Clang Language Extensions
- Introduction
- Feature Checking Macros
- Include File Checking Macros
- Builtin Macros
- Vectors and Extended Vectors
- Matrix Types
- Half-Precision Floating Point
- Messages on
deprecated
andunavailable
Attributes - Attributes on Enumerators
- 'User-Specified' System Frameworks
- Checks for Standard Language Features
- Type Trait Primitives
- Blocks
- ASM Goto with Output Constraints
- Objective-C Features
- Initializer lists for complex numbers in C
- Builtin Functions
- Non-standard C++11 Attributes
- Target-Specific Extensions
- Extensions for Static Analysis
- Extensions for Dynamic Analysis
- Extensions for selectively disabling optimization
- Extensions for loop hint optimizations
- Extensions to specify floating-point flags
- Specifying an attribute for multiple declarations (#pragma clang attribute)
- Specifying section names for global objects (#pragma clang section)
- Specifying Linker Options on ELF Targets
- Evaluating Object Size Dynamically
- Extended Integer Types
- Intrinsics Support within Constant Expressions
Introduction
This document describes the language extensions provided by Clang. In addition to the language extensions listed here, Clang aims to support a broad range of GCC extensions. Please see the GCC manual for more information on these extensions.
Feature Checking Macros
Language extensions can be very useful, but only if you know you can depend on them. In order to allow fine-grain features checks, we support three builtin function-like macros. This allows you to directly test for a feature in your code without having to resort to something like autoconf or fragile "compiler version checks".
__has_builtin
This function-like macro takes a single identifier argument that is the name of a builtin function, a builtin pseudo-function (taking one or more type arguments), or a builtin template. It evaluates to 1 if the builtin is supported or 0 if not. It can be used like this:
#ifndef __has_builtin // Optional of course.
#define __has_builtin(x) 0 // Compatibility with non-clang compilers.
#endif
...
#if __has_builtin(__builtin_trap)
__builtin_trap();
#else
abort();
#endif
...
Note
Prior to Clang 10, __has_builtin
could not be used to detect most builtin
pseudo-functions.
__has_builtin
should not be used to detect support for a builtin macro;
use #ifdef
instead.
__has_feature
and __has_extension
These function-like macros take a single identifier argument that is the name
of a feature. __has_feature
evaluates to 1 if the feature is both
supported by Clang and standardized in the current language standard or 0 if
not (but see :ref:`below <langext-has-feature-back-compat>`), while
__has_extension
evaluates to 1 if the feature is supported by Clang in the
current language (either as a language extension or a standard language
feature) or 0 if not. They can be used like this:
#ifndef __has_feature // Optional of course.
#define __has_feature(x) 0 // Compatibility with non-clang compilers.
#endif
#ifndef __has_extension
#define __has_extension __has_feature // Compatibility with pre-3.0 compilers.
#endif
...
#if __has_feature(cxx_rvalue_references)
// This code will only be compiled with the -std=c++11 and -std=gnu++11
// options, because rvalue references are only standardized in C++11.
#endif
#if __has_extension(cxx_rvalue_references)
// This code will be compiled with the -std=c++11, -std=gnu++11, -std=c++98
// and -std=gnu++98 options, because rvalue references are supported as a
// language extension in C++98.
#endif
For backward compatibility, __has_feature
can also be used to test
for support for non-standardized features, i.e. features not prefixed c_
,
cxx_
or objc_
.
Another use of __has_feature
is to check for compiler features not related
to the language standard, such as e.g. :doc:`AddressSanitizer
<AddressSanitizer>`.
If the -pedantic-errors
option is given, __has_extension
is equivalent
to __has_feature
.
The feature tag is described along with the language feature below.
The feature name or extension name can also be specified with a preceding and
following __
(double underscore) to avoid interference from a macro with
the same name. For instance, __cxx_rvalue_references__
can be used instead
of cxx_rvalue_references
.
