Decl.cpp 177 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
//===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Decl subclasses.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/Decl.h"
#include "Linkage.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/Attr.h"
#include "clang/AST/CanonicalType.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclOpenMP.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/ODRHash.h"
#include "clang/AST/PrettyDeclStackTrace.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/Redeclarable.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/Linkage.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/SanitizerBlacklist.h"
#include "clang/Basic/Sanitizers.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TargetCXXABI.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Visibility.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstring>
#include <memory>
#include <string>
#include <tuple>
#include <type_traits>

using namespace clang;

Decl *clang::getPrimaryMergedDecl(Decl *D) {
  return D->getASTContext().getPrimaryMergedDecl(D);
}

void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
  SourceLocation Loc = this->Loc;
  if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
  if (Loc.isValid()) {
    Loc.print(OS, Context.getSourceManager());
    OS << ": ";
  }
  OS << Message;

  if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
    OS << " '";
    ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
    OS << "'";
  }

  OS << '\n';
}

// Defined here so that it can be inlined into its direct callers.
bool Decl::isOutOfLine() const {
  return !getLexicalDeclContext()->Equals(getDeclContext());
}

TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
    : Decl(TranslationUnit, nullptr, SourceLocation()),
      DeclContext(TranslationUnit), Ctx(ctx) {}

//===----------------------------------------------------------------------===//
// NamedDecl Implementation
//===----------------------------------------------------------------------===//

// Visibility rules aren't rigorously externally specified, but here
// are the basic principles behind what we implement:
//
// 1. An explicit visibility attribute is generally a direct expression
// of the user's intent and should be honored.  Only the innermost
// visibility attribute applies.  If no visibility attribute applies,
// global visibility settings are considered.
//
// 2. There is one caveat to the above: on or in a template pattern,
// an explicit visibility attribute is just a default rule, and
// visibility can be decreased by the visibility of template
// arguments.  But this, too, has an exception: an attribute on an
// explicit specialization or instantiation causes all the visibility
// restrictions of the template arguments to be ignored.
//
// 3. A variable that does not otherwise have explicit visibility can
// be restricted by the visibility of its type.
//
// 4. A visibility restriction is explicit if it comes from an
// attribute (or something like it), not a global visibility setting.
// When emitting a reference to an external symbol, visibility
// restrictions are ignored unless they are explicit.
//
// 5. When computing the visibility of a non-type, including a
// non-type member of a class, only non-type visibility restrictions
// are considered: the 'visibility' attribute, global value-visibility
// settings, and a few special cases like __private_extern.
//
// 6. When computing the visibility of a type, including a type member
// of a class, only type visibility restrictions are considered:
// the 'type_visibility' attribute and global type-visibility settings.
// However, a 'visibility' attribute counts as a 'type_visibility'
// attribute on any declaration that only has the former.
//
// The visibility of a "secondary" entity, like a template argument,
// is computed using the kind of that entity, not the kind of the
// primary entity for which we are computing visibility.  For example,
// the visibility of a specialization of either of these templates:
//   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
//   template <class T, bool (&compare)(T, X)> class matcher;
// is restricted according to the type visibility of the argument 'T',
// the type visibility of 'bool(&)(T,X)', and the value visibility of
// the argument function 'compare'.  That 'has_match' is a value
// and 'matcher' is a type only matters when looking for attributes
// and settings from the immediate context.

/// Does this computation kind permit us to consider additional
/// visibility settings from attributes and the like?
static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
  return computation.IgnoreExplicitVisibility;
}

/// Given an LVComputationKind, return one of the same type/value sort
/// that records that it already has explicit visibility.
static LVComputationKind
withExplicitVisibilityAlready(LVComputationKind Kind) {
  Kind.IgnoreExplicitVisibility = true;
  return Kind;
}

static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
                                                  LVComputationKind kind) {
  assert(!kind.IgnoreExplicitVisibility &&
         "asking for explicit visibility when we shouldn't be");
  return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
}

/// Is the given declaration a "type" or a "value" for the purposes of
/// visibility computation?
static bool usesTypeVisibility(const NamedDecl *D) {
  return isa<TypeDecl>(D) ||
         isa<ClassTemplateDecl>(D) ||
         isa<ObjCInterfaceDecl>(D);
}

/// Does the given declaration have member specialization information,
/// and if so, is it an explicit specialization?
template <class T> static typename
std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
isExplicitMemberSpecialization(const T *D) {
  if (const MemberSpecializationInfo *member =
        D->getMemberSpecializationInfo()) {
    return member->isExplicitSpecialization();
  }
  return false;
}

/// For templates, this question is easier: a member template can't be
/// explicitly instantiated, so there's a single bit indicating whether
/// or not this is an explicit member specialization.
static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
  return D->isMemberSpecialization();
}

/// Given a visibility attribute, return the explicit visibility
/// associated with it.
template <class T>
static Visibility getVisibilityFromAttr(const T *attr) {
  switch (attr->getVisibility()) {
  case T::Default:
    return DefaultVisibility;
  case T::Hidden:
    return HiddenVisibility;
  case T::Protected:
    return ProtectedVisibility;
  }
  llvm_unreachable("bad visibility kind");
}

/// Return the explicit visibility of the given declaration.
static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
                                    NamedDecl::ExplicitVisibilityKind kind) {
  // If we're ultimately computing the visibility of a type, look for
  // a 'type_visibility' attribute before looking for 'visibility'.
  if (kind == NamedDecl::VisibilityForType) {
    if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
      return getVisibilityFromAttr(A);
    }
  }

  // If this declaration has an explicit visibility attribute, use it.
  if (const auto *A = D->getAttr<VisibilityAttr>()) {
    return getVisibilityFromAttr(A);
  }

  return None;
}

LinkageInfo LinkageComputer::getLVForType(const Type &T,
                                          LVComputationKind computation) {
  if (computation.IgnoreAllVisibility)
    return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
  return getTypeLinkageAndVisibility(&T);
}

/// Get the most restrictive linkage for the types in the given
/// template parameter list.  For visibility purposes, template
/// parameters are part of the signature of a template.
LinkageInfo LinkageComputer::getLVForTemplateParameterList(
    const TemplateParameterList *Params, LVComputationKind computation) {
  LinkageInfo LV;
  for (const NamedDecl *P : *Params) {
    // Template type parameters are the most common and never
    // contribute to visibility, pack or not.
    if (isa<TemplateTypeParmDecl>(P))
      continue;

    // Non-type template parameters can be restricted by the value type, e.g.
    //   template <enum X> class A { ... };
    // We have to be careful here, though, because we can be dealing with
    // dependent types.
    if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
      // Handle the non-pack case first.
      if (!NTTP->isExpandedParameterPack()) {
        if (!NTTP->getType()->isDependentType()) {
          LV.merge(getLVForType(*NTTP->getType(), computation));
        }
        continue;
      }

      // Look at all the types in an expanded pack.
      for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
        QualType type = NTTP->getExpansionType(i);
        if (!type->isDependentType())
          LV.merge(getTypeLinkageAndVisibility(type));
      }
      continue;
    }

    // Template template parameters can be restricted by their
    // template parameters, recursively.
    const auto *TTP = cast<TemplateTemplateParmDecl>(P);

    // Handle the non-pack case first.
    if (!TTP->isExpandedParameterPack()) {
      LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
                                             computation));
      continue;
    }

    // Look at all expansions in an expanded pack.
    for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
           i != n; ++i) {
      LV.merge(getLVForTemplateParameterList(
          TTP->getExpansionTemplateParameters(i), computation));
    }
  }

  return LV;
}

static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
  const Decl *Ret = nullptr;
  const DeclContext *DC = D->getDeclContext();
  while (DC->getDeclKind() != Decl::TranslationUnit) {
    if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
      Ret = cast<Decl>(DC);
    DC = DC->getParent();
  }
  return Ret;
}

/// Get the most restrictive linkage for the types and
/// declarations in the given template argument list.
///
/// Note that we don't take an LVComputationKind because we always
/// want to honor the visibility of template arguments in the same way.
LinkageInfo
LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
                                              LVComputationKind computation) {
  LinkageInfo LV;

  for (const TemplateArgument &Arg : Args) {
    switch (Arg.getKind()) {
    case TemplateArgument::Null:
    case TemplateArgument::Integral:
    case TemplateArgument::Expression:
      continue;

    case TemplateArgument::Type:
      LV.merge(getLVForType(*Arg.getAsType(), computation));
      continue;

    case TemplateArgument::Declaration: {
      const NamedDecl *ND = Arg.getAsDecl();
      assert(!usesTypeVisibility(ND));
      LV.merge(getLVForDecl(ND, computation));
      continue;
    }

    case TemplateArgument::NullPtr:
      LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
      continue;

    case TemplateArgument::Template:
    case TemplateArgument::TemplateExpansion:
      if (TemplateDecl *Template =
              Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
        LV.merge(getLVForDecl(Template, computation));
      continue;

    case TemplateArgument::Pack:
      LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
      continue;
    }
    llvm_unreachable("bad template argument kind");
  }

  return LV;
}

LinkageInfo
LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
                                              LVComputationKind computation) {
  return getLVForTemplateArgumentList(TArgs.asArray(), computation);
}

static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
                        const FunctionTemplateSpecializationInfo *specInfo) {
  // Include visibility from the template parameters and arguments
  // only if this is not an explicit instantiation or specialization
  // with direct explicit visibility.  (Implicit instantiations won't
  // have a direct attribute.)
  if (!specInfo->isExplicitInstantiationOrSpecialization())
    return true;

  return !fn->hasAttr<VisibilityAttr>();
}

/// Merge in template-related linkage and visibility for the given
/// function template specialization.
///
/// We don't need a computation kind here because we can assume
/// LVForValue.
///
/// \param[out] LV the computation to use for the parent
void LinkageComputer::mergeTemplateLV(
    LinkageInfo &LV, const FunctionDecl *fn,
    const FunctionTemplateSpecializationInfo *specInfo,
    LVComputationKind computation) {
  bool considerVisibility =
    shouldConsiderTemplateVisibility(fn, specInfo);

  // Merge information from the template parameters.
  FunctionTemplateDecl *temp = specInfo->getTemplate();
  LinkageInfo tempLV =
    getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);

  // Merge information from the template arguments.
  const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
  LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
}

/// Does the given declaration have a direct visibility attribute
/// that would match the given rules?
static bool hasDirectVisibilityAttribute(const NamedDecl *D,
                                         LVComputationKind computation) {
  if (computation.IgnoreAllVisibility)
    return false;

  return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
         D->hasAttr<VisibilityAttr>();
}

/// Should we consider visibility associated with the template
/// arguments and parameters of the given class template specialization?
static bool shouldConsiderTemplateVisibility(
                                 const ClassTemplateSpecializationDecl *spec,
                                 LVComputationKind computation) {
  // Include visibility from the template parameters and arguments
  // only if this is not an explicit instantiation or specialization
  // with direct explicit visibility (and note that implicit
  // instantiations won't have a direct attribute).
  //
  // Furthermore, we want to ignore template parameters and arguments
  // for an explicit specialization when computing the visibility of a
  // member thereof with explicit visibility.
  //
  // This is a bit complex; let's unpack it.
  //
  // An explicit class specialization is an independent, top-level
  // declaration.  As such, if it or any of its members has an
  // explicit visibility attribute, that must directly express the
  // user's intent, and we should honor it.  The same logic applies to
  // an explicit instantiation of a member of such a thing.

  // Fast path: if this is not an explicit instantiation or
  // specialization, we always want to consider template-related
  // visibility restrictions.
  if (!spec->isExplicitInstantiationOrSpecialization())
    return true;

  // This is the 'member thereof' check.
  if (spec->isExplicitSpecialization() &&
      hasExplicitVisibilityAlready(computation))
    return false;

  return !hasDirectVisibilityAttribute(spec, computation);
}

/// Merge in template-related linkage and visibility for the given
/// class template specialization.
void LinkageComputer::mergeTemplateLV(
    LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
    LVComputationKind computation) {
  bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);

  // Merge information from the template parameters, but ignore
  // visibility if we're only considering template arguments.

  ClassTemplateDecl *temp = spec->getSpecializedTemplate();
  LinkageInfo tempLV =
    getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
  LV.mergeMaybeWithVisibility(tempLV,
           considerVisibility && !hasExplicitVisibilityAlready(computation));

  // Merge information from the template arguments.  We ignore
  // template-argument visibility if we've got an explicit
  // instantiation with a visibility attribute.
  const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
  if (considerVisibility)
    LV.mergeVisibility(argsLV);
  LV.mergeExternalVisibility(argsLV);
}

/// Should we consider visibility associated with the template
/// arguments and parameters of the given variable template
/// specialization? As usual, follow class template specialization
/// logic up to initialization.
static bool shouldConsiderTemplateVisibility(
                                 const VarTemplateSpecializationDecl *spec,
                                 LVComputationKind computation) {
  // Include visibility from the template parameters and arguments
  // only if this is not an explicit instantiation or specialization
  // with direct explicit visibility (and note that implicit
  // instantiations won't have a direct attribute).
  if (!spec->isExplicitInstantiationOrSpecialization())
    return true;

  // An explicit variable specialization is an independent, top-level
  // declaration.  As such, if it has an explicit visibility attribute,
  // that must directly express the user's intent, and we should honor
  // it.
  if (spec->isExplicitSpecialization() &&
      hasExplicitVisibilityAlready(computation))
    return false;

  return !hasDirectVisibilityAttribute(spec, computation);
}

/// Merge in template-related linkage and visibility for the given
/// variable template specialization. As usual, follow class template
/// specialization logic up to initialization.
void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
                                      const VarTemplateSpecializationDecl *spec,
                                      LVComputationKind computation) {
  bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);

  // Merge information from the template parameters, but ignore
  // visibility if we're only considering template arguments.

  VarTemplateDecl *temp = spec->getSpecializedTemplate();
  LinkageInfo tempLV =
    getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
  LV.mergeMaybeWithVisibility(tempLV,
           considerVisibility && !hasExplicitVisibilityAlready(computation));

  // Merge information from the template arguments.  We ignore
  // template-argument visibility if we've got an explicit
  // instantiation with a visibility attribute.
  const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
  if (considerVisibility)
    LV.mergeVisibility(argsLV);
  LV.mergeExternalVisibility(argsLV);
}

static bool useInlineVisibilityHidden(const NamedDecl *D) {
  // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
  const LangOptions &Opts = D->getASTContext().getLangOpts();
  if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
    return false;

  const auto *FD = dyn_cast<FunctionDecl>(D);
  if (!FD)
    return false;

  TemplateSpecializationKind TSK = TSK_Undeclared;
  if (FunctionTemplateSpecializationInfo *spec
      = FD->getTemplateSpecializationInfo()) {
    TSK = spec->getTemplateSpecializationKind();
  } else if (MemberSpecializationInfo *MSI =
             FD->getMemberSpecializationInfo()) {
    TSK = MSI->getTemplateSpecializationKind();
  }

  const FunctionDecl *Def = nullptr;
  // InlineVisibilityHidden only applies to definitions, and
  // isInlined() only gives meaningful answers on definitions
  // anyway.
  return TSK != TSK_ExplicitInstantiationDeclaration &&
    TSK != TSK_ExplicitInstantiationDefinition &&
    FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
}

template <typename T> static bool isFirstInExternCContext(T *D) {
  const T *First = D->getFirstDecl();
  return First->isInExternCContext();
}

static bool isSingleLineLanguageLinkage(const Decl &D) {
  if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
    if (!SD->hasBraces())
      return true;
  return false;
}

/// Determine whether D is declared in the purview of a named module.
static bool isInModulePurview(const NamedDecl *D) {
  if (auto *M = D->getOwningModule())
    return M->isModulePurview();
  return false;
}

static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
  // FIXME: Handle isModulePrivate.
  switch (D->getModuleOwnershipKind()) {
  case Decl::ModuleOwnershipKind::Unowned:
  case Decl::ModuleOwnershipKind::ModulePrivate:
    return false;
  case Decl::ModuleOwnershipKind::Visible:
  case Decl::ModuleOwnershipKind::VisibleWhenImported:
    return isInModulePurview(D);
  }
  llvm_unreachable("unexpected module ownership kind");
}

static LinkageInfo getInternalLinkageFor(const NamedDecl *D) {
  // Internal linkage declarations within a module interface unit are modeled
  // as "module-internal linkage", which means that they have internal linkage
  // formally but can be indirectly accessed from outside the module via inline
  // functions and templates defined within the module.
  if (isInModulePurview(D))
    return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false);

  return LinkageInfo::internal();
}

static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
  // C++ Modules TS [basic.link]/6.8:
  //   - A name declared at namespace scope that does not have internal linkage
  //     by the previous rules and that is introduced by a non-exported
  //     declaration has module linkage.
  if (isInModulePurview(D) && !isExportedFromModuleInterfaceUnit(
                                  cast<NamedDecl>(D->getCanonicalDecl())))
    return LinkageInfo(ModuleLinkage, DefaultVisibility, false);

  return LinkageInfo::external();
}

static StorageClass getStorageClass(const Decl *D) {
  if (auto *TD = dyn_cast<TemplateDecl>(D))
    D = TD->getTemplatedDecl();
  if (D) {
    if (auto *VD = dyn_cast<VarDecl>(D))
      return VD->getStorageClass();
    if (auto *FD = dyn_cast<FunctionDecl>(D))
      return FD->getStorageClass();
  }
  return SC_None;
}

LinkageInfo
LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
                                            LVComputationKind computation,
                                            bool IgnoreVarTypeLinkage) {
  assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
         "Not a name having namespace scope");
  ASTContext &Context = D->getASTContext();

  // C++ [basic.link]p3:
  //   A name having namespace scope (3.3.6) has internal linkage if it
  //   is the name of

  if (getStorageClass(D->getCanonicalDecl()) == SC_Static) {
    // - a variable, variable template, function, or function template
    //   that is explicitly declared static; or
    // (This bullet corresponds to C99 6.2.2p3.)
    return getInternalLinkageFor(D);
  }

  if (const auto *Var = dyn_cast<VarDecl>(D)) {
    // - a non-template variable of non-volatile const-qualified type, unless
    //   - it is explicitly declared extern, or
    //   - it is inline or exported, or
    //   - it was previously declared and the prior declaration did not have
    //     internal linkage
    // (There is no equivalent in C99.)
    if (Context.getLangOpts().CPlusPlus &&
        Var->getType().isConstQualified() &&
        !Var->getType().isVolatileQualified() &&
        !Var->isInline() &&
        !isExportedFromModuleInterfaceUnit(Var) &&
        !isa<VarTemplateSpecializationDecl>(Var) &&
        !Var->getDescribedVarTemplate()) {
      const VarDecl *PrevVar = Var->getPreviousDecl();
      if (PrevVar)
        return getLVForDecl(PrevVar, computation);

      if (Var->getStorageClass() != SC_Extern &&
          Var->getStorageClass() != SC_PrivateExtern &&
          !isSingleLineLanguageLinkage(*Var))
        return getInternalLinkageFor(Var);
    }

    for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
         PrevVar = PrevVar->getPreviousDecl()) {
      if (PrevVar->getStorageClass() == SC_PrivateExtern &&
          Var->getStorageClass() == SC_None)
        return getDeclLinkageAndVisibility(PrevVar);
      // Explicitly declared static.
      if (PrevVar->getStorageClass() == SC_Static)
        return getInternalLinkageFor(Var);
    }
  } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
    //   - a data member of an anonymous union.
    const VarDecl *VD = IFD->getVarDecl();
    assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
    return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
  }
  assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");

  // FIXME: This gives internal linkage to names that should have no linkage
  // (those not covered by [basic.link]p6).
  if (D->isInAnonymousNamespace()) {
    const auto *Var = dyn_cast<VarDecl>(D);
    const auto *Func = dyn_cast<FunctionDecl>(D);
    // FIXME: The check for extern "C" here is not justified by the standard
    // wording, but we retain it from the pre-DR1113 model to avoid breaking
    // code.
    //
    // C++11 [basic.link]p4:
    //   An unnamed namespace or a namespace declared directly or indirectly
    //   within an unnamed namespace has internal linkage.
    if ((!Var || !isFirstInExternCContext(Var)) &&
        (!Func || !isFirstInExternCContext(Func)))
      return getInternalLinkageFor(D);
  }

  // Set up the defaults.

