = VBTableIndex++;
  }

  return *VBI;
}

unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived,
                                                 const CXXRecordDecl *VBase) {
  const VirtualBaseInfo &VBInfo = computeVBTableRelatedInformation(Derived);
  assert(VBInfo.VBTableIndices.count(VBase));
  return VBInfo.VBTableIndices.find(VBase)->second;
}

const VPtrInfoVector &
MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) {
  return computeVBTableRelatedInformation(RD).VBPtrPaths;
}

const VPtrInfoVector &
MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) {
  computeVTableRelatedInformation(RD);

  assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations");
  return *VFPtrLocations[RD];
}

const VTableLayout &
MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD,
                                         CharUnits VFPtrOffset) {
  computeVTableRelatedInformation(RD);

  VFTableIdTy id(RD, VFPtrOffset);
  assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset");
  return *VFTableLayouts[id];
}

MethodVFTableLocation
MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) {
  assert(hasVtableSlot(cast<CXXMethodDecl>(GD.getDecl())) &&
         "Only use this method for virtual methods or dtors");
  if (isa<CXXDestructorDecl>(GD.getDecl()))
    assert(GD.getDtorType() == Dtor_Deleting);

  GD = GD.getCanonicalDecl();

  MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD);
  if (I != MethodVFTableLocations.end())
    return I->second;

  const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();

  computeVTableRelatedInformation(RD);

  I = MethodVFTableLocations.find(GD);
  assert(I != MethodVFTableLocations.end() && "Did not find index!");
  return I->second;
}