__has_cpp_attribute
This function-like macro is available in C++20 by default, and is provided as an extension in earlier language standards. It takes a single argument that is the name of a double-square-bracket-style attribute. The argument can either be a single identifier or a scoped identifier. If the attribute is supported, a nonzero value is returned. If the attribute is a standards-based attribute, this macro returns a nonzero value based on the year and month in which the attribute was voted into the working draft. See WG21 SD-6 for the list of values returned for standards-based attributes. If the attribute is not supported by the current compliation target, this macro evaluates to 0. It can be used like this:
#ifndef __has_cpp_attribute // For backwards compatibility
#define __has_cpp_attribute(x) 0
#endif
...
#if __has_cpp_attribute(clang::fallthrough)
#define FALLTHROUGH [[clang::fallthrough]]
#else
#define FALLTHROUGH
#endif
...
The attribute scope tokens clang
and _Clang
are interchangeable, as are
the attribute scope tokens gnu
and __gnu__
. Attribute tokens in either
of these namespaces can be specified with a preceding and following __
(double underscore) to avoid interference from a macro with the same name. For
instance, gnu::__const__
can be used instead of gnu::const
.
__has_c_attribute
This function-like macro takes a single argument that is the name of an attribute exposed with the double square-bracket syntax in C mode. The argument can either be a single identifier or a scoped identifier. If the attribute is supported, a nonzero value is returned. If the attribute is not supported by the current compilation target, this macro evaluates to 0. It can be used like this:
#ifndef __has_c_attribute // Optional of course.
#define __has_c_attribute(x) 0 // Compatibility with non-clang compilers.
#endif
...
#if __has_c_attribute(fallthrough)
#define FALLTHROUGH [[fallthrough]]
#else
#define FALLTHROUGH
#endif
...
The attribute scope tokens clang
and _Clang
are interchangeable, as are
the attribute scope tokens gnu
and __gnu__
. Attribute tokens in either
of these namespaces can be specified with a preceding and following __
(double underscore) to avoid interference from a macro with the same name. For
instance, gnu::__const__
can be used instead of gnu::const
.
__has_attribute
This function-like macro takes a single identifier argument that is the name of a GNU-style attribute. It evaluates to 1 if the attribute is supported by the current compilation target, or 0 if not. It can be used like this:
#ifndef __has_attribute // Optional of course.
#define __has_attribute(x) 0 // Compatibility with non-clang compilers.
#endif
...
#if __has_attribute(always_inline)
#define ALWAYS_INLINE __attribute__((always_inline))
#else
#define ALWAYS_INLINE
#endif
...
The attribute name can also be specified with a preceding and following __
(double underscore) to avoid interference from a macro with the same name. For
instance, __always_inline__
can be used instead of always_inline
.
__has_declspec_attribute
This function-like macro takes a single identifier argument that is the name of
an attribute implemented as a Microsoft-style __declspec
attribute. It
evaluates to 1 if the attribute is supported by the current compilation target,
or 0 if not. It can be used like this:
#ifndef __has_declspec_attribute // Optional of course.
#define __has_declspec_attribute(x) 0 // Compatibility with non-clang compilers.
#endif
...
#if __has_declspec_attribute(dllexport)
#define DLLEXPORT __declspec(dllexport)
#else
#define DLLEXPORT
#endif
...
The attribute name can also be specified with a preceding and following __
(double underscore) to avoid interference from a macro with the same name. For
instance, __dllexport__
can be used instead of dllexport
.
__is_identifier
This function-like macro takes a single identifier argument that might be either a reserved word or a regular identifier. It evaluates to 1 if the argument is just a regular identifier and not a reserved word, in the sense that it can then be used as the name of a user-defined function or variable. Otherwise it evaluates to 0. It can be used like this:
...
#ifdef __is_identifier // Compatibility with non-clang compilers.
#if __is_identifier(__wchar_t)
typedef wchar_t __wchar_t;
#endif
#endif
__wchar_t WideCharacter;
...
Include File Checking Macros
Not all developments systems have the same include files. The
:ref:`langext-__has_include` and :ref:`langext-__has_include_next` macros allow
you to check for the existence of an include file before doing a possibly
failing #include
directive. Include file checking macros must be used
as expressions in #if
or #elif
preprocessing directives.
__has_include
This function-like macro takes a single file name string argument that is the name of an include file. It evaluates to 1 if the file can be found using the include paths, or 0 otherwise:
// Note the two possible file name string formats.