  // C99 6.2.2p5:
  //   If the declaration of an identifier for an object has file
  //   scope and no storage-class specifier, its linkage is
  //   external.
  LinkageInfo LV = getExternalLinkageFor(D);

  if (!hasExplicitVisibilityAlready(computation)) {
    if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
      LV.mergeVisibility(*Vis, true);
    } else {
      // If we're declared in a namespace with a visibility attribute,
      // use that namespace's visibility, and it still counts as explicit.
      for (const DeclContext *DC = D->getDeclContext();
           !isa<TranslationUnitDecl>(DC);
           DC = DC->getParent()) {
        const auto *ND = dyn_cast<NamespaceDecl>(DC);
        if (!ND) continue;
        if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
          LV.mergeVisibility(*Vis, true);
          break;
        }
      }
    }

    // Add in global settings if the above didn't give us direct visibility.
    if (!LV.isVisibilityExplicit()) {
      // Use global type/value visibility as appropriate.
      Visibility globalVisibility =
          computation.isValueVisibility()
              ? Context.getLangOpts().getValueVisibilityMode()
              : Context.getLangOpts().getTypeVisibilityMode();
      LV.mergeVisibility(globalVisibility, /*explicit*/ false);

      // If we're paying attention to global visibility, apply
      // -finline-visibility-hidden if this is an inline method.
      if (useInlineVisibilityHidden(D))
        LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
    }
  }

  // C++ [basic.link]p4:

  //   A name having namespace scope that has not been given internal linkage
  //   above and that is the name of
  //   [...bullets...]
  //   has its linkage determined as follows:
  //     - if the enclosing namespace has internal linkage, the name has
  //       internal linkage; [handled above]
  //     - otherwise, if the declaration of the name is attached to a named
  //       module and is not exported, the name has module linkage;
  //     - otherwise, the name has external linkage.
  // LV is currently set up to handle the last two bullets.
  //
  //   The bullets are:

  //     - a variable; or
  if (const auto *Var = dyn_cast<VarDecl>(D)) {
    // GCC applies the following optimization to variables and static
    // data members, but not to functions:
    //
    // Modify the variable's LV by the LV of its type unless this is
    // C or extern "C".  This follows from [basic.link]p9:
    //   A type without linkage shall not be used as the type of a
    //   variable or function with external linkage unless
    //    - the entity has C language linkage, or
    //    - the entity is declared within an unnamed namespace, or
    //    - the entity is not used or is defined in the same
    //      translation unit.
    // and [basic.link]p10:
    //   ...the types specified by all declarations referring to a
    //   given variable or function shall be identical...
    // C does not have an equivalent rule.
    //
    // Ignore this if we've got an explicit attribute;  the user
    // probably knows what they're doing.
    //
    // Note that we don't want to make the variable non-external
    // because of this, but unique-external linkage suits us.
    if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
        !IgnoreVarTypeLinkage) {
      LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
      if (!isExternallyVisible(TypeLV.getLinkage()))
        return LinkageInfo::uniqueExternal();
      if (!LV.isVisibilityExplicit())
        LV.mergeVisibility(TypeLV);
    }

    if (Var->getStorageClass() == SC_PrivateExtern)
      LV.mergeVisibility(HiddenVisibility, true);

    // Note that Sema::MergeVarDecl already takes care of implementing
    // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
    // to do it here.

    // As per function and class template specializations (below),
    // consider LV for the template and template arguments.  We're at file
    // scope, so we do not need to worry about nested specializations.
    if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
      mergeTemplateLV(LV, spec, computation);
    }

  //     - a function; or
  } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
    // In theory, we can modify the function's LV by the LV of its
    // type unless it has C linkage (see comment above about variables
    // for justification).  In practice, GCC doesn't do this, so it's
    // just too painful to make work.

    if (Function->getStorageClass() == SC_PrivateExtern)
      LV.mergeVisibility(HiddenVisibility, true);

    // Note that Sema::MergeCompatibleFunctionDecls already takes care of
    // merging storage classes and visibility attributes, so we don't have to
    // look at previous decls in here.

    // In C++, then if the type of the function uses a type with
    // unique-external linkage, it's not legally usable from outside
    // this translation unit.  However, we should use the C linkage
    // rules instead for extern "C" declarations.
    if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
      // Only look at the type-as-written. Otherwise, deducing the return type
      // of a function could change its linkage.
      QualType TypeAsWritten = Function->getType();
      if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
        TypeAsWritten = TSI->getType();
      if (!isExternallyVisible(TypeAsWritten->getLinkage()))
        return LinkageInfo::uniqueExternal();
    }

    // Consider LV from the template and the template arguments.
    // We're at file scope, so we do not need to worry about nested
    // specializations.
    if (FunctionTemplateSpecializationInfo *specInfo
                               = Function->getTemplateSpecializationInfo()) {
      mergeTemplateLV(LV, Function, specInfo, computation);
    }

  //     - a named class (Clause 9), or an unnamed class defined in a
  //       typedef declaration in which the class has the typedef name
  //       for linkage purposes (7.1.3); or
  //     - a named enumeration (7.2), or an unnamed enumeration
  //       defined in a typedef declaration in which the enumeration
  //       has the typedef name for linkage purposes (7.1.3); or
  } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
    // Unnamed tags have no linkage.
    if (!Tag->hasNameForLinkage())
      return LinkageInfo::none();

    // If this is a class template specialization, consider the
    // linkage of the template and template arguments.  We're at file
    // scope, so we do not need to worry about nested specializations.
    if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
      mergeTemplateLV(LV, spec, computation);
    }

  // FIXME: This is not part of the C++ standard any more.
  //     - an enumerator belonging to an enumeration with external linkage; or
  } else if (isa<EnumConstantDecl>(D)) {
    LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
                                      computation);
    if (!isExternalFormalLinkage(EnumLV.getLinkage()))
      return LinkageInfo::none();
    LV.merge(EnumLV);

  //     - a template
  } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
    bool considerVisibility = !hasExplicitVisibilityAlready(computation);
    LinkageInfo tempLV =
      getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
    LV.mergeMaybeWithVisibility(tempLV, considerVisibility);

  //     An unnamed namespace or a namespace declared directly or indirectly
  //     within an unnamed namespace has internal linkage. All other namespaces
  //     have external linkage.
  //
  // We handled names in anonymous namespaces above.
  } else if (isa<NamespaceDecl>(D)) {
    return LV;

  // By extension, we assign external linkage to Objective-C
  // interfaces.
  } else if (isa<ObjCInterfaceDecl>(D)) {
    // fallout

  } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
    // A typedef declaration has linkage if it gives a type a name for
    // linkage purposes.
    if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
      return LinkageInfo::none();

  } else if (isa<MSGuidDecl>(D)) {
    // A GUID behaves like an inline variable with external linkage. Fall
    // through.

  // Everything not covered here has no linkage.
  } else {
    return LinkageInfo::none();
  }

  // If we ended up with non-externally-visible linkage, visibility should
  // always be default.
  if (!isExternallyVisible(LV.getLinkage()))
    return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);

  // Mark the symbols as hidden when compiling for the device.
  if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice)
    LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);

  return LV;
}

LinkageInfo
LinkageComputer::getLVForClassMember(const NamedDecl *D,
                                     LVComputationKind computation,
                                     bool IgnoreVarTypeLinkage) {
  // Only certain class members have linkage.  Note that fields don't
  // really have linkage, but it's convenient to say they do for the
  // purposes of calculating linkage of pointer-to-data-member
  // template arguments.
  //
  // Templates also don't officially have linkage, but since we ignore
  // the C++ standard and look at template arguments when determining
  // linkage and visibility of a template specialization, we might hit
  // a template template argument that way. If we do, we need to
  // consider its linkage.
  if (!(isa<CXXMethodDecl>(D) ||
        isa<VarDecl>(D) ||
        isa<FieldDecl>(D) ||
        isa<IndirectFieldDecl>(D) ||
        isa<TagDecl>(D) ||
        isa<TemplateDecl>(D)))
    return LinkageInfo::none();

  LinkageInfo LV;

  // If we have an explicit visibility attribute, merge that in.
  if (!hasExplicitVisibilityAlready(computation)) {
    if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
      LV.mergeVisibility(*Vis, true);
    // If we're paying attention to global visibility, apply
    // -finline-visibility-hidden if this is an inline method.
    //
    // Note that we do this before merging information about
    // the class visibility.
    if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
      LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
  }

  // If this class member has an explicit visibility attribute, the only
  // thing that can change its visibility is the template arguments, so
  // only look for them when processing the class.
  LVComputationKind classComputation = computation;
  if (LV.isVisibilityExplicit())
    classComputation = withExplicitVisibilityAlready(computation);

  LinkageInfo classLV =
    getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
  // The member has the same linkage as the class. If that's not externally
  // visible, we don't need to compute anything about the linkage.
  // FIXME: If we're only computing linkage, can we bail out here?
  if (!isExternallyVisible(classLV.getLinkage()))
    return classLV;


  // Otherwise, don't merge in classLV yet, because in certain cases
  // we need to completely ignore the visibility from it.

  // Specifically, if this decl exists and has an explicit attribute.
  const NamedDecl *explicitSpecSuppressor = nullptr;

  if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
    // Only look at the type-as-written. Otherwise, deducing the return type
    // of a function could change its linkage.
    QualType TypeAsWritten = MD->getType();
    if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
      TypeAsWritten = TSI->getType();
    if (!isExternallyVisible(TypeAsWritten->getLinkage()))
      return LinkageInfo::uniqueExternal();

    // If this is a method template specialization, use the linkage for
    // the template parameters and arguments.
    if (FunctionTemplateSpecializationInfo *spec
           = MD->getTemplateSpecializationInfo()) {
      mergeTemplateLV(LV, MD, spec, computation);
      if (spec->isExplicitSpecialization()) {
        explicitSpecSuppressor = MD;
      } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
        explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
      }
    } else if (isExplicitMemberSpecialization(MD)) {
      explicitSpecSuppressor = MD;
    }

  } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
    if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
      mergeTemplateLV(LV, spec, computation);
      if (spec->isExplicitSpecialization()) {
        explicitSpecSuppressor = spec;
      } else {
        const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
        if (isExplicitMemberSpecialization(temp)) {
          explicitSpecSuppressor = temp->getTemplatedDecl();
        }
      }
    } else if (isExplicitMemberSpecialization(RD)) {
      explicitSpecSuppressor = RD;
    }

  // Static data members.
  } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
    if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
      mergeTemplateLV(LV, spec, computation);

    // Modify the variable's linkage by its type, but ignore the
    // type's visibility unless it's a definition.
    if (!IgnoreVarTypeLinkage) {
      LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
      // FIXME: If the type's linkage is not externally visible, we can
      // give this static data member UniqueExternalLinkage.
      if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
        LV.mergeVisibility(typeLV);
      LV.mergeExternalVisibility(typeLV);
    }

    if (isExplicitMemberSpecialization(VD)) {
      explicitSpecSuppressor = VD;
    }

  // Template members.
  } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
    bool considerVisibility =
      (!LV.isVisibilityExplicit() &&
       !classLV.isVisibilityExplicit() &&
       !hasExplicitVisibilityAlready(computation));
    LinkageInfo tempLV =
      getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
    LV.mergeMaybeWithVisibility(tempLV, considerVisibility);

    if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
      if (isExplicitMemberSpecialization(redeclTemp)) {
        explicitSpecSuppressor = temp->getTemplatedDecl();
      }
    }
  }

  // We should never be looking for an attribute directly on a template.
  assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));

  // If this member is an explicit member specialization, and it has
  // an explicit attribute, ignore visibility from the parent.
  bool considerClassVisibility = true;
  if (explicitSpecSuppressor &&
      // optimization: hasDVA() is true only with explicit visibility.
      LV.isVisibilityExplicit() &&
      classLV.getVisibility() != DefaultVisibility &&
      hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
    considerClassVisibility = false;
  }

  // Finally, merge in information from the class.
  LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
  return LV;
}

void NamedDecl::anchor() {}

bool NamedDecl::isLinkageValid() const {
  if (!hasCachedLinkage())
    return true;

  Linkage L = LinkageComputer{}
                  .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
                  .getLinkage();
  return L == getCachedLinkage();
}

ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
  StringRef name = getName();
  if (name.empty()) return SFF_None;

  if (name.front() == 'C')
    if (name == "CFStringCreateWithFormat" ||
        name == "CFStringCreateWithFormatAndArguments" ||
        name == "CFStringAppendFormat" ||
        name == "CFStringAppendFormatAndArguments")
      return SFF_CFString;
  return SFF_None;
}

Linkage NamedDecl::getLinkageInternal() const {
  // We don't care about visibility here, so ask for the cheapest
  // possible visibility analysis.
  return LinkageComputer{}
      .getLVForDecl(this, LVComputationKind::forLinkageOnly())
      .getLinkage();
}

LinkageInfo NamedDecl::getLinkageAndVisibility() const {
  return LinkageComputer{}.getDeclLinkageAndVisibility(this);
}

static Optional<Visibility>
getExplicitVisibilityAux(const NamedDecl *ND,
                         NamedDecl::ExplicitVisibilityKind kind,
                         bool IsMostRecent) {
  assert(!IsMostRecent || ND == ND->getMostRecentDecl());

  // Check the declaration itself first.
  if (Optional<Visibility> V = getVisibilityOf(ND, kind))
    return V;

  // If this is a member class of a specialization of a class template
  // and the corresponding decl has explicit visibility, use that.
  if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
    CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
    if (InstantiatedFrom)
      return getVisibilityOf(InstantiatedFrom, kind);
  }

  // If there wasn't explicit visibility there, and this is a
  // specialization of a class template, check for visibility
  // on the pattern.
  if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
    // Walk all the template decl till this point to see if there are
    // explicit visibility attributes.
    const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
    while (TD != nullptr) {
      auto Vis = getVisibilityOf(TD, kind);
      if (Vis != None)
        return Vis;
      TD = TD->getPreviousDecl();
    }
    return None;
  }

  // Use the most recent declaration.
  if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
    const NamedDecl *MostRecent = ND->getMostRecentDecl();
    if (MostRecent != ND)
      return getExplicitVisibilityAux(MostRecent, kind, true);
  }

  if (const auto *Var = dyn_cast<VarDecl>(ND)) {
    if (Var->isStaticDataMember()) {
      VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
      if (InstantiatedFrom)
        return getVisibilityOf(InstantiatedFrom, kind);
    }

    if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
      return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
                             kind);

    return None;
  }
  // Also handle function template specializations.
  if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
    // If the function is a specialization of a template with an
    // explicit visibility attribute, use that.
    if (FunctionTemplateSpecializationInfo *templateInfo
          = fn->getTemplateSpecializationInfo())
      return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
                             kind);

    // If the function is a member of a specialization of a class template
    // and the corresponding decl has explicit visibility, use that.
    FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
    if (InstantiatedFrom)
      return getVisibilityOf(InstantiatedFrom, kind);

    return None;
  }

  // The visibility of a template is stored in the templated decl.
  if (const auto *TD = dyn_cast<TemplateDecl>(ND))
    return getVisibilityOf(TD->getTemplatedDecl(), kind);

  return None;
}

Optional<Visibility>
NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
  return getExplicitVisibilityAux(this, kind, false);
}

LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
                                             Decl *ContextDecl,
                                             LVComputationKind computation) {
  // This lambda has its linkage/visibility determined by its owner.
  const NamedDecl *Owner;
  if (!ContextDecl)
    Owner = dyn_cast<NamedDecl>(DC);
  else if (isa<ParmVarDecl>(ContextDecl))
    Owner =
        dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
  else
    Owner = cast<NamedDecl>(ContextDecl);

  if (!Owner)
    return LinkageInfo::none();

  // If the owner has a deduced type, we need to skip querying the linkage and
  // visibility of that type, because it might involve this closure type.  The
  // only effect of this is that we might give a lambda VisibleNoLinkage rather
  // than NoLinkage when we don't strictly need to, which is benign.
  auto *VD = dyn_cast<VarDecl>(Owner);
  LinkageInfo OwnerLV =
      VD && VD->getType()->getContainedDeducedType()
          ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
          : getLVForDecl(Owner, computation);

  // A lambda never formally has linkage. But if the owner is externally
  // visible, then the lambda is too. We apply the same rules to blocks.
  if (!isExternallyVisible(OwnerLV.getLinkage()))
    return LinkageInfo::none();
  return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
                     OwnerLV.isVisibilityExplicit());
}

LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
                                               LVComputationKind computation) {
  if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
    if (Function->isInAnonymousNamespace() &&
        !isFirstInExternCContext(Function))
      return getInternalLinkageFor(Function);

    // This is a "void f();" which got merged with a file static.
    if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
      return getInternalLinkageFor(Function);

    LinkageInfo LV;
    if (!hasExplicitVisibilityAlready(computation)) {
      if (Optional<Visibility> Vis =
              getExplicitVisibility(Function, computation))
        LV.mergeVisibility(*Vis, true);
    }

    // Note that Sema::MergeCompatibleFunctionDecls already takes care of
    // merging storage classes and visibility attributes, so we don't have to
    // look at previous decls in here.

    return LV;
  }

  if (const auto *Var = dyn_cast<VarDecl>(D)) {
    if (Var->hasExternalStorage()) {
      if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
        return getInternalLinkageFor(Var);

      LinkageInfo LV;
      if (Var->getStorageClass() == SC_PrivateExtern)
        LV.mergeVisibility(HiddenVisibility, true);
      else if (!hasExplicitVisibilityAlready(computation)) {
        if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
          LV.mergeVisibility(*Vis, true);
      }

      if (const VarDecl *Prev = Var->getPreviousDecl()) {
        LinkageInfo PrevLV = getLVForDecl(Prev, computation);
        if (PrevLV.getLinkage())
          LV.setLinkage(PrevLV.getLinkage());
        LV.mergeVisibility(PrevLV);
      }

      return LV;
    }

    if (!Var->isStaticLocal())
      return LinkageInfo::none();
  }

  ASTContext &Context = D->getASTContext();
  if (!Context.getLangOpts().CPlusPlus)
    return LinkageInfo::none();

  const Decl *OuterD = getOutermostFuncOrBlockContext(D);
  if (!OuterD || OuterD->isInvalidDecl())
    return LinkageInfo::none();

  LinkageInfo LV;
  if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
    if (!BD->getBlockManglingNumber())
      return LinkageInfo::none();

    LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
                         BD->getBlockManglingContextDecl(), computation);
  } else {
    const auto *FD = cast<FunctionDecl>(OuterD);
    if (!FD->isInlined() &&
        !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
      return LinkageInfo::none();

    // If a function is hidden by -fvisibility-inlines-hidden option and
    // is not explicitly attributed as a hidden function,
    // we should not make static local variables in the function hidden.
    LV = getLVForDecl(FD, computation);
    if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
        !LV.isVisibilityExplicit() &&
        !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) {
      assert(cast<VarDecl>(D)->isStaticLocal());
      // If this was an implicitly hidden inline method, check again for
      // explicit visibility on the parent class, and use that for static locals
      // if present.
      if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
        LV = getLVForDecl(MD->getParent(), computation);
      if (!LV.isVisibilityExplicit()) {
        Visibility globalVisibility =
            computation.isValueVisibility()
                ? Context.getLangOpts().getValueVisibilityMode()
                : Context.getLangOpts().getTypeVisibilityMode();
        return LinkageInfo(VisibleNoLinkage, globalVisibility,
                           /*visibilityExplicit=*/false);
      }
    }
  }
  if (!isExternallyVisible(LV.getLinkage()))
    return LinkageInfo::none();
  return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
                     LV.isVisibilityExplicit());
}

LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
                                              LVComputationKind computation,
                                              bool IgnoreVarTypeLinkage) {
  // Internal_linkage attribute overrides other considerations.
  if (D->hasAttr<InternalLinkageAttr>())
    return getInternalLinkageFor(D);

  // Objective-C: treat all Objective-C declarations as having external
  // linkage.
  switch (D->getKind()) {
    default:
      break;

    // Per C++ [basic.link]p2, only the names of objects, references,
    // functions, types, templates, namespaces, and values ever have linkage.
    //
    // Note that the name of a typedef, namespace alias, using declaration,
    // and so on are not the name of the corresponding type, namespace, or
    // declaration, so they do *not* have linkage.
    case Decl::ImplicitParam:
    case Decl::Label:
    case Decl::NamespaceAlias:
    case Decl::ParmVar:
    case Decl::Using:
    case Decl::UsingShadow:
    case Decl::UsingDirective:
      return LinkageInfo::none();

    case Decl::EnumConstant:
      // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
      if (D->getASTContext().getLangOpts().CPlusPlus)
        return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
      return LinkageInfo::visible_none();

    case Decl::Typedef:
    case Decl::TypeAlias:
      // A typedef declaration has linkage if it gives a type a name for
      // linkage purposes.
      if (!cast<TypedefNameDecl>(D)
               ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
        return LinkageInfo::none();
      break;

    case Decl::TemplateTemplateParm: // count these as external
    case Decl::NonTypeTemplateParm:
    case Decl::ObjCAtDefsField:
    case Decl::ObjCCategory:
    case Decl::ObjCCategoryImpl:
    case Decl::ObjCCompatibleAlias:
    case Decl::ObjCImplementation:
    case Decl::ObjCMethod:
    case Decl::ObjCProperty:
    case Decl::ObjCPropertyImpl:
    case Decl::ObjCProtocol:
      return getExternalLinkageFor(D);

    case Decl::CXXRecord: {
      const auto *Record = cast<CXXRecordDecl>(D);
      if (Record->isLambda()) {
        if (Record->hasKnownLambdaInternalLinkage() ||
            !Record->getLambdaManglingNumber()) {
          // This lambda has no mangling number, so it's internal.
          return getInternalLinkageFor(D);
        }

        return getLVForClosure(
                  Record->getDeclContext()->getRedeclContext(),
                  Record->getLambdaContextDecl(), computation);
      }

      break;
    }
  }

  // Handle linkage for namespace-scope names.
  if (D->getDeclContext()->getRedeclContext()->isFileContext())
    return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);

  // C++ [basic.link]p5:
  //   In addition, a member function, static data member, a named
  //   class or enumeration of class scope, or an unnamed class or
  //   enumeration defined in a class-scope typedef declaration such
  //   that the class or enumeration has the typedef name for linkage
  //   purposes (7.1.3), has external linkage if the name of the class
  //   has external linkage.
  if (D->getDeclContext()->isRecord())
    return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);

  // C++ [basic.link]p6:
  //   The name of a function declared in block scope and the name of
  //   an object declared by a block scope extern declaration have
  //   linkage. If there is a visible declaration of an entity with
  //   linkage having the same name and type, ignoring entities
  //   declared outside the innermost enclosing namespace scope, the
  //   block scope declaration declares that same entity and receives
  //   the linkage of the previous declaration. If there is more than
  //   one such matching entity, the program is ill-formed. Otherwise,
  //   if no matching entity is found, the block scope entity receives
  //   external linkage.
  if (D->getDeclContext()->isFunctionOrMethod())
    return getLVForLocalDecl(D, computation);

  // C++ [basic.link]p6:
  //   Names not covered by these rules have no linkage.
  return LinkageInfo::none();
}

/// getLVForDecl - Get the linkage and visibility for the given declaration.
LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
                                          LVComputationKind computation) {
  // Internal_linkage attribute overrides other considerations.
  if (D->hasAttr<InternalLinkageAttr>())
    return getInternalLinkageFor(D);

  if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
    return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);

  if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
    return *LI;

  LinkageInfo LV = computeLVForDecl(D, computation);
  if (D->hasCachedLinkage())
    assert(D->getCachedLinkage() == LV.getLinkage());

  D->setCachedLinkage(LV.getLinkage());
  cache(D, computation, LV);

#ifndef NDEBUG
  // In C (because of gnu inline) and in c++ with microsoft extensions an
  // static can follow an extern, so we can have two decls with different
  // linkages.
  const LangOptions &Opts = D->getASTContext().getLangOpts();
  if (!Opts.CPlusPlus || Opts.MicrosoftExt)
    return LV;

  // We have just computed the linkage for this decl. By induction we know
  // that all other computed linkages match, check that the one we just
  // computed also does.
  NamedDecl *Old = nullptr;
  for (auto I : D->redecls()) {
    auto *T = cast<NamedDecl>(I);
    if (T == D)
      continue;
    if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
      Old = T;
      break;
    }
  }
  assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
#endif

  return LV;
}

LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
  return getLVForDecl(D,
                      LVComputationKind(usesTypeVisibility(D)
                                            ? NamedDecl::VisibilityForType
                                            : NamedDecl::VisibilityForValue));
}

Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
  Module *M = getOwningModule();
  if (!M)
    return nullptr;

  switch (M->Kind) {
  case Module::ModuleMapModule:
    // Module map modules have no special linkage semantics.
    return nullptr;

  case Module::ModuleInterfaceUnit:
    return M;

  case Module::GlobalModuleFragment: {
    // External linkage declarations in the global module have no owning module
    // for linkage purposes. But internal linkage declarations in the global
    // module fragment of a particular module are owned by that module for
    // linkage purposes.
    if (IgnoreLinkage)
      return nullptr;
    bool InternalLinkage;
    if (auto *ND = dyn_cast<NamedDecl>(this))
      InternalLinkage = !ND->hasExternalFormalLinkage();
    else {
      auto *NSD = dyn_cast<NamespaceDecl>(this);
      InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
                        isInAnonymousNamespace();
    }
    return InternalLinkage ? M->Parent : nullptr;
  }

  case Module::PrivateModuleFragment:
    // The private module fragment is part of its containing module for linkage
    // purposes.
    return M->Parent;
  }

  llvm_unreachable("unknown module kind");
}

void NamedDecl::printName(raw_ostream &os) const {
  os << Name;
}

std::string NamedDecl::getQualifiedNameAsString() const {
  std::string QualName;
  llvm::raw_string_ostream OS(QualName);
  printQualifiedName(OS, getASTContext().getPrintingPolicy());
  return OS.str();
}

void NamedDecl::printQualifiedName(raw_ostream &OS) const {
  printQualifiedName(OS, getASTContext().getPrintingPolicy());
}

void NamedDecl::printQualifiedName(raw_ostream &OS,
                                   const PrintingPolicy &P) const {
  if (getDeclContext()->isFunctionOrMethod()) {
    // We do not print '(anonymous)' for function parameters without name.
    printName(OS);
    return;
  }
  printNestedNameSpecifier(OS, P);
  if (getDeclName())
    OS << *this;
  else {
    // Give the printName override a chance to pick a different name before we
    // fall back to "(anonymous)".
    SmallString<64> NameBuffer;
    llvm::raw_svector_ostream NameOS(NameBuffer);
    printName(NameOS);
    if (NameBuffer.empty())
      OS << "(anonymous)";
    else
      OS << NameBuffer;
  }
}

void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
  printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
}

void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
                                         const PrintingPolicy &P) const {
  const DeclContext *Ctx = getDeclContext();

  // For ObjC methods and properties, look through categories and use the
  // interface as context.
  if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) {
    if (auto *ID = MD->getClassInterface())
      Ctx = ID;
  } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
    if (auto *MD = PD->getGetterMethodDecl())
      if (auto *ID = MD->getClassInterface())
        Ctx = ID;
  } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) {
    if (auto *CI = ID->getContainingInterface())
      Ctx = CI;
  }

  if (Ctx->isFunctionOrMethod())
    return;

  using ContextsTy = SmallVector<const DeclContext *, 8>;
  ContextsTy Contexts;

  // Collect named contexts.
  while (Ctx) {
    if (isa<NamedDecl>(Ctx))
      Contexts.push_back(Ctx);
    Ctx = Ctx->getParent();
  }

  for (const DeclContext *DC : llvm::reverse(Contexts)) {
    if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
      OS << Spec->getName();
      const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
      printTemplateArgumentList(OS, TemplateArgs.asArray(), P);
    } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
      if (P.SuppressUnwrittenScope &&
          (ND->isAnonymousNamespace() || ND->isInline()))
        continue;
      if (ND->isAnonymousNamespace()) {
        OS << (P.MSVCFormatting ? "`anonymous namespace\'"
                                : "(anonymous namespace)");
      }
      else
        OS << *ND;
    } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
      if (!RD->getIdentifier())
        OS << "(anonymous " << RD->getKindName() << ')';
      else
        OS << *RD;
    } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
      const FunctionProtoType *FT = nullptr;
      if (FD->hasWrittenPrototype())
        FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());

      OS << *FD << '(';
      if (FT) {
        unsigned NumParams = FD->getNumParams();
        for (unsigned i = 0; i < NumParams; ++i) {
          if (i)
            OS << ", ";
          OS << FD->getParamDecl(i)->getType().stream(P);
        }

        if (FT->isVariadic()) {
          if (NumParams > 0)
            OS << ", ";
          OS << "...";
        }
      }
      OS << ')';
    } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
      // C++ [dcl.enum]p10: Each enum-name and each unscoped
      // enumerator is declared in the scope that immediately contains
      // the enum-specifier. Each scoped enumerator is declared in the
      // scope of the enumeration.
      // For the case of unscoped enumerator, do not include in the qualified
      // name any information about its enum enclosing scope, as its visibility
      // is global.
      if (ED->isScoped())
        OS << *ED;
      else
        continue;
    } else {
      OS << *cast<NamedDecl>(DC);
    }
    OS << "::";
  }
}

void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
                                     const PrintingPolicy &Policy,
                                     bool Qualified) const {
  if (Qualified)
    printQualifiedName(OS, Policy);
  else
    printName(OS);
}

template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
  return true;
}
static bool isRedeclarableImpl(...) { return false; }
static bool isRedeclarable(Decl::Kind K) {
  switch (K) {
#define DECL(Type, Base) \
  case Decl::Type: \
    return isRedeclarableImpl((Type##Decl *)nullptr);
#define ABSTRACT_DECL(DECL)
#include "clang/AST/DeclNodes.inc"
  }
  llvm_unreachable("unknown decl kind");
}

bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
  assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");

  // Never replace one imported declaration with another; we need both results
  // when re-exporting.
  if (OldD->isFromASTFile() && isFromASTFile())
    return false;

  // A kind mismatch implies that the declaration is not replaced.
  if (OldD->getKind() != getKind())
    return false;

  // For method declarations, we never replace. (Why?)
  if (isa<ObjCMethodDecl>(this))
    return false;

  // For parameters, pick the newer one. This is either an error or (in
  // Objective-C) permitted as an extension.
  if (isa<ParmVarDecl>(this))
    return true;

  // Inline namespaces can give us two declarations with the same
  // name and kind in the same scope but different contexts; we should
  // keep both declarations in this case.
  if (!this->getDeclContext()->getRedeclContext()->Equals(
          OldD->getDeclContext()->getRedeclContext()))
    return false;

  // Using declarations can be replaced if they import the same name from the
  // same context.
  if (auto *UD = dyn_cast<UsingDecl>(this)) {
    ASTContext &Context = getASTContext();
    return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
           Context.getCanonicalNestedNameSpecifier(
               cast<UsingDecl>(OldD)->getQualifier());
  }
  if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
    ASTContext &Context = getASTContext();
    return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
           Context.getCanonicalNestedNameSpecifier(
                        cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
  }

  if (isRedeclarable(getKind())) {
    if (getCanonicalDecl() != OldD->getCanonicalDecl())
      return false;

    if (IsKnownNewer)
      return true;

    // Check whether this is actually newer than OldD. We want to keep the
    // newer declaration. This loop will usually only iterate once, because
    // OldD is usually the previous declaration.
    for (auto D : redecls()) {
      if (D == OldD)
        break;

      // If we reach the canonical declaration, then OldD is not actually older
      // than this one.
      //
      // FIXME: In this case, we should not add this decl to the lookup table.
      if (D->isCanonicalDecl())
        return false;
    }

    // It's a newer declaration of the same kind of declaration in the same
    // scope: we want this decl instead of the existing one.
    return true;
  }

  // In all other cases, we need to keep both declarations in case they have
  // different visibility. Any attempt to use the name will result in an
  // ambiguity if more than one is visible.
  return false;
}

bool NamedDecl::hasLinkage() const {
  return getFormalLinkage() != NoLinkage;
}

NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
  NamedDecl *ND = this;
  while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
    ND = UD->getTargetDecl();

  if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
    return AD->getClassInterface();

  if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
    return AD->getNamespace();

  return ND;
}

bool NamedDecl::isCXXInstanceMember() const {
  if (!isCXXClassMember())
    return false;

  const NamedDecl *D = this;
  if (isa<UsingShadowDecl>(D))
    D = cast<UsingShadowDecl>(D)->getTargetDecl();

  if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
    return true;
  if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
    return MD->isInstance();
  return false;
}