#if __has_include("myinclude.h") && __has_include(<stdint.h>)
# include "myinclude.h"
#endif
To test for this feature, use #if defined(__has_include)
:
// To avoid problem with non-clang compilers not having this macro.
#if defined(__has_include)
#if __has_include("myinclude.h")
# include "myinclude.h"
#endif
#endif
__has_include_next
This function-like macro takes a single file name string argument that is the
name of an include file. It is like __has_include
except that it looks for
the second instance of the given file found in the include paths. It evaluates
to 1 if the second instance of the file can be found using the include paths,
or 0 otherwise:
// Note the two possible file name string formats.
#if __has_include_next("myinclude.h") && __has_include_next(<stdint.h>)
# include_next "myinclude.h"
#endif
// To avoid problem with non-clang compilers not having this macro.
#if defined(__has_include_next)
#if __has_include_next("myinclude.h")
# include_next "myinclude.h"
#endif
#endif
Note that __has_include_next
, like the GNU extension #include_next
directive, is intended for use in headers only, and will issue a warning if
used in the top-level compilation file. A warning will also be issued if an
absolute path is used in the file argument.
__has_warning
This function-like macro takes a string literal that represents a command line option for a warning and returns true if that is a valid warning option.
#if __has_warning("-Wformat")
...
#endif
Builtin Macros
__BASE_FILE__
- Defined to a string that contains the name of the main input file passed to Clang.
__FILE_NAME__
- Clang-specific extension that functions similar to
__FILE__
but only renders the last path component (the filename) instead of an invocation dependent full path to that file. __COUNTER__
- Defined to an integer value that starts at zero and is incremented each time
the
__COUNTER__
macro is expanded. __INCLUDE_LEVEL__
- Defined to an integral value that is the include depth of the file currently being translated. For the main file, this value is zero.
__TIMESTAMP__
- Defined to the date and time of the last modification of the current source file.
__clang__
- Defined when compiling with Clang
__clang_major__
- Defined to the major marketing version number of Clang (e.g., the 2 in 2.0.1). Note that marketing version numbers should not be used to check for language features, as different vendors use different numbering schemes. Instead, use the :ref:`langext-feature_check`.
__clang_minor__
- Defined to the minor version number of Clang (e.g., the 0 in 2.0.1). Note that marketing version numbers should not be used to check for language features, as different vendors use different numbering schemes. Instead, use the :ref:`langext-feature_check`.
__clang_patchlevel__
- Defined to the marketing patch level of Clang (e.g., the 1 in 2.0.1).
__clang_version__
- Defined to a string that captures the Clang marketing version, including the
Subversion tag or revision number, e.g., "
1.5 (trunk 102332)
".
Vectors and Extended Vectors
Supports the GCC, OpenCL, AltiVec and NEON vector extensions.
OpenCL vector types are created using the ext_vector_type
attribute. It
supports the V.xyzw
syntax and other tidbits as seen in OpenCL. An example
is:
typedef float float4 __attribute__((ext_vector_type(4)));
typedef float float2 __attribute__((ext_vector_type(2)));
float4 foo(float2 a, float2 b) {
float4 c;
c.xz = a;
c.yw = b;
return c;
}
Query for this feature with __has_attribute(ext_vector_type)
.
Giving -maltivec
option to clang enables support for AltiVec vector syntax
and functions. For example:
vector float foo(vector int a) {
vector int b;
b = vec_add(a, a) + a;
return (vector float)b;
}
NEON vector types are created using neon_vector_type
and
neon_polyvector_type
attributes. For example:
typedef __attribute__((neon_vector_type(8))) int8_t int8x8_t;
typedef __attribute__((neon_polyvector_type(16))) poly8_t poly8x16_t;
int8x8_t foo(int8x8_t a) {
int8x8_t v;
v = a;
return v;
}
Vector Literals
Vector literals can be used to create vectors from a set of scalars, or vectors. Either parentheses or braces form can be used. In the parentheses form the number of literal values specified must be one, i.e. referring to a scalar value, or must match the size of the vector type being created. If a single scalar literal value is specified, the scalar literal value will be replicated to all the components of the vector type. In the brackets form any number of literals can be specified. For example:
typedef int v4si __attribute__((__vector_size__(16)));
typedef float float4 __attribute__((ext_vector_type(4)));
typedef float float2 __attribute__((ext_vector_type(2)));
v4si vsi = (v4si){1, 2, 3, 4};
float4 vf = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
vector int vi1 = (vector int)(1); // vi1 will be (1, 1, 1, 1).