//===----------------------------------------------------------------------===//
// DeclaratorDecl Implementation
//===----------------------------------------------------------------------===//

template <typename DeclT>
static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
  if (decl->getNumTemplateParameterLists() > 0)
    return decl->getTemplateParameterList(0)->getTemplateLoc();
  else
    return decl->getInnerLocStart();
}

SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
  TypeSourceInfo *TSI = getTypeSourceInfo();
  if (TSI) return TSI->getTypeLoc().getBeginLoc();
  return SourceLocation();
}

SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
  TypeSourceInfo *TSI = getTypeSourceInfo();
  if (TSI) return TSI->getTypeLoc().getEndLoc();
  return SourceLocation();
}

void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
  if (QualifierLoc) {
    // Make sure the extended decl info is allocated.
    if (!hasExtInfo()) {
      // Save (non-extended) type source info pointer.
      auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
      // Allocate external info struct.
      DeclInfo = new (getASTContext()) ExtInfo;
      // Restore savedTInfo into (extended) decl info.
      getExtInfo()->TInfo = savedTInfo;
    }
    // Set qualifier info.
    getExtInfo()->QualifierLoc = QualifierLoc;
  } else if (hasExtInfo()) {
    // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
    getExtInfo()->QualifierLoc = QualifierLoc;
  }
}

void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
  assert(TrailingRequiresClause);
  // Make sure the extended decl info is allocated.
  if (!hasExtInfo()) {
    // Save (non-extended) type source info pointer.
    auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
    // Allocate external info struct.
    DeclInfo = new (getASTContext()) ExtInfo;
    // Restore savedTInfo into (extended) decl info.
    getExtInfo()->TInfo = savedTInfo;
  }
  // Set requires clause info.
  getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
}

void DeclaratorDecl::setTemplateParameterListsInfo(
    ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
  assert(!TPLists.empty());
  // Make sure the extended decl info is allocated.
  if (!hasExtInfo()) {
    // Save (non-extended) type source info pointer.
    auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
    // Allocate external info struct.
    DeclInfo = new (getASTContext()) ExtInfo;
    // Restore savedTInfo into (extended) decl info.
    getExtInfo()->TInfo = savedTInfo;
  }
  // Set the template parameter lists info.
  getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
}

SourceLocation DeclaratorDecl::getOuterLocStart() const {
  return getTemplateOrInnerLocStart(this);
}

// Helper function: returns true if QT is or contains a type
// having a postfix component.
static bool typeIsPostfix(QualType QT) {
  while (true) {
    const Type* T = QT.getTypePtr();
    switch (T->getTypeClass()) {
    default:
      return false;
    case Type::Pointer:
      QT = cast<PointerType>(T)->getPointeeType();
      break;
    case Type::BlockPointer:
      QT = cast<BlockPointerType>(T)->getPointeeType();
      break;
    case Type::MemberPointer:
      QT = cast<MemberPointerType>(T)->getPointeeType();
      break;
    case Type::LValueReference:
    case Type::RValueReference:
      QT = cast<ReferenceType>(T)->getPointeeType();
      break;
    case Type::PackExpansion:
      QT = cast<PackExpansionType>(T)->getPattern();
      break;
    case Type::Paren:
    case Type::ConstantArray:
    case Type::DependentSizedArray:
    case Type::IncompleteArray:
    case Type::VariableArray:
    case Type::FunctionProto:
    case Type::FunctionNoProto:
      return true;
    }
  }
}

SourceRange DeclaratorDecl::getSourceRange() const {
  SourceLocation RangeEnd = getLocation();
  if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
    // If the declaration has no name or the type extends past the name take the
    // end location of the type.
    if (!getDeclName() || typeIsPostfix(TInfo->getType()))
      RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
  }
  return SourceRange(getOuterLocStart(), RangeEnd);
}

void QualifierInfo::setTemplateParameterListsInfo(
    ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
  // Free previous template parameters (if any).
  if (NumTemplParamLists > 0) {
    Context.Deallocate(TemplParamLists);
    TemplParamLists = nullptr;
    NumTemplParamLists = 0;
  }
  // Set info on matched template parameter lists (if any).
  if (!TPLists.empty()) {
    TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
    NumTemplParamLists = TPLists.size();
    std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
  }
}

//===----------------------------------------------------------------------===//
// VarDecl Implementation
//===----------------------------------------------------------------------===//

const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
  switch (SC) {
  case SC_None:                 break;
  case SC_Auto:                 return "auto";
  case SC_Extern:               return "extern";
  case SC_PrivateExtern:        return "__private_extern__";
  case SC_Register:             return "register";
  case SC_Static:               return "static";
  }

  llvm_unreachable("Invalid storage class");
}

VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
                 SourceLocation StartLoc, SourceLocation IdLoc,
                 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
                 StorageClass SC)
    : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
      redeclarable_base(C) {
  static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
                "VarDeclBitfields too large!");
  static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
                "ParmVarDeclBitfields too large!");
  static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
                "NonParmVarDeclBitfields too large!");
  AllBits = 0;
  VarDeclBits.SClass = SC;
  // Everything else is implicitly initialized to false.
}

VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
                         SourceLocation StartL, SourceLocation IdL,
                         IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
                         StorageClass S) {
  return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
}

VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
  return new (C, ID)
      VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
              QualType(), nullptr, SC_None);
}

void VarDecl::setStorageClass(StorageClass SC) {
  assert(isLegalForVariable(SC));
  VarDeclBits.SClass = SC;
}

VarDecl::TLSKind VarDecl::getTLSKind() const {
  switch (VarDeclBits.TSCSpec) {
  case TSCS_unspecified:
    if (!hasAttr<ThreadAttr>() &&
        !(getASTContext().getLangOpts().OpenMPUseTLS &&
          getASTContext().getTargetInfo().isTLSSupported() &&
          hasAttr<OMPThreadPrivateDeclAttr>()))
      return TLS_None;
    return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
                LangOptions::MSVC2015)) ||
            hasAttr<OMPThreadPrivateDeclAttr>())
               ? TLS_Dynamic
               : TLS_Static;
  case TSCS___thread: // Fall through.
  case TSCS__Thread_local:
    return TLS_Static;
  case TSCS_thread_local:
    return TLS_Dynamic;
  }
  llvm_unreachable("Unknown thread storage class specifier!");
}

SourceRange VarDecl::getSourceRange() const {
  if (const Expr *Init = getInit()) {
    SourceLocation InitEnd = Init->getEndLoc();
    // If Init is implicit, ignore its source range and fallback on
    // DeclaratorDecl::getSourceRange() to handle postfix elements.
    if (InitEnd.isValid() && InitEnd != getLocation())
      return SourceRange(getOuterLocStart(), InitEnd);
  }
  return DeclaratorDecl::getSourceRange();
}

template<typename T>
static LanguageLinkage getDeclLanguageLinkage(const T &D) {
  // C++ [dcl.link]p1: All function types, function names with external linkage,
  // and variable names with external linkage have a language linkage.
  if (!D.hasExternalFormalLinkage())
    return NoLanguageLinkage;

  // Language linkage is a C++ concept, but saying that everything else in C has
  // C language linkage fits the implementation nicely.
  ASTContext &Context = D.getASTContext();
  if (!Context.getLangOpts().CPlusPlus)
    return CLanguageLinkage;

  // C++ [dcl.link]p4: A C language linkage is ignored in determining the
  // language linkage of the names of class members and the function type of
  // class member functions.
  const DeclContext *DC = D.getDeclContext();
  if (DC->isRecord())
    return CXXLanguageLinkage;

  // If the first decl is in an extern "C" context, any other redeclaration
  // will have C language linkage. If the first one is not in an extern "C"
  // context, we would have reported an error for any other decl being in one.
  if (isFirstInExternCContext(&D))
    return CLanguageLinkage;
  return CXXLanguageLinkage;
}

template<typename T>
static bool isDeclExternC(const T &D) {
  // Since the context is ignored for class members, they can only have C++
  // language linkage or no language linkage.
  const DeclContext *DC = D.getDeclContext();
  if (DC->isRecord()) {
    assert(D.getASTContext().getLangOpts().CPlusPlus);
    return false;
  }

  return D.getLanguageLinkage() == CLanguageLinkage;
}

LanguageLinkage VarDecl::getLanguageLinkage() const {
  return getDeclLanguageLinkage(*this);
}

bool VarDecl::isExternC() const {
  return isDeclExternC(*this);
}

bool VarDecl::isInExternCContext() const {
  return getLexicalDeclContext()->isExternCContext();
}

bool VarDecl::isInExternCXXContext() const {
  return getLexicalDeclContext()->isExternCXXContext();
}

VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }

VarDecl::DefinitionKind
VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
  if (isThisDeclarationADemotedDefinition())
    return DeclarationOnly;

  // C++ [basic.def]p2:
  //   A declaration is a definition unless [...] it contains the 'extern'
  //   specifier or a linkage-specification and neither an initializer [...],
  //   it declares a non-inline static data member in a class declaration [...],
  //   it declares a static data member outside a class definition and the variable
  //   was defined within the class with the constexpr specifier [...],
  // C++1y [temp.expl.spec]p15:
  //   An explicit specialization of a static data member or an explicit
  //   specialization of a static data member template is a definition if the
  //   declaration includes an initializer; otherwise, it is a declaration.
  //
  // FIXME: How do you declare (but not define) a partial specialization of
  // a static data member template outside the containing class?
  if (isStaticDataMember()) {
    if (isOutOfLine() &&
        !(getCanonicalDecl()->isInline() &&
          getCanonicalDecl()->isConstexpr()) &&
        (hasInit() ||
         // If the first declaration is out-of-line, this may be an
         // instantiation of an out-of-line partial specialization of a variable
         // template for which we have not yet instantiated the initializer.
         (getFirstDecl()->isOutOfLine()
              ? getTemplateSpecializationKind() == TSK_Undeclared
              : getTemplateSpecializationKind() !=
                    TSK_ExplicitSpecialization) ||
         isa<VarTemplatePartialSpecializationDecl>(this)))
      return Definition;
    else if (!isOutOfLine() && isInline())
      return Definition;
    else
      return DeclarationOnly;
  }
  // C99 6.7p5:
  //   A definition of an identifier is a declaration for that identifier that
  //   [...] causes storage to be reserved for that object.
  // Note: that applies for all non-file-scope objects.
  // C99 6.9.2p1:
  //   If the declaration of an identifier for an object has file scope and an
  //   initializer, the declaration is an external definition for the identifier
  if (hasInit())
    return Definition;

  if (hasDefiningAttr())
    return Definition;

  if (const auto *SAA = getAttr<SelectAnyAttr>())
    if (!SAA->isInherited())
      return Definition;

  // A variable template specialization (other than a static data member
  // template or an explicit specialization) is a declaration until we
  // instantiate its initializer.
  if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
    if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
        !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
        !VTSD->IsCompleteDefinition)
      return DeclarationOnly;
  }

  if (hasExternalStorage())
    return DeclarationOnly;

  // [dcl.link] p7:
  //   A declaration directly contained in a linkage-specification is treated
  //   as if it contains the extern specifier for the purpose of determining
  //   the linkage of the declared name and whether it is a definition.
  if (isSingleLineLanguageLinkage(*this))
    return DeclarationOnly;

  // C99 6.9.2p2:
  //   A declaration of an object that has file scope without an initializer,
  //   and without a storage class specifier or the scs 'static', constitutes
  //   a tentative definition.
  // No such thing in C++.
  if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
    return TentativeDefinition;

  // What's left is (in C, block-scope) declarations without initializers or
  // external storage. These are definitions.
  return Definition;
}

VarDecl *VarDecl::getActingDefinition() {
  DefinitionKind Kind = isThisDeclarationADefinition();
  if (Kind != TentativeDefinition)
    return nullptr;

  VarDecl *LastTentative = nullptr;
  VarDecl *First = getFirstDecl();
  for (auto I : First->redecls()) {
    Kind = I->isThisDeclarationADefinition();
    if (Kind == Definition)
      return nullptr;
    else if (Kind == TentativeDefinition)
      LastTentative = I;
  }
  return LastTentative;
}

VarDecl *VarDecl::getDefinition(ASTContext &C) {
  VarDecl *First = getFirstDecl();
  for (auto I : First->redecls()) {
    if (I->isThisDeclarationADefinition(C) == Definition)
      return I;
  }
  return nullptr;
}

VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
  DefinitionKind Kind = DeclarationOnly;

  const VarDecl *First = getFirstDecl();
  for (auto I : First->redecls()) {
    Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
    if (Kind == Definition)
      break;
  }

  return Kind;
}

const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
  for (auto I : redecls()) {
    if (auto Expr = I->getInit()) {
      D = I;
      return Expr;
    }
  }
  return nullptr;
}

bool VarDecl::hasInit() const {
  if (auto *P = dyn_cast<ParmVarDecl>(this))
    if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
      return false;

  return !Init.isNull();
}

Expr *VarDecl::getInit() {
  if (!hasInit())
    return nullptr;

  if (auto *S = Init.dyn_cast<Stmt *>())
    return cast<Expr>(S);

  return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
}

Stmt **VarDecl::getInitAddress() {
  if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
    return &ES->Value;

  return Init.getAddrOfPtr1();
}

VarDecl *VarDecl::getInitializingDeclaration() {
  VarDecl *Def = nullptr;
  for (auto I : redecls()) {
    if (I->hasInit())
      return I;

    if (I->isThisDeclarationADefinition()) {
      if (isStaticDataMember())
        return I;
      else
        Def = I;
    }
  }
  return Def;
}

bool VarDecl::isOutOfLine() const {
  if (Decl::isOutOfLine())
    return true;

  if (!isStaticDataMember())
    return false;

  // If this static data member was instantiated from a static data member of
  // a class template, check whether that static data member was defined
  // out-of-line.
  if (VarDecl *VD = getInstantiatedFromStaticDataMember())
    return VD->isOutOfLine();

  return false;
}

void VarDecl::setInit(Expr *I) {
  if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
    Eval->~EvaluatedStmt();
    getASTContext().Deallocate(Eval);
  }

  Init = I;
}

bool VarDecl::mightBeUsableInConstantExpressions(ASTContext &C) const {
  const LangOptions &Lang = C.getLangOpts();

  if (!Lang.CPlusPlus)
    return false;

  // Function parameters are never usable in constant expressions.
  if (isa<ParmVarDecl>(this))
    return false;

  // The values of weak variables are never usable in constant expressions.
  if (isWeak())
    return false;

  // In C++11, any variable of reference type can be used in a constant
  // expression if it is initialized by a constant expression.
  if (Lang.CPlusPlus11 && getType()->isReferenceType())
    return true;

  // Only const objects can be used in constant expressions in C++. C++98 does
  // not require the variable to be non-volatile, but we consider this to be a
  // defect.
  if (!getType().isConstQualified() || getType().isVolatileQualified())
    return false;

  // In C++, const, non-volatile variables of integral or enumeration types
  // can be used in constant expressions.
  if (getType()->isIntegralOrEnumerationType())
    return true;

  // Additionally, in C++11, non-volatile constexpr variables can be used in
  // constant expressions.
  return Lang.CPlusPlus11 && isConstexpr();
}

bool VarDecl::isUsableInConstantExpressions(ASTContext &Context) const {
  // C++2a [expr.const]p3:
  //   A variable is usable in constant expressions after its initializing
  //   declaration is encountered...
  const VarDecl *DefVD = nullptr;
  const Expr *Init = getAnyInitializer(DefVD);
  if (!Init || Init->isValueDependent() || getType()->isDependentType())
    return false;
  //   ... if it is a constexpr variable, or it is of reference type or of
  //   const-qualified integral or enumeration type, ...
  if (!DefVD->mightBeUsableInConstantExpressions(Context))
    return false;
  //   ... and its initializer is a constant initializer.
  return DefVD->checkInitIsICE();
}

/// Convert the initializer for this declaration to the elaborated EvaluatedStmt
/// form, which contains extra information on the evaluated value of the
/// initializer.
EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
  auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
  if (!Eval) {
    // Note: EvaluatedStmt contains an APValue, which usually holds
    // resources not allocated from the ASTContext.  We need to do some
    // work to avoid leaking those, but we do so in VarDecl::evaluateValue
    // where we can detect whether there's anything to clean up or not.
    Eval = new (getASTContext()) EvaluatedStmt;
    Eval->Value = Init.get<Stmt *>();
    Init = Eval;
  }
  return Eval;
}

APValue *VarDecl::evaluateValue() const {
  SmallVector<PartialDiagnosticAt, 8> Notes;
  return evaluateValue(Notes);
}

APValue *VarDecl::evaluateValue(
    SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
  EvaluatedStmt *Eval = ensureEvaluatedStmt();

  // We only produce notes indicating why an initializer is non-constant the
  // first time it is evaluated. FIXME: The notes won't always be emitted the
  // first time we try evaluation, so might not be produced at all.
  if (Eval->WasEvaluated)
    return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;

  const auto *Init = cast<Expr>(Eval->Value);
  assert(!Init->isValueDependent());

  if (Eval->IsEvaluating) {
    // FIXME: Produce a diagnostic for self-initialization.
    Eval->CheckedICE = true;
    Eval->IsICE = false;
    return nullptr;
  }

  Eval->IsEvaluating = true;

  bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
                                            this, Notes);

  // Ensure the computed APValue is cleaned up later if evaluation succeeded,
  // or that it's empty (so that there's nothing to clean up) if evaluation
  // failed.
  if (!Result)
    Eval->Evaluated = APValue();
  else if (Eval->Evaluated.needsCleanup())
    getASTContext().addDestruction(&Eval->Evaluated);

  Eval->IsEvaluating = false;
  Eval->WasEvaluated = true;

  // In C++11, we have determined whether the initializer was a constant
  // expression as a side-effect.
  if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
    Eval->CheckedICE = true;
    Eval->IsICE = Result && Notes.empty();
  }

  return Result ? &Eval->Evaluated : nullptr;
}

APValue *VarDecl::getEvaluatedValue() const {
  if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
    if (Eval->WasEvaluated)
      return &Eval->Evaluated;

  return nullptr;
}

bool VarDecl::isInitKnownICE() const {
  if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
    return Eval->CheckedICE;

  return false;
}

bool VarDecl::isInitICE() const {
  assert(isInitKnownICE() &&
         "Check whether we already know that the initializer is an ICE");
  return Init.get<EvaluatedStmt *>()->IsICE;
}

bool VarDecl::checkInitIsICE() const {
  EvaluatedStmt *Eval = ensureEvaluatedStmt();
  if (Eval->CheckedICE)
    // We have already checked whether this subexpression is an
    // integral constant expression.
    return Eval->IsICE;

  const auto *Init = cast<Expr>(Eval->Value);
  assert(!Init->isValueDependent());

  // In C++11, evaluate the initializer to check whether it's a constant
  // expression.
  if (getASTContext().getLangOpts().CPlusPlus11) {
    SmallVector<PartialDiagnosticAt, 8> Notes;
    evaluateValue(Notes);
    return Eval->IsICE;
  }

  // It's an ICE whether or not the definition we found is
  // out-of-line.  See DR 721 and the discussion in Clang PR
  // 6206 for details.

  if (Eval->CheckingICE)
    return false;
  Eval->CheckingICE = true;

  Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
  Eval->CheckingICE = false;
  Eval->CheckedICE = true;
  return Eval->IsICE;
}

bool VarDecl::isParameterPack() const {
  return isa<PackExpansionType>(getType());
}

template<typename DeclT>
static DeclT *getDefinitionOrSelf(DeclT *D) {
  assert(D);
  if (auto *Def = D->getDefinition())
    return Def;
  return D;
}

bool VarDecl::isEscapingByref() const {
  return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
}

bool VarDecl::isNonEscapingByref() const {
  return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
}

VarDecl *VarDecl::getTemplateInstantiationPattern() const {
  const VarDecl *VD = this;

  // If this is an instantiated member, walk back to the template from which
  // it was instantiated.
  if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
    if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
      VD = VD->getInstantiatedFromStaticDataMember();
      while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
        VD = NewVD;
    }
  }

  // If it's an instantiated variable template specialization, find the
  // template or partial specialization from which it was instantiated.
  if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
    if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
      auto From = VDTemplSpec->getInstantiatedFrom();
      if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
        while (!VTD->isMemberSpecialization()) {
          auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
          if (!NewVTD)
            break;
          VTD = NewVTD;
        }
        return getDefinitionOrSelf(VTD->getTemplatedDecl());
      }
      if (auto *VTPSD =
              From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
        while (!VTPSD->isMemberSpecialization()) {
          auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
          if (!NewVTPSD)
            break;
          VTPSD = NewVTPSD;
        }
        return getDefinitionOrSelf<VarDecl>(VTPSD);
      }
    }
  }

  // If this is the pattern of a variable template, find where it was
  // instantiated from. FIXME: Is this necessary?
  if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
    while (!VarTemplate->isMemberSpecialization()) {
      auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
      if (!NewVT)
        break;
      VarTemplate = NewVT;
    }

    return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
  }

  if (VD == this)
    return nullptr;
  return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
}

VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
  if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
    return cast<VarDecl>(MSI->getInstantiatedFrom());

  return nullptr;
}

TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
  if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
    return Spec->getSpecializationKind();

  if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
    return MSI->getTemplateSpecializationKind();

  return TSK_Undeclared;
}

TemplateSpecializationKind
VarDecl::getTemplateSpecializationKindForInstantiation() const {
  if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
    return MSI->getTemplateSpecializationKind();

  if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
    return Spec->getSpecializationKind();

  return TSK_Undeclared;
}

SourceLocation VarDecl::getPointOfInstantiation() const {
  if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
    return Spec->getPointOfInstantiation();

  if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
    return MSI->getPointOfInstantiation();

  return SourceLocation();
}

VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
  return getASTContext().getTemplateOrSpecializationInfo(this)
      .dyn_cast<VarTemplateDecl *>();
}

void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
  getASTContext().setTemplateOrSpecializationInfo(this, Template);
}

bool VarDecl::isKnownToBeDefined() const {
  const auto &LangOpts = getASTContext().getLangOpts();
  // In CUDA mode without relocatable device code, variables of form 'extern
  // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
  // memory pool.  These are never undefined variables, even if they appear
  // inside of an anon namespace or static function.
  //
  // With CUDA relocatable device code enabled, these variables don't get
  // special handling; they're treated like regular extern variables.
  if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
      hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
      isa<IncompleteArrayType>(getType()))
    return true;

  return hasDefinition();
}

bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
  return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
                                (!Ctx.getLangOpts().RegisterStaticDestructors &&
                                 !hasAttr<AlwaysDestroyAttr>()));
}

QualType::DestructionKind
VarDecl::needsDestruction(const ASTContext &Ctx) const {
  if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
    if (Eval->HasConstantDestruction)
      return QualType::DK_none;

  if (isNoDestroy(Ctx))
    return QualType::DK_none;

  return getType().isDestructedType();
}

MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
  if (isStaticDataMember())
    // FIXME: Remove ?
    // return getASTContext().getInstantiatedFromStaticDataMember(this);
    return getASTContext().getTemplateOrSpecializationInfo(this)
        .dyn_cast<MemberSpecializationInfo *>();
  return nullptr;
}

void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
                                         SourceLocation PointOfInstantiation) {
  assert((isa<VarTemplateSpecializationDecl>(this) ||
          getMemberSpecializationInfo()) &&
         "not a variable or static data member template specialization");

  if (VarTemplateSpecializationDecl *Spec =
          dyn_cast<VarTemplateSpecializationDecl>(this)) {
    Spec->setSpecializationKind(TSK);
    if (TSK != TSK_ExplicitSpecialization &&
        PointOfInstantiation.isValid() &&
        Spec->getPointOfInstantiation().isInvalid()) {
      Spec->setPointOfInstantiation(PointOfInstantiation);
      if (ASTMutationListener *L = getASTContext().getASTMutationListener())
        L->InstantiationRequested(this);
    }
  } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
    MSI->setTemplateSpecializationKind(TSK);
    if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
        MSI->getPointOfInstantiation().isInvalid()) {
      MSI->setPointOfInstantiation(PointOfInstantiation);
      if (ASTMutationListener *L = getASTContext().getASTMutationListener())
        L->InstantiationRequested(this);
    }
  }
}

void
VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
                                            TemplateSpecializationKind TSK) {
  assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
         "Previous template or instantiation?");
  getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
}

//===----------------------------------------------------------------------===//
// ParmVarDecl Implementation
//===----------------------------------------------------------------------===//

ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
                                 SourceLocation StartLoc,
                                 SourceLocation IdLoc, IdentifierInfo *Id,
                                 QualType T, TypeSourceInfo *TInfo,
                                 StorageClass S, Expr *DefArg) {
  return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
                                 S, DefArg);
}

QualType ParmVarDecl::getOriginalType() const {
  TypeSourceInfo *TSI = getTypeSourceInfo();
  QualType T = TSI ? TSI->getType() : getType();
  if (const auto *DT = dyn_cast<DecayedType>(T))
    return DT->getOriginalType();
  return T;
}

ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
  return new (C, ID)
      ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
                  nullptr, QualType(), nullptr, SC_None, nullptr);
}

SourceRange ParmVarDecl::getSourceRange() const {
  if (!hasInheritedDefaultArg()) {
    SourceRange ArgRange = getDefaultArgRange();
    if (ArgRange.isValid())
      return SourceRange(getOuterLocStart(), ArgRange.getEnd());
  }

  // DeclaratorDecl considers the range of postfix types as overlapping with the
  // declaration name, but this is not the case with parameters in ObjC methods.
  if (isa<ObjCMethodDecl>(getDeclContext()))
    return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());

  return DeclaratorDecl::getSourceRange();
}

Expr *ParmVarDecl::getDefaultArg() {
  assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
  assert(!hasUninstantiatedDefaultArg() &&
         "Default argument is not yet instantiated!");

  Expr *Arg = getInit();
  if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
    return E->getSubExpr();

  return Arg;
}

void ParmVarDecl::setDefaultArg(Expr *defarg) {
  ParmVarDeclBits.DefaultArgKind = DAK_Normal;
  Init = defarg;
}

SourceRange ParmVarDecl::getDefaultArgRange() const {
  switch (ParmVarDeclBits.DefaultArgKind) {
  case DAK_None:
  case DAK_Unparsed:
    // Nothing we can do here.
    return SourceRange();

  case DAK_Uninstantiated:
    return getUninstantiatedDefaultArg()->getSourceRange();

  case DAK_Normal:
    if (const Expr *E = getInit())
      return E->getSourceRange();

    // Missing an actual expression, may be invalid.
    return SourceRange();
  }
  llvm_unreachable("Invalid default argument kind.");
}

void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
  ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
  Init = arg;
}

Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
  assert(hasUninstantiatedDefaultArg() &&
         "Wrong kind of initialization expression!");
  return cast_or_null<Expr>(Init.get<Stmt *>());
}

bool ParmVarDecl::hasDefaultArg() const {
  // FIXME: We should just return false for DAK_None here once callers are
  // prepared for the case that we encountered an invalid default argument and
  // were unable to even build an invalid expression.
  return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
         !Init.isNull();
}

void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
  getASTContext().setParameterIndex(this, parameterIndex);
  ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
}

unsigned ParmVarDecl::getParameterIndexLarge() const {
  return getASTContext().getParameterIndex(this);
}

//===----------------------------------------------------------------------===//
// FunctionDecl Implementation
//===----------------------------------------------------------------------===//

FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
                           SourceLocation StartLoc,
                           const DeclarationNameInfo &NameInfo, QualType T,
                           TypeSourceInfo *TInfo, StorageClass S,
                           bool isInlineSpecified,
                           ConstexprSpecKind ConstexprKind,
                           Expr *TrailingRequiresClause)
    : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
                     StartLoc),
      DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
      EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
  assert(T.isNull() || T->isFunctionType());
  FunctionDeclBits.SClass = S;
  FunctionDeclBits.IsInline = isInlineSpecified;
  FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
  FunctionDeclBits.IsVirtualAsWritten = false;
  FunctionDeclBits.IsPure = false;
  FunctionDeclBits.HasInheritedPrototype = false;
  FunctionDeclBits.HasWrittenPrototype = true;
  FunctionDeclBits.IsDeleted = false;
  FunctionDeclBits.IsTrivial = false;
  FunctionDeclBits.IsTrivialForCall = false;
  FunctionDeclBits.IsDefaulted = false;
  FunctionDeclBits.IsExplicitlyDefaulted = false;
  FunctionDeclBits.HasDefaultedFunctionInfo = false;
  FunctionDeclBits.HasImplicitReturnZero = false;
  FunctionDeclBits.IsLateTemplateParsed = false;
  FunctionDeclBits.ConstexprKind = ConstexprKind;
  FunctionDeclBits.InstantiationIsPending = false;
  FunctionDeclBits.UsesSEHTry = false;
  FunctionDeclBits.UsesFPIntrin = false;
  FunctionDeclBits.HasSkippedBody = false;
  FunctionDeclBits.WillHaveBody = false;
  FunctionDeclBits.IsMultiVersion = false;
  FunctionDeclBits.IsCopyDeductionCandidate = false;
  FunctionDeclBits.HasODRHash = false;
  if (TrailingRequiresClause)
    setTrailingRequiresClause(TrailingRequiresClause);
}

void FunctionDecl::getNameForDiagnostic(
    raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
  NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
  const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
  if (TemplateArgs)
    printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
}

bool FunctionDecl::isVariadic() const {
  if (const auto *FT = getType()->getAs<FunctionProtoType>())
    return FT->isVariadic();
  return false;
}

FunctionDecl::DefaultedFunctionInfo *
FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context,
                                            ArrayRef<DeclAccessPair> Lookups) {
  DefaultedFunctionInfo *Info = new (Context.Allocate(
      totalSizeToAlloc<DeclAccessPair>(Lookups.size()),
      std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair))))
      DefaultedFunctionInfo;
  Info->NumLookups = Lookups.size();
  std::uninitialized_copy(Lookups.begin(), Lookups.end(),
                          Info->getTrailingObjects<DeclAccessPair>());
  return Info;
}

void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) {
  assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this");
  assert(!Body && "can't replace function body with defaulted function info");

  FunctionDeclBits.HasDefaultedFunctionInfo = true;
  DefaultedInfo = Info;
}

FunctionDecl::DefaultedFunctionInfo *
FunctionDecl::getDefaultedFunctionInfo() const {
  return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr;
}

bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
  for (auto I : redecls()) {
    if (I->doesThisDeclarationHaveABody()) {
      Definition = I;
      return true;
    }
  }

  return false;
}

bool FunctionDecl::hasTrivialBody() const {
  Stmt *S = getBody();
  if (!S) {
    // Since we don't have a body for this function, we don't know if it's
    // trivial or not.
    return false;
  }

  if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
    return true;
  return false;
}

bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
  for (auto I : redecls()) {
    if (I->isThisDeclarationADefinition()) {
      Definition = I;
      return true;
    }
  }

  return false;
}

Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
  if (!hasBody(Definition))
    return nullptr;

  assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&
         "definition should not have a body");
  if (Definition->Body)
    return Definition->Body.get(getASTContext().getExternalSource());

  return nullptr;
}

void FunctionDecl::setBody(Stmt *B) {
  FunctionDeclBits.HasDefaultedFunctionInfo = false;
  Body = LazyDeclStmtPtr(B);
  if (B)
    EndRangeLoc = B->getEndLoc();
}

void FunctionDecl::setPure(bool P) {
  FunctionDeclBits.IsPure = P;
  if (P)
    if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
      Parent->markedVirtualFunctionPure();
}

template<std::size_t Len>
static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
  IdentifierInfo *II = ND->getIdentifier();
  return II && II->isStr(Str);
}

bool FunctionDecl::isMain() const {
  const TranslationUnitDecl *tunit =
    dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
  return tunit &&
         !tunit->getASTContext().getLangOpts().Freestanding &&
         isNamed(this, "main");
}

bool FunctionDecl::isMSVCRTEntryPoint() const {
  const TranslationUnitDecl *TUnit =
      dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
  if (!TUnit)
    return false;

  // Even though we aren't really targeting MSVCRT if we are freestanding,
  // semantic analysis for these functions remains the same.

  // MSVCRT entry points only exist on MSVCRT targets.
  if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
    return false;

  // Nameless functions like constructors cannot be entry points.
  if (!getIdentifier())
    return false;

  return llvm::StringSwitch<bool>(getName())
      .Cases("main",     // an ANSI console app
             "wmain",    // a Unicode console App
             "WinMain",  // an ANSI GUI app
             "wWinMain", // a Unicode GUI app
             "DllMain",  // a DLL
             true)
      .Default(false);
}

bool FunctionDecl::isReservedGlobalPlacementOperator() const {
  assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
  assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
         getDeclName().getCXXOverloadedOperator() == OO_Delete ||
         getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
         getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);

  if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
    return false;

  const auto *proto = getType()->castAs<FunctionProtoType>();
  if (proto->getNumParams() != 2 || proto->isVariadic())
    return false;

  ASTContext &Context =
    cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
      ->getASTContext();

  // The result type and first argument type are constant across all
  // these operators.  The second argument must be exactly void*.
  return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
}

bool FunctionDecl::isReplaceableGlobalAllocationFunction(
    Optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
  if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
    return false;
  if (getDeclName().getCXXOverloadedOperator() != OO_New &&
      getDeclName().getCXXOverloadedOperator() != OO_Delete &&
      getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
      getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
    return false;

  if (isa<CXXRecordDecl>(getDeclContext()))
    return false;

  // This can only fail for an invalid 'operator new' declaration.
  if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
    return false;

  const auto *FPT = getType()->castAs<FunctionProtoType>();
  if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
    return false;

  // If this is a single-parameter function, it must be a replaceable global
  // allocation or deallocation function.
  if (FPT->getNumParams() == 1)
    return true;

  unsigned Params = 1;
  QualType Ty = FPT->getParamType(Params);
  ASTContext &Ctx = getASTContext();

  auto Consume = [&] {
    ++Params;
    Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
  };

  // In C++14, the next parameter can be a 'std::size_t' for sized delete.
  bool IsSizedDelete = false;
  if (Ctx.getLangOpts().SizedDeallocation &&
      (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
       getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
      Ctx.hasSameType(Ty, Ctx.getSizeType())) {
    IsSizedDelete = true;
    Consume();
  }

  // In C++17, the next parameter can be a 'std::align_val_t' for aligned
  // new/delete.
  if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
    Consume();
    if (AlignmentParam)
      *AlignmentParam = Params;
  }

  // Finally, if this is not a sized delete, the final parameter can
  // be a 'const std::nothrow_t&'.
  if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
    Ty = Ty->getPointeeType();
    if (Ty.getCVRQualifiers() != Qualifiers::Const)
      return false;
    if (Ty->isNothrowT()) {
      if (IsNothrow)
        *IsNothrow = true;
      Consume();
    }
  }

  return Params == FPT->getNumParams();
}

bool FunctionDecl::isInlineBuiltinDeclaration() const {
  if (!getBuiltinID())
    return false;

  const FunctionDecl *Definition;
  return hasBody(Definition) && Definition->isInlineSpecified();
}

bool FunctionDecl::isDestroyingOperatorDelete() const {
  // C++ P0722:
  //   Within a class C, a single object deallocation function with signature
  //     (T, std::destroying_delete_t, <more params>)
  //   is a destroying operator delete.
  if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
      getNumParams() < 2)
    return false;

  auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
  return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
         RD->getIdentifier()->isStr("destroying_delete_t");
}