vector int vi2 = (vector int){1}; // vi2 will be (1, 0, 0, 0).
vector int vi3 = (vector int)(1, 2); // error
vector int vi4 = (vector int){1, 2}; // vi4 will be (1, 2, 0, 0).
vector int vi5 = (vector int)(1, 2, 3, 4);
float4 vf = (float4)((float2)(1.0f, 2.0f), (float2)(3.0f, 4.0f));
Vector Operations
The table below shows the support for each operation by vector extension. A dash indicates that an operation is not accepted according to a corresponding specification.
Operator | OpenCL | AltiVec | GCC | NEON |
---|---|---|---|---|
[] | yes | yes | yes | -- |
unary operators +, -- | yes | yes | yes | -- |
++, -- -- | yes | yes | yes | -- |
+,--,*,/,% | yes | yes | yes | -- |
bitwise operators &,|,^,~ | yes | yes | yes | -- |
>>,<< | yes | yes | yes | -- |
!, &&, || | yes | -- | yes | -- |
==, !=, >, <, >=, <= | yes | yes | yes | -- |
= | yes | yes | yes | yes |
?: [1] | yes | -- | yes | -- |
sizeof | yes | yes | yes | yes |
C-style cast | yes | yes | yes | no |
reinterpret_cast | yes | no | yes | no |
static_cast | yes | no | yes | no |
const_cast | no | no | no | no |
See also :ref:`langext-__builtin_shufflevector`, :ref:`langext-__builtin_convertvector`.
[1] | ternary operator(?:) has different behaviors depending on condition operand's vector type. If the condition is a GNU vector (i.e. __vector_size__), it's only available in C++ and uses normal bool conversions (that is, != 0). If it's an extension (OpenCL) vector, it's only available in C and OpenCL C. And it selects base on signedness of the condition operands (OpenCL v1.1 s6.3.9). |
Matrix Types
Clang provides an extension for matrix types, which is currently being implemented. See :ref:`the draft specification <matrixtypes>` for more details.
For example, the code below uses the matrix types extension to multiply two 4x4 float matrices and add the result to a third 4x4 matrix.
typedef float m4x4_t __attribute__((matrix_type(4, 4)));
m4x4_t f(m4x4_t a, m4x4_t b, m4x4_t c) {
return a + b * c;
}
Half-Precision Floating Point
Clang supports three half-precision (16-bit) floating point types: __fp16
,
_Float16
and __bf16
. These types are supported in all language modes.
__fp16
is supported on every target, as it is purely a storage format; see below.
_Float16
is currently only supported on the following targets, with further
targets pending ABI standardization:
- 32-bit ARM
- 64-bit ARM (AArch64)
- SPIR
_Float16
will be supported on more targets as they define ABIs for it.
__bf16
is purely a storage format; it is currently only supported on the following targets:
* 32-bit ARM
* 64-bit ARM (AArch64)
The __bf16
type is only available when supported in hardware.
__fp16
is a storage and interchange format only. This means that values of
__fp16
are immediately promoted to (at least) float
when used in arithmetic
operations, so that e.g. the result of adding two __fp16
values has type float
.
The behavior of __fp16
is specified by the ARM C Language Extensions (ACLE).
Clang uses the binary16
format from IEEE 754-2008 for __fp16
, not the ARM
alternative format.
_Float16
is an extended floating-point type. This means that, just like arithmetic on
float
or double
, arithmetic on _Float16
operands is formally performed in the
_Float16
type, so that e.g. the result of adding two _Float16
values has type
_Float16
. The behavior of _Float16
is specified by ISO/IEC TS 18661-3:2015
("Floating-point extensions for C"). As with __fp16
, Clang uses the binary16
format from IEEE 754-2008 for _Float16
.
_Float16
arithmetic will be performed using native half-precision support
when available on the target (e.g. on ARMv8.2a); otherwise it will be performed
at a higher precision (currently always float
) and then truncated down to
_Float16
. Note that C and C++ allow