LanguageLinkage FunctionDecl::getLanguageLinkage() const {
  return getDeclLanguageLinkage(*this);
}

bool FunctionDecl::isExternC() const {
  return isDeclExternC(*this);
}

bool FunctionDecl::isInExternCContext() const {
  if (hasAttr<OpenCLKernelAttr>())
    return true;
  return getLexicalDeclContext()->isExternCContext();
}

bool FunctionDecl::isInExternCXXContext() const {
  return getLexicalDeclContext()->isExternCXXContext();
}

bool FunctionDecl::isGlobal() const {
  if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
    return Method->isStatic();

  if (getCanonicalDecl()->getStorageClass() == SC_Static)
    return false;

  for (const DeclContext *DC = getDeclContext();
       DC->isNamespace();
       DC = DC->getParent()) {
    if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
      if (!Namespace->getDeclName())
        return false;
      break;
    }
  }

  return true;
}

bool FunctionDecl::isNoReturn() const {
  if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
      hasAttr<C11NoReturnAttr>())
    return true;

  if (auto *FnTy = getType()->getAs<FunctionType>())
    return FnTy->getNoReturnAttr();

  return false;
}


MultiVersionKind FunctionDecl::getMultiVersionKind() const {
  if (hasAttr<TargetAttr>())
    return MultiVersionKind::Target;
  if (hasAttr<CPUDispatchAttr>())
    return MultiVersionKind::CPUDispatch;
  if (hasAttr<CPUSpecificAttr>())
    return MultiVersionKind::CPUSpecific;
  return MultiVersionKind::None;
}

bool FunctionDecl::isCPUDispatchMultiVersion() const {
  return isMultiVersion() && hasAttr<CPUDispatchAttr>();
}

bool FunctionDecl::isCPUSpecificMultiVersion() const {
  return isMultiVersion() && hasAttr<CPUSpecificAttr>();
}

bool FunctionDecl::isTargetMultiVersion() const {
  return isMultiVersion() && hasAttr<TargetAttr>();
}

void
FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
  redeclarable_base::setPreviousDecl(PrevDecl);

  if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
    FunctionTemplateDecl *PrevFunTmpl
      = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
    assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
    FunTmpl->setPreviousDecl(PrevFunTmpl);
  }

  if (PrevDecl && PrevDecl->isInlined())
    setImplicitlyInline(true);
}

FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }

/// Returns a value indicating whether this function corresponds to a builtin
/// function.
///
/// The function corresponds to a built-in function if it is declared at
/// translation scope or within an extern "C" block and its name matches with
/// the name of a builtin. The returned value will be 0 for functions that do
/// not correspond to a builtin, a value of type \c Builtin::ID if in the
/// target-independent range \c [1,Builtin::First), or a target-specific builtin
/// value.
///
/// \param ConsiderWrapperFunctions If true, we should consider wrapper
/// functions as their wrapped builtins. This shouldn't be done in general, but
/// it's useful in Sema to diagnose calls to wrappers based on their semantics.
unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
  unsigned BuiltinID = 0;

  if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
    BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
  } else if (const auto *A = getAttr<BuiltinAttr>()) {
    BuiltinID = A->getID();
  }

  if (!BuiltinID)
    return 0;

  // If the function is marked "overloadable", it has a different mangled name
  // and is not the C library function.
  if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
      !hasAttr<ArmBuiltinAliasAttr>())
    return 0;

  ASTContext &Context = getASTContext();
  if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
    return BuiltinID;

  // This function has the name of a known C library
  // function. Determine whether it actually refers to the C library
  // function or whether it just has the same name.

  // If this is a static function, it's not a builtin.
  if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
    return 0;

  // OpenCL v1.2 s6.9.f - The library functions defined in
  // the C99 standard headers are not available.
  if (Context.getLangOpts().OpenCL &&
      Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
    return 0;

  // CUDA does not have device-side standard library. printf and malloc are the
  // only special cases that are supported by device-side runtime.
  if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
      !hasAttr<CUDAHostAttr>() &&
      !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
    return 0;

  // As AMDGCN implementation of OpenMP does not have a device-side standard
  // library, none of the predefined library functions except printf and malloc
  // should be treated as a builtin i.e. 0 should be returned for them.
  if (Context.getTargetInfo().getTriple().isAMDGCN() &&
      Context.getLangOpts().OpenMPIsDevice &&
      Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
      !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
    return 0;

  return BuiltinID;
}

/// getNumParams - Return the number of parameters this function must have
/// based on its FunctionType.  This is the length of the ParamInfo array
/// after it has been created.
unsigned FunctionDecl::getNumParams() const {
  const auto *FPT = getType()->getAs<FunctionProtoType>();
  return FPT ? FPT->getNumParams() : 0;
}

void FunctionDecl::setParams(ASTContext &C,
                             ArrayRef<ParmVarDecl *> NewParamInfo) {
  assert(!ParamInfo && "Already has param info!");
  assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");

  // Zero params -> null pointer.
  if (!NewParamInfo.empty()) {
    ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
    std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
  }
}

/// getMinRequiredArguments - Returns the minimum number of arguments
/// needed to call this function. This may be fewer than the number of
/// function parameters, if some of the parameters have default
/// arguments (in C++) or are parameter packs (C++11).
unsigned FunctionDecl::getMinRequiredArguments() const {
  if (!getASTContext().getLangOpts().CPlusPlus)
    return getNumParams();

  // Note that it is possible for a parameter with no default argument to
  // follow a parameter with a default argument.
  unsigned NumRequiredArgs = 0;
  unsigned MinParamsSoFar = 0;
  for (auto *Param : parameters()) {
    if (!Param->isParameterPack()) {
      ++MinParamsSoFar;
      if (!Param->hasDefaultArg())
        NumRequiredArgs = MinParamsSoFar;
    }
  }
  return NumRequiredArgs;
}

bool FunctionDecl::hasOneParamOrDefaultArgs() const {
  return getNumParams() == 1 ||
         (getNumParams() > 1 &&
          std::all_of(param_begin() + 1, param_end(),
                      [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
}

/// The combination of the extern and inline keywords under MSVC forces
/// the function to be required.
///
/// Note: This function assumes that we will only get called when isInlined()
/// would return true for this FunctionDecl.
bool FunctionDecl::isMSExternInline() const {
  assert(isInlined() && "expected to get called on an inlined function!");

  const ASTContext &Context = getASTContext();
  if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
      !hasAttr<DLLExportAttr>())
    return false;

  for (const FunctionDecl *FD = getMostRecentDecl(); FD;
       FD = FD->getPreviousDecl())
    if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
      return true;

  return false;
}

static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
  if (Redecl->getStorageClass() != SC_Extern)
    return false;

  for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
       FD = FD->getPreviousDecl())
    if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
      return false;

  return true;
}

static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
  // Only consider file-scope declarations in this test.
  if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
    return false;

  // Only consider explicit declarations; the presence of a builtin for a
  // libcall shouldn't affect whether a definition is externally visible.
  if (Redecl->isImplicit())
    return false;

  if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
    return true; // Not an inline definition

  return false;
}

/// For a function declaration in C or C++, determine whether this
/// declaration causes the definition to be externally visible.
///
/// For instance, this determines if adding the current declaration to the set
/// of redeclarations of the given functions causes
/// isInlineDefinitionExternallyVisible to change from false to true.
bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
  assert(!doesThisDeclarationHaveABody() &&
         "Must have a declaration without a body.");

  ASTContext &Context = getASTContext();

  if (Context.getLangOpts().MSVCCompat) {
    const FunctionDecl *Definition;
    if (hasBody(Definition) && Definition->isInlined() &&
        redeclForcesDefMSVC(this))
      return true;
  }

  if (Context.getLangOpts().CPlusPlus)
    return false;

  if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
    // With GNU inlining, a declaration with 'inline' but not 'extern', forces
    // an externally visible definition.
    //
    // FIXME: What happens if gnu_inline gets added on after the first
    // declaration?
    if (!isInlineSpecified() || getStorageClass() == SC_Extern)
      return false;

    const FunctionDecl *Prev = this;
    bool FoundBody = false;
    while ((Prev = Prev->getPreviousDecl())) {
      FoundBody |= Prev->doesThisDeclarationHaveABody();

      if (Prev->doesThisDeclarationHaveABody()) {
        // If it's not the case that both 'inline' and 'extern' are
        // specified on the definition, then it is always externally visible.
        if (!Prev->isInlineSpecified() ||
            Prev->getStorageClass() != SC_Extern)
          return false;
      } else if (Prev->isInlineSpecified() &&
                 Prev->getStorageClass() != SC_Extern) {
        return false;
      }
    }
    return FoundBody;
  }

  // C99 6.7.4p6:
  //   [...] If all of the file scope declarations for a function in a
  //   translation unit include the inline function specifier without extern,
  //   then the definition in that translation unit is an inline definition.
  if (isInlineSpecified() && getStorageClass() != SC_Extern)
    return false;
  const FunctionDecl *Prev = this;
  bool FoundBody = false;
  while ((Prev = Prev->getPreviousDecl())) {
    FoundBody |= Prev->doesThisDeclarationHaveABody();
    if (RedeclForcesDefC99(Prev))
      return false;
  }
  return FoundBody;
}

FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
  const TypeSourceInfo *TSI = getTypeSourceInfo();
  return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
             : FunctionTypeLoc();
}

SourceRange FunctionDecl::getReturnTypeSourceRange() const {
  FunctionTypeLoc FTL = getFunctionTypeLoc();
  if (!FTL)
    return SourceRange();

  // Skip self-referential return types.
  const SourceManager &SM = getASTContext().getSourceManager();
  SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
  SourceLocation Boundary = getNameInfo().getBeginLoc();
  if (RTRange.isInvalid() || Boundary.isInvalid() ||
      !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
    return SourceRange();

  return RTRange;
}

SourceRange FunctionDecl::getParametersSourceRange() const {
  unsigned NP = getNumParams();
  SourceLocation EllipsisLoc = getEllipsisLoc();

  if (NP == 0 && EllipsisLoc.isInvalid())
    return SourceRange();

  SourceLocation Begin =
      NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
  SourceLocation End = EllipsisLoc.isValid()
                           ? EllipsisLoc
                           : ParamInfo[NP - 1]->getSourceRange().getEnd();

  return SourceRange(Begin, End);
}

SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
  FunctionTypeLoc FTL = getFunctionTypeLoc();
  return FTL ? FTL.getExceptionSpecRange() : SourceRange();
}

/// For an inline function definition in C, or for a gnu_inline function
/// in C++, determine whether the definition will be externally visible.
///
/// Inline function definitions are always available for inlining optimizations.
/// However, depending on the language dialect, declaration specifiers, and
/// attributes, the definition of an inline function may or may not be
/// "externally" visible to other translation units in the program.
///
/// In C99, inline definitions are not externally visible by default. However,
/// if even one of the global-scope declarations is marked "extern inline", the
/// inline definition becomes externally visible (C99 6.7.4p6).
///
/// In GNU89 mode, or if the gnu_inline attribute is attached to the function
/// definition, we use the GNU semantics for inline, which are nearly the
/// opposite of C99 semantics. In particular, "inline" by itself will create
/// an externally visible symbol, but "extern inline" will not create an
/// externally visible symbol.
bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
  assert((doesThisDeclarationHaveABody() || willHaveBody() ||
          hasAttr<AliasAttr>()) &&
         "Must be a function definition");
  assert(isInlined() && "Function must be inline");
  ASTContext &Context = getASTContext();

  if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
    // Note: If you change the logic here, please change
    // doesDeclarationForceExternallyVisibleDefinition as well.
    //
    // If it's not the case that both 'inline' and 'extern' are
    // specified on the definition, then this inline definition is
    // externally visible.
    if (Context.getLangOpts().CPlusPlus)
      return false;
    if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
      return true;

    // If any declaration is 'inline' but not 'extern', then this definition
    // is externally visible.
    for (auto Redecl : redecls()) {
      if (Redecl->isInlineSpecified() &&
          Redecl->getStorageClass() != SC_Extern)
        return true;
    }

    return false;
  }

  // The rest of this function is C-only.
  assert(!Context.getLangOpts().CPlusPlus &&
         "should not use C inline rules in C++");

  // C99 6.7.4p6:
  //   [...] If all of the file scope declarations for a function in a
  //   translation unit include the inline function specifier without extern,
  //   then the definition in that translation unit is an inline definition.
  for (auto Redecl : redecls()) {
    if (RedeclForcesDefC99(Redecl))
      return true;
  }

  // C99 6.7.4p6:
  //   An inline definition does not provide an external definition for the
  //   function, and does not forbid an external definition in another
  //   translation unit.
  return false;
}

/// getOverloadedOperator - Which C++ overloaded operator this
/// function represents, if any.
OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
  if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
    return getDeclName().getCXXOverloadedOperator();
  else
    return OO_None;
}

/// getLiteralIdentifier - The literal suffix identifier this function
/// represents, if any.
const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
  if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
    return getDeclName().getCXXLiteralIdentifier();
  else
    return nullptr;
}

FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
  if (TemplateOrSpecialization.isNull())
    return TK_NonTemplate;
  if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
    return TK_FunctionTemplate;
  if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
    return TK_MemberSpecialization;
  if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
    return TK_FunctionTemplateSpecialization;
  if (TemplateOrSpecialization.is
                               <DependentFunctionTemplateSpecializationInfo*>())
    return TK_DependentFunctionTemplateSpecialization;

  llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
}

FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
  if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
    return cast<FunctionDecl>(Info->getInstantiatedFrom());

  return nullptr;
}

MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
  if (auto *MSI =
          TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
    return MSI;
  if (auto *FTSI = TemplateOrSpecialization
                       .dyn_cast<FunctionTemplateSpecializationInfo *>())
    return FTSI->getMemberSpecializationInfo();
  return nullptr;
}

void
FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
                                               FunctionDecl *FD,
                                               TemplateSpecializationKind TSK) {
  assert(TemplateOrSpecialization.isNull() &&
         "Member function is already a specialization");
  MemberSpecializationInfo *Info
    = new (C) MemberSpecializationInfo(FD, TSK);
  TemplateOrSpecialization = Info;
}

FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
  return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
}

void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
  assert(TemplateOrSpecialization.isNull() &&
         "Member function is already a specialization");
  TemplateOrSpecialization = Template;
}

bool FunctionDecl::isImplicitlyInstantiable() const {
  // If the function is invalid, it can't be implicitly instantiated.
  if (isInvalidDecl())
    return false;

  switch (getTemplateSpecializationKindForInstantiation()) {
  case TSK_Undeclared:
  case TSK_ExplicitInstantiationDefinition:
  case TSK_ExplicitSpecialization:
    return false;

  case TSK_ImplicitInstantiation:
    return true;

  case TSK_ExplicitInstantiationDeclaration:
    // Handled below.
    break;
  }

  // Find the actual template from which we will instantiate.
  const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
  bool HasPattern = false;
  if (PatternDecl)
    HasPattern = PatternDecl->hasBody(PatternDecl);

  // C++0x [temp.explicit]p9:
  //   Except for inline functions, other explicit instantiation declarations
  //   have the effect of suppressing the implicit instantiation of the entity
  //   to which they refer.
  if (!HasPattern || !PatternDecl)
    return true;

  return PatternDecl->isInlined();
}

bool FunctionDecl::isTemplateInstantiation() const {
  // FIXME: Remove this, it's not clear what it means. (Which template
  // specialization kind?)
  return clang::isTemplateInstantiation(getTemplateSpecializationKind());
}

FunctionDecl *
FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const {
  // If this is a generic lambda call operator specialization, its
  // instantiation pattern is always its primary template's pattern
  // even if its primary template was instantiated from another
  // member template (which happens with nested generic lambdas).
  // Since a lambda's call operator's body is transformed eagerly,
  // we don't have to go hunting for a prototype definition template
  // (i.e. instantiated-from-member-template) to use as an instantiation
  // pattern.

  if (isGenericLambdaCallOperatorSpecialization(
          dyn_cast<CXXMethodDecl>(this))) {
    assert(getPrimaryTemplate() && "not a generic lambda call operator?");
    return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
  }

  if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) {
    if (ForDefinition &&
        !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
      return nullptr;
    return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
  }

  if (ForDefinition &&
      !clang::isTemplateInstantiation(getTemplateSpecializationKind()))
    return nullptr;

  if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
    // If we hit a point where the user provided a specialization of this
    // template, we're done looking.
    while (!ForDefinition || !Primary->isMemberSpecialization()) {
      auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
      if (!NewPrimary)
        break;
      Primary = NewPrimary;
    }

    return getDefinitionOrSelf(Primary->getTemplatedDecl());
  }

  return nullptr;
}

FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
  if (FunctionTemplateSpecializationInfo *Info
        = TemplateOrSpecialization
            .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
    return Info->getTemplate();
  }
  return nullptr;
}

FunctionTemplateSpecializationInfo *
FunctionDecl::getTemplateSpecializationInfo() const {
  return TemplateOrSpecialization
      .dyn_cast<FunctionTemplateSpecializationInfo *>();
}

const TemplateArgumentList *
FunctionDecl::getTemplateSpecializationArgs() const {
  if (FunctionTemplateSpecializationInfo *Info
        = TemplateOrSpecialization
            .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
    return Info->TemplateArguments;
  }
  return nullptr;
}

const ASTTemplateArgumentListInfo *
FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
  if (FunctionTemplateSpecializationInfo *Info
        = TemplateOrSpecialization
            .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
    return Info->TemplateArgumentsAsWritten;
  }
  return nullptr;
}

void
FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
                                                FunctionTemplateDecl *Template,
                                     const TemplateArgumentList *TemplateArgs,
                                                void *InsertPos,
                                                TemplateSpecializationKind TSK,
                        const TemplateArgumentListInfo *TemplateArgsAsWritten,
                                          SourceLocation PointOfInstantiation) {
  assert((TemplateOrSpecialization.isNull() ||
          TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&
         "Member function is already a specialization");
  assert(TSK != TSK_Undeclared &&
         "Must specify the type of function template specialization");
  assert((TemplateOrSpecialization.isNull() ||
          TSK == TSK_ExplicitSpecialization) &&
         "Member specialization must be an explicit specialization");
  FunctionTemplateSpecializationInfo *Info =
      FunctionTemplateSpecializationInfo::Create(
          C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
          PointOfInstantiation,
          TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
  TemplateOrSpecialization = Info;
  Template->addSpecialization(Info, InsertPos);
}

void
FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
                                    const UnresolvedSetImpl &Templates,
                             const TemplateArgumentListInfo &TemplateArgs) {
  assert(TemplateOrSpecialization.isNull());
  DependentFunctionTemplateSpecializationInfo *Info =
      DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
                                                          TemplateArgs);
  TemplateOrSpecialization = Info;
}

DependentFunctionTemplateSpecializationInfo *
FunctionDecl::getDependentSpecializationInfo() const {
  return TemplateOrSpecialization
      .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
}

DependentFunctionTemplateSpecializationInfo *
DependentFunctionTemplateSpecializationInfo::Create(
    ASTContext &Context, const UnresolvedSetImpl &Ts,
    const TemplateArgumentListInfo &TArgs) {
  void *Buffer = Context.Allocate(
      totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
          TArgs.size(), Ts.size()));
  return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
}

DependentFunctionTemplateSpecializationInfo::
DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
                                      const TemplateArgumentListInfo &TArgs)
  : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
  NumTemplates = Ts.size();
  NumArgs = TArgs.size();

  FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
  for (unsigned I = 0, E = Ts.size(); I != E; ++I)
    TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());

  TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
  for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
    new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
}

TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
  // For a function template specialization, query the specialization
  // information object.
  if (FunctionTemplateSpecializationInfo *FTSInfo =
          TemplateOrSpecialization
              .dyn_cast<FunctionTemplateSpecializationInfo *>())
    return FTSInfo->getTemplateSpecializationKind();

  if (MemberSpecializationInfo *MSInfo =
          TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
    return MSInfo->getTemplateSpecializationKind();

  return TSK_Undeclared;
}

TemplateSpecializationKind
FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
  // This is the same as getTemplateSpecializationKind(), except that for a
  // function that is both a function template specialization and a member
  // specialization, we prefer the member specialization information. Eg:
  //
  // template<typename T> struct A {
  //   template<typename U> void f() {}
  //   template<> void f<int>() {}
  // };
  //
  // For A<int>::f<int>():
  // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
  // * getTemplateSpecializationKindForInstantiation() will return
  //       TSK_ImplicitInstantiation
  //
  // This reflects the facts that A<int>::f<int> is an explicit specialization
  // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
  // from A::f<int> if a definition is needed.
  if (FunctionTemplateSpecializationInfo *FTSInfo =
          TemplateOrSpecialization
              .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
    if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
      return MSInfo->getTemplateSpecializationKind();
    return FTSInfo->getTemplateSpecializationKind();
  }

  if (MemberSpecializationInfo *MSInfo =
          TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
    return MSInfo->getTemplateSpecializationKind();

  return TSK_Undeclared;
}

void
FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
                                          SourceLocation PointOfInstantiation) {
  if (FunctionTemplateSpecializationInfo *FTSInfo
        = TemplateOrSpecialization.dyn_cast<
                                    FunctionTemplateSpecializationInfo*>()) {
    FTSInfo->setTemplateSpecializationKind(TSK);
    if (TSK != TSK_ExplicitSpecialization &&
        PointOfInstantiation.isValid() &&
        FTSInfo->getPointOfInstantiation().isInvalid()) {
      FTSInfo->setPointOfInstantiation(PointOfInstantiation);
      if (ASTMutationListener *L = getASTContext().getASTMutationListener())
        L->InstantiationRequested(this);
    }
  } else if (MemberSpecializationInfo *MSInfo
             = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
    MSInfo->setTemplateSpecializationKind(TSK);
    if (TSK != TSK_ExplicitSpecialization &&
        PointOfInstantiation.isValid() &&
        MSInfo->getPointOfInstantiation().isInvalid()) {
      MSInfo->setPointOfInstantiation(PointOfInstantiation);
      if (ASTMutationListener *L = getASTContext().getASTMutationListener())
        L->InstantiationRequested(this);
    }
  } else
    llvm_unreachable("Function cannot have a template specialization kind");
}

SourceLocation FunctionDecl::getPointOfInstantiation() const {
  if (FunctionTemplateSpecializationInfo *FTSInfo
        = TemplateOrSpecialization.dyn_cast<
                                        FunctionTemplateSpecializationInfo*>())
    return FTSInfo->getPointOfInstantiation();
  else if (MemberSpecializationInfo *MSInfo
             = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
    return MSInfo->getPointOfInstantiation();

  return SourceLocation();
}

bool FunctionDecl::isOutOfLine() const {
  if (Decl::isOutOfLine())
    return true;

  // If this function was instantiated from a member function of a
  // class template, check whether that member function was defined out-of-line.
  if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
    const FunctionDecl *Definition;
    if (FD->hasBody(Definition))
      return Definition->isOutOfLine();
  }

  // If this function was instantiated from a function template,
  // check whether that function template was defined out-of-line.
  if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
    const FunctionDecl *Definition;
    if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
      return Definition->isOutOfLine();
  }

  return false;
}

SourceRange FunctionDecl::getSourceRange() const {
  return SourceRange(getOuterLocStart(), EndRangeLoc);
}

unsigned FunctionDecl::getMemoryFunctionKind() const {
  IdentifierInfo *FnInfo = getIdentifier();

  if (!FnInfo)
    return 0;

  // Builtin handling.
  switch (getBuiltinID()) {
  case Builtin::BI__builtin_memset:
  case Builtin::BI__builtin___memset_chk:
  case Builtin::BImemset:
    return Builtin::BImemset;

  case Builtin::BI__builtin_memcpy:
  case Builtin::BI__builtin___memcpy_chk:
  case Builtin::BImemcpy:
    return Builtin::BImemcpy;

  case Builtin::BI__builtin_mempcpy:
  case Builtin::BI__builtin___mempcpy_chk:
  case Builtin::BImempcpy:
    return Builtin::BImempcpy;

  case Builtin::BI__builtin_memmove:
  case Builtin::BI__builtin___memmove_chk:
  case Builtin::BImemmove:
    return Builtin::BImemmove;

  case Builtin::BIstrlcpy:
  case Builtin::BI__builtin___strlcpy_chk:
    return Builtin::BIstrlcpy;

  case Builtin::BIstrlcat:
  case Builtin::BI__builtin___strlcat_chk:
    return Builtin::BIstrlcat;

  case Builtin::BI__builtin_memcmp:
  case Builtin::BImemcmp:
    return Builtin::BImemcmp;

  case Builtin::BI__builtin_bcmp:
  case Builtin::BIbcmp:
    return Builtin::BIbcmp;

  case Builtin::BI__builtin_strncpy:
  case Builtin::BI__builtin___strncpy_chk:
  case Builtin::BIstrncpy:
    return Builtin::BIstrncpy;

  case Builtin::BI__builtin_strncmp:
  case Builtin::BIstrncmp:
    return Builtin::BIstrncmp;

  case Builtin::BI__builtin_strncasecmp:
  case Builtin::BIstrncasecmp:
    return Builtin::BIstrncasecmp;

  case Builtin::BI__builtin_strncat:
  case Builtin::BI__builtin___strncat_chk:
  case Builtin::BIstrncat:
    return Builtin::BIstrncat;

  case Builtin::BI__builtin_strndup:
  case Builtin::BIstrndup:
    return Builtin::BIstrndup;

  case Builtin::BI__builtin_strlen:
  case Builtin::BIstrlen:
    return Builtin::BIstrlen;

  case Builtin::BI__builtin_bzero:
  case Builtin::BIbzero:
    return Builtin::BIbzero;

  default:
    if (isExternC()) {
      if (FnInfo->isStr("memset"))
        return Builtin::BImemset;
      else if (FnInfo->isStr("memcpy"))
        return Builtin::BImemcpy;
      else if (FnInfo->isStr("mempcpy"))
        return Builtin::BImempcpy;
      else if (FnInfo->isStr("memmove"))
        return Builtin::BImemmove;
      else if (FnInfo->isStr("memcmp"))
        return Builtin::BImemcmp;
      else if (FnInfo->isStr("bcmp"))
        return Builtin::BIbcmp;
      else if (FnInfo->isStr("strncpy"))
        return Builtin::BIstrncpy;
      else if (FnInfo->isStr("strncmp"))
        return Builtin::BIstrncmp;
      else if (FnInfo->isStr("strncasecmp"))
        return Builtin::BIstrncasecmp;
      else if (FnInfo->isStr("strncat"))
        return Builtin::BIstrncat;
      else if (FnInfo->isStr("strndup"))
        return Builtin::BIstrndup;
      else if (FnInfo->isStr("strlen"))
        return Builtin::BIstrlen;
      else if (FnInfo->isStr("bzero"))
        return Builtin::BIbzero;
    }
    break;
  }
  return 0;
}

unsigned FunctionDecl::getODRHash() const {
  assert(hasODRHash());
  return ODRHash;
}

unsigned FunctionDecl::getODRHash() {
  if (hasODRHash())
    return ODRHash;

  if (auto *FT = getInstantiatedFromMemberFunction()) {
    setHasODRHash(true);
    ODRHash = FT->getODRHash();
    return ODRHash;
  }

  class ODRHash Hash;
  Hash.AddFunctionDecl(this);
  setHasODRHash(true);
  ODRHash = Hash.CalculateHash();
  return ODRHash;
}

//===----------------------------------------------------------------------===//
// FieldDecl Implementation
//===----------------------------------------------------------------------===//

FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
                             SourceLocation StartLoc, SourceLocation IdLoc,
                             IdentifierInfo *Id, QualType T,
                             TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
                             InClassInitStyle InitStyle) {
  return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
                               BW, Mutable, InitStyle);
}

FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
  return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
                               SourceLocation(), nullptr, QualType(), nullptr,
                               nullptr, false, ICIS_NoInit);
}

bool FieldDecl::isAnonymousStructOrUnion() const {
  if (!isImplicit() || getDeclName())
    return false;

  if (const auto *Record = getType()->getAs<RecordType>())
    return Record->getDecl()->isAnonymousStructOrUnion();

  return false;
}

unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
  assert(isBitField() && "not a bitfield");
  return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
}

bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
  return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
         getBitWidthValue(Ctx) == 0;
}

bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
  if (isZeroLengthBitField(Ctx))
    return true;

  // C++2a [intro.object]p7:
  //   An object has nonzero size if it
  //     -- is not a potentially-overlapping subobject, or
  if (!hasAttr<NoUniqueAddressAttr>())
    return false;

  //     -- is not of class type, or
  const auto *RT = getType()->getAs<RecordType>();
  if (!RT)
    return false;
  const RecordDecl *RD = RT->getDecl()->getDefinition();
  if (!RD) {
    assert(isInvalidDecl() && "valid field has incomplete type");
    return false;
  }

  //     -- [has] virtual member functions or virtual base classes, or
  //     -- has subobjects of nonzero size or bit-fields of nonzero length
  const auto *CXXRD = cast<CXXRecordDecl>(RD);
  if (!CXXRD->isEmpty())
    return false;

  // Otherwise, [...] the circumstances under which the object has zero size
  // are implementation-defined.
  // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
  // ABI will do.
  return true;
}

unsigned FieldDecl::getFieldIndex() const {
  const FieldDecl *Canonical = getCanonicalDecl();
  if (Canonical != this)
    return Canonical->getFieldIndex();

  if (CachedFieldIndex) return CachedFieldIndex - 1;

  unsigned Index = 0;
  const RecordDecl *RD = getParent()->getDefinition();
  assert(RD && "requested index for field of struct with no definition");

  for (auto *Field : RD->fields()) {
    Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
    ++Index;
  }

  assert(CachedFieldIndex && "failed to find field in parent");
  return CachedFieldIndex - 1;
}

SourceRange FieldDecl::getSourceRange() const {
  const Expr *FinalExpr = getInClassInitializer();
  if (!FinalExpr)
    FinalExpr = getBitWidth();
  if (FinalExpr)
    return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
  return DeclaratorDecl::getSourceRange();
}

void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
  assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
         "capturing type in non-lambda or captured record.");
  assert(InitStorage.getInt() == ISK_NoInit &&
         InitStorage.getPointer() == nullptr &&
         "bit width, initializer or captured type already set");
  InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
                               ISK_CapturedVLAType);
}

//===----------------------------------------------------------------------===//
// TagDecl Implementation
//===----------------------------------------------------------------------===//

TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
                 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
                 SourceLocation StartL)
    : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
      TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
  assert((DK != Enum || TK == TTK_Enum) &&
         "EnumDecl not matched with TTK_Enum");
  setPreviousDecl(PrevDecl);
  setTagKind(TK);
  setCompleteDefinition(false);
  setBeingDefined(false);
  setEmbeddedInDeclarator(false);
  setFreeStanding(false);
  setCompleteDefinitionRequired(false);
}

SourceLocation TagDecl::getOuterLocStart() const {
  return getTemplateOrInnerLocStart(this);
}

SourceRange TagDecl::getSourceRange() const {
  SourceLocation RBraceLoc = BraceRange.getEnd();
  SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
  return SourceRange(getOuterLocStart(), E);
}

TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }

void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
  TypedefNameDeclOrQualifier = TDD;
  if (const Type *T = getTypeForDecl()) {
    (void)T;
    assert(T->isLinkageValid());
  }
  assert(isLinkageValid());
}

void TagDecl::startDefinition() {
  setBeingDefined(true);

  if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
    struct CXXRecordDecl::DefinitionData *Data =
      new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
    for (auto I : redecls())
      cast<CXXRecordDecl>(I)->DefinitionData = Data;
  }
}

void TagDecl::completeDefinition() {
  assert((!isa<CXXRecordDecl>(this) ||
          cast<CXXRecordDecl>(this)->hasDefinition()) &&
         "definition completed but not started");

  setCompleteDefinition(true);
  setBeingDefined(false);

  if (ASTMutationListener *L = getASTMutationListener())
    L->CompletedTagDefinition(this);
}

TagDecl *TagDecl::getDefinition() const {
  if (isCompleteDefinition())
    return const_cast<TagDecl *>(this);

  // If it's possible for us to have an out-of-date definition, check now.
  if (mayHaveOutOfDateDef()) {
    if (IdentifierInfo *II = getIdentifier()) {
      if (II->isOutOfDate()) {
        updateOutOfDate(*II);
      }
    }
  }

  if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
    return CXXRD->getDefinition();

  for (auto R : redecls())
    if (R->isCompleteDefinition())
      return R;

  return nullptr;
}

void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
  if (QualifierLoc) {
    // Make sure the extended qualifier info is allocated.
    if (!hasExtInfo())
      TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
    // Set qualifier info.
    getExtInfo()->QualifierLoc = QualifierLoc;
  } else {
    // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
    if (hasExtInfo()) {
      if (getExtInfo()->NumTemplParamLists == 0) {
        getASTContext().Deallocate(getExtInfo());
        TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
      }
      else
        getExtInfo()->QualifierLoc = QualifierLoc;
    }
  }
}

void TagDecl::setTemplateParameterListsInfo(
    ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
  assert(!TPLists.empty());
  // Make sure the extended decl info is allocated.
  if (!hasExtInfo())
    // Allocate external info struct.
    TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
  // Set the template parameter lists info.
  getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
}

//===----------------------------------------------------------------------===//
// EnumDecl Implementation
//===----------------------------------------------------------------------===//

EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
                   SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
                   bool Scoped, bool ScopedUsingClassTag, bool Fixed)
    : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
  assert(Scoped || !ScopedUsingClassTag);
  IntegerType = nullptr;
  setNumPositiveBits(0);
  setNumNegativeBits(0);
  setScoped(Scoped);
  setScopedUsingClassTag(ScopedUsingClassTag);
  setFixed(Fixed);
  setHasODRHash(false);
  ODRHash = 0;
}

void EnumDecl::anchor() {}

EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
                           SourceLocation StartLoc, SourceLocation IdLoc,
                           IdentifierInfo *Id,
                           EnumDecl *PrevDecl, bool IsScoped,
                           bool IsScopedUsingClassTag, bool IsFixed) {
  auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
                                    IsScoped, IsScopedUsingClassTag, IsFixed);
  Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
  C.getTypeDeclType(Enum, PrevDecl);
  return Enum;
}

EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
  EnumDecl *Enum =
      new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
                           nullptr, nullptr, false, false, false);
  Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
  return Enum;
}

SourceRange EnumDecl::getIntegerTypeRange() const {
  if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
    return TI->getTypeLoc().getSourceRange();
  return SourceRange();
}

void EnumDecl::completeDefinition(QualType NewType,
                                  QualType NewPromotionType,
                                  unsigned NumPositiveBits,
                                  unsigned NumNegativeBits) {
  assert(!isCompleteDefinition() && "Cannot redefine enums!");
  if (!IntegerType)
    IntegerType = NewType.getTypePtr();
  PromotionType = NewPromotionType;
  setNumPositiveBits(NumPositiveBits);
  setNumNegativeBits(NumNegativeBits);
  TagDecl::completeDefinition();
}

bool EnumDecl::isClosed() const {
  if (const auto *A = getAttr<EnumExtensibilityAttr>())
    return A->getExtensibility() == EnumExtensibilityAttr::Closed;
  return true;
}

bool EnumDecl::isClosedFlag() const {
  return isClosed() && hasAttr<FlagEnumAttr>();
}

bool EnumDecl::isClosedNonFlag() const {
  return isClosed() && !hasAttr<FlagEnumAttr>();
}

TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
  if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
    return MSI->getTemplateSpecializationKind();

  return TSK_Undeclared;
}

void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
                                         SourceLocation PointOfInstantiation) {
  MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
  assert(MSI && "Not an instantiated member enumeration?");
  MSI->setTemplateSpecializationKind(TSK);
  if (TSK != TSK_ExplicitSpecialization &&
      PointOfInstantiation.isValid() &&
      MSI->getPointOfInstantiation().isInvalid())
    MSI->setPointOfInstantiation(PointOfInstantiation);
}

EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
    if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
      EnumDecl *ED = getInstantiatedFromMemberEnum();
      while (auto *NewED = ED->getInstantiatedFromMemberEnum())
        ED = NewED;
      return getDefinitionOrSelf(ED);
    }
  }

  assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
         "couldn't find pattern for enum instantiation");
  return nullptr;
}

EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
  if (SpecializationInfo)
    return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());

  return nullptr;
}

void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
                                            TemplateSpecializationKind TSK) {
  assert(!SpecializationInfo && "Member enum is already a specialization");
  SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
}

unsigned EnumDecl::getODRHash() {
  if (hasODRHash())
    return ODRHash;

  class ODRHash Hash;
  Hash.AddEnumDecl(this);
  setHasODRHash(true);
  ODRHash = Hash.CalculateHash();
  return ODRHash;
}

//===----------------------------------------------------------------------===//
// RecordDecl Implementation
//===----------------------------------------------------------------------===//

RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
                       DeclContext *DC, SourceLocation StartLoc,
                       SourceLocation IdLoc, IdentifierInfo *Id,
                       RecordDecl *PrevDecl)
    : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
  assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
  setHasFlexibleArrayMember(false);
  setAnonymousStructOrUnion(false);
  setHasObjectMember(false);
  setHasVolatileMember(false);
  setHasLoadedFieldsFromExternalStorage(false);
  setNonTrivialToPrimitiveDefaultInitialize(false);
  setNonTrivialToPrimitiveCopy(false);
  setNonTrivialToPrimitiveDestroy(false);
  setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
  setHasNonTrivialToPrimitiveDestructCUnion(false);
  setHasNonTrivialToPrimitiveCopyCUnion(false);
  setParamDestroyedInCallee(false);
  setArgPassingRestrictions(APK_CanPassInRegs);
}

RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
                               SourceLocation StartLoc, SourceLocation IdLoc,
                               IdentifierInfo *Id, RecordDecl* PrevDecl) {
  RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
                                         StartLoc, IdLoc, Id, PrevDecl);
  R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);

  C.getTypeDeclType(R, PrevDecl);
  return R;
}

RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
  RecordDecl *R =
      new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
                             SourceLocation(), nullptr, nullptr);
  R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
  return R;
}

bool RecordDecl::isInjectedClassName() const {
  return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
    cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
}

bool RecordDecl::isLambda() const {
  if (auto RD = dyn_cast<CXXRecordDecl>(this))
    return RD->isLambda();
  return false;
}

bool RecordDecl::isCapturedRecord() const {
  return hasAttr<CapturedRecordAttr>();
}

void RecordDecl::setCapturedRecord() {
  addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
}

bool RecordDecl::isOrContainsUnion() const {
  if (isUnion())
    return true;

  if (const RecordDecl *Def = getDefinition()) {
    for (const FieldDecl *FD : Def->fields()) {
      const RecordType *RT = FD->getType()->getAs<RecordType>();
      if (RT && RT->getDecl()->isOrContainsUnion())
        return true;
    }
  }

  return false;
}

RecordDecl::field_iterator RecordDecl::field_begin() const {
  if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
    LoadFieldsFromExternalStorage();

  return field_iterator(decl_iterator(FirstDecl));
}

/// completeDefinition - Notes that the definition of this type is now
/// complete.
void RecordDecl::completeDefinition() {
  assert(!isCompleteDefinition() && "Cannot redefine record!");
  TagDecl::completeDefinition();
}

/// isMsStruct - Get whether or not this record uses ms_struct layout.
/// This which can be turned on with an attribute, pragma, or the
/// -mms-bitfields command-line option.
bool RecordDecl::isMsStruct(const ASTContext &C) const {
  return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
}

void RecordDecl::LoadFieldsFromExternalStorage() const {
  ExternalASTSource *Source = getASTContext().getExternalSource();
  assert(hasExternalLexicalStorage() && Source && "No external storage?");

  // Notify that we have a RecordDecl doing some initialization.
  ExternalASTSource::Deserializing TheFields(Source);

  SmallVector<Decl*, 64> Decls;
  setHasLoadedFieldsFromExternalStorage(true);
  Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
    return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
  }, Decls);

#ifndef NDEBUG
  // Check that all decls we got were FieldDecls.
  for (unsigned i=0, e=Decls.size(); i != e; ++i)
    assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
#endif

  if (Decls.empty())
    return;

  std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
                                                 /*FieldsAlreadyLoaded=*/false);
}

bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
  ASTContext &Context = getASTContext();
  const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
      (SanitizerKind::Address | SanitizerKind::KernelAddress);
  if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
    return false;
  const auto &Blacklist = Context.getSanitizerBlacklist();
  const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
  // We may be able to relax some of these requirements.
  int ReasonToReject = -1;
  if (!CXXRD || CXXRD->isExternCContext())
    ReasonToReject = 0;  // is not C++.
  else if (CXXRD->hasAttr<PackedAttr>())
    ReasonToReject = 1;  // is packed.
  else if (CXXRD->isUnion())
    ReasonToReject = 2;  // is a union.
  else if (CXXRD->isTriviallyCopyable())
    ReasonToReject = 3;  // is trivially copyable.
  else if (CXXRD->hasTrivialDestructor())
    ReasonToReject = 4;  // has trivial destructor.
  else if (CXXRD->isStandardLayout())
    ReasonToReject = 5;  // is standard layout.
  else if (Blacklist.isBlacklistedLocation(EnabledAsanMask, getLocation(),
                                           "field-padding"))
    ReasonToReject = 6;  // is in an excluded file.
  else if (Blacklist.isBlacklistedType(EnabledAsanMask,
                                       getQualifiedNameAsString(),
                                       "field-padding"))
    ReasonToReject = 7;  // The type is excluded.

  if (EmitRemark) {
    if (ReasonToReject >= 0)
      Context.getDiagnostics().Report(
          getLocation(),
          diag::remark_sanitize_address_insert_extra_padding_rejected)
          << getQualifiedNameAsString() << ReasonToReject;
    else
      Context.getDiagnostics().Report(
          getLocation(),
          diag::remark_sanitize_address_insert_extra_padding_accepted)
          << getQualifiedNameAsString();
  }
  return ReasonToReject < 0;
}

const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
  for (const auto *I : fields()) {
    if (I->getIdentifier())
      return I;

    if (const auto *RT = I->getType()->getAs<RecordType>())
      if (const FieldDecl *NamedDataMember =
              RT->getDecl()->findFirstNamedDataMember())
        return NamedDataMember;
  }

  // We didn't find a named data member.
  return nullptr;
}

//===----------------------------------------------------------------------===//
// BlockDecl Implementation
//===----------------------------------------------------------------------===//

BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
    : Decl(Block, DC, CaretLoc), DeclContext(Block) {
  setIsVariadic(false);
  setCapturesCXXThis(false);
  setBlockMissingReturnType(true);
  setIsConversionFromLambda(false);
  setDoesNotEscape(false);
  setCanAvoidCopyToHeap(false);
}

void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
  assert(!ParamInfo && "Already has param info!");

  // Zero params -> null pointer.
  if (!NewParamInfo.empty()) {
    NumParams = NewParamInfo.size();
    ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
    std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
  }
}

void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
                            bool CapturesCXXThis) {
  this->setCapturesCXXThis(CapturesCXXThis);
  this->NumCaptures = Captures.size();

  if (Captures.empty()) {
    this->Captures = nullptr;
    return;
  }

  this->Captures = Captures.copy(Context).data();
}

bool BlockDecl::capturesVariable(const VarDecl *variable) const {
  for (const auto &I : captures())
    // Only auto vars can be captured, so no redeclaration worries.
    if (I.getVariable() == variable)
      return true;

  return false;
}

SourceRange BlockDecl::getSourceRange() const {
  return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
}

//===----------------------------------------------------------------------===//
// Other Decl Allocation/Deallocation Method Implementations
//===----------------------------------------------------------------------===//

void TranslationUnitDecl::anchor() {}

TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
  return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
}

void PragmaCommentDecl::anchor() {}

PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
                                             TranslationUnitDecl *DC,
                                             SourceLocation CommentLoc,
                                             PragmaMSCommentKind CommentKind,
                                             StringRef Arg) {
  PragmaCommentDecl *PCD =
      new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
          PragmaCommentDecl(DC, CommentLoc, CommentKind);
  memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
  PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
  return PCD;
}

PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
                                                         unsigned ID,
                                                         unsigned ArgSize) {
  return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
      PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
}

void PragmaDetectMismatchDecl::anchor() {}

PragmaDetectMismatchDecl *
PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
                                 SourceLocation Loc, StringRef Name,
                                 StringRef Value) {
  size_t ValueStart = Name.size() + 1;
  PragmaDetectMismatchDecl *PDMD =
      new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
          PragmaDetectMismatchDecl(DC, Loc, ValueStart);
  memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
  PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
  memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
         Value.size());
  PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
  return PDMD;
}

PragmaDetectMismatchDecl *
PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
                                             unsigned NameValueSize) {
  return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
      PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
}

void ExternCContextDecl::anchor() {}

ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
                                               TranslationUnitDecl *DC) {
  return new (C, DC) ExternCContextDecl(DC);
}

void LabelDecl::anchor() {}

LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
                             SourceLocation IdentL, IdentifierInfo *II) {
  return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
}

LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
                             SourceLocation IdentL, IdentifierInfo *II,
                             SourceLocation GnuLabelL) {
  assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
  return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
}

LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
  return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
                               SourceLocation());
}

void LabelDecl::setMSAsmLabel(StringRef Name) {
char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
  memcpy(Buffer, Name.data(), Name.size());
  Buffer[Name.size()] = '\0';
  MSAsmName = Buffer;
}

void ValueDecl::anchor() {}

bool ValueDecl::isWeak() const {
  auto *MostRecent = getMostRecentDecl();
  return MostRecent->hasAttr<WeakAttr>() ||
         MostRecent->hasAttr<WeakRefAttr>() || isWeakImported();
}

void ImplicitParamDecl::anchor() {}

ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
                                             SourceLocation IdLoc,
                                             IdentifierInfo *Id, QualType Type,
                                             ImplicitParamKind ParamKind) {
  return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
}

ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
                                             ImplicitParamKind ParamKind) {
  return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
}

ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
                                                         unsigned ID) {
  return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
}

FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
                                   SourceLocation StartLoc,
                                   const DeclarationNameInfo &NameInfo,
                                   QualType T, TypeSourceInfo *TInfo,
                                   StorageClass SC, bool isInlineSpecified,
                                   bool hasWrittenPrototype,
                                   ConstexprSpecKind ConstexprKind,
                                   Expr *TrailingRequiresClause) {
  FunctionDecl *New =
      new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
                               SC, isInlineSpecified, ConstexprKind,
                               TrailingRequiresClause);
  New->setHasWrittenPrototype(hasWrittenPrototype);
  return New;
}

FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
  return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
                                  DeclarationNameInfo(), QualType(), nullptr,
                                  SC_None, false, CSK_unspecified, nullptr);
}

BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
  return new (C, DC) BlockDecl(DC, L);
}

BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
  return new (C, ID) BlockDecl(nullptr, SourceLocation());
}

CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
    : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
      NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}

CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
                                   unsigned NumParams) {
  return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
      CapturedDecl(DC, NumParams);
}

CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
                                               unsigned NumParams) {
  return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
      CapturedDecl(nullptr, NumParams);
}

Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }

bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }

EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
                                           SourceLocation L,
                                           IdentifierInfo *Id, QualType T,
                                           Expr *E, const llvm::APSInt &V) {
  return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
}

EnumConstantDecl *
EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
  return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
                                      QualType(), nullptr, llvm::APSInt());
}

void IndirectFieldDecl::anchor() {}

IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
                                     SourceLocation L, DeclarationName N,
                                     QualType T,
                                     MutableArrayRef<NamedDecl *> CH)
    : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
      ChainingSize(CH.size()) {
  // In C++, indirect field declarations conflict with tag declarations in the
  // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
  if (C.getLangOpts().CPlusPlus)
    IdentifierNamespace |= IDNS_Tag;
}

IndirectFieldDecl *
IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
                          IdentifierInfo *Id, QualType T,
                          llvm::MutableArrayRef<NamedDecl *> CH) {
  return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
}

IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
                                                         unsigned ID) {
  return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
                                       DeclarationName(), QualType(), None);
}

SourceRange EnumConstantDecl::getSourceRange() const {
  SourceLocation End = getLocation();
  if (Init)
    End = Init->getEndLoc();
  return SourceRange(getLocation(), End);
}

void TypeDecl::anchor() {}

TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
                                 SourceLocation StartLoc, SourceLocation IdLoc,
                                 IdentifierInfo *Id, TypeSourceInfo *TInfo) {
  return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
}

void TypedefNameDecl::anchor() {}

TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
  if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
    auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
    auto *ThisTypedef = this;
    if (AnyRedecl && OwningTypedef) {
      OwningTypedef = OwningTypedef->getCanonicalDecl();
      ThisTypedef = ThisTypedef->getCanonicalDecl();
    }
    if (OwningTypedef == ThisTypedef)
      return TT->getDecl();
  }

  return nullptr;
}

bool TypedefNameDecl::isTransparentTagSlow() const {
  auto determineIsTransparent = [&]() {
    if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
      if (auto *TD = TT->getDecl()) {
        if (TD->getName() != getName())
          return false;
        SourceLocation TTLoc = getLocation();
        SourceLocation TDLoc = TD->getLocation();
        if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
          return false;
        SourceManager &SM = getASTContext().getSourceManager();
        return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
      }
    }
    return false;
  };

  bool isTransparent = determineIsTransparent();
  MaybeModedTInfo.setInt((isTransparent << 1) | 1);
  return isTransparent;
}

TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
  return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
                                 nullptr, nullptr);
}

TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
                                     SourceLocation StartLoc,
                                     SourceLocation IdLoc, IdentifierInfo *Id,
                                     TypeSourceInfo *TInfo) {
  return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
}

TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
  return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
                                   SourceLocation(), nullptr, nullptr);
}

SourceRange TypedefDecl::getSourceRange() const {
  SourceLocation RangeEnd = getLocation();
  if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
    if (typeIsPostfix(TInfo->getType()))
      RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
  }
  return SourceRange(getBeginLoc(), RangeEnd);
}

SourceRange TypeAliasDecl::getSourceRange() const {
  SourceLocation RangeEnd = getBeginLoc();
  if (TypeSourceInfo *TInfo = getTypeSourceInfo())
    RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
  return SourceRange(getBeginLoc(), RangeEnd);
}

void FileScopeAsmDecl::anchor() {}

FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
                                           StringLiteral *Str,
                                           SourceLocation AsmLoc,
                                           SourceLocation RParenLoc) {
  return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
}

FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
                                                       unsigned ID) {
  return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
                                      SourceLocation());
}

void EmptyDecl::anchor() {}

EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
  return new (C, DC) EmptyDecl(DC, L);
}

EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
  return new (C, ID) EmptyDecl(nullptr, SourceLocation());
}

//===----------------------------------------------------------------------===//
// ImportDecl Implementation
//===----------------------------------------------------------------------===//

/// Retrieve the number of module identifiers needed to name the given
/// module.
static unsigned getNumModuleIdentifiers(Module *Mod) {
  unsigned Result = 1;
  while (Mod->Parent) {
    Mod = Mod->Parent;
    ++Result;
  }
  return Result;
}

ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
                       Module *Imported,
                       ArrayRef<SourceLocation> IdentifierLocs)
    : Decl(Import, DC, StartLoc), ImportedModule(Imported),
      NextLocalImportAndComplete(nullptr, true) {
  assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
  auto *StoredLocs = getTrailingObjects<SourceLocation>();
  std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
                          StoredLocs);
}

ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
                       Module *Imported, SourceLocation EndLoc)
    : Decl(Import, DC, StartLoc), ImportedModule(Imported),
      NextLocalImportAndComplete(nullptr, false) {
  *getTrailingObjects<SourceLocation>() = EndLoc;
}

ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
                               SourceLocation StartLoc, Module *Imported,
                               ArrayRef<SourceLocation> IdentifierLocs) {
  return new (C, DC,
              additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
      ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
}

ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
                                       SourceLocation StartLoc,
                                       Module *Imported,
                                       SourceLocation EndLoc) {
  ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
      ImportDecl(DC, StartLoc, Imported, EndLoc);
  Import->setImplicit();
  return Import;
}

ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
                                           unsigned NumLocations) {
  return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
      ImportDecl(EmptyShell());
}

ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
  if (!isImportComplete())
    return None;

  const auto *StoredLocs = getTrailingObjects<SourceLocation>();
  return llvm::makeArrayRef(StoredLocs,
                            getNumModuleIdentifiers(getImportedModule()));
}

SourceRange ImportDecl::getSourceRange() const {
  if (!isImportComplete())
    return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());

  return SourceRange(getLocation(), getIdentifierLocs().back());
}

//===----------------------------------------------------------------------===//
// ExportDecl Implementation
//===----------------------------------------------------------------------===//

void ExportDecl::anchor() {}

ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
                               SourceLocation ExportLoc) {
  return new (C, DC) ExportDecl(DC, ExportLoc);
}

ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
  return new (C, ID) ExportDecl(nullptr, SourceLocation());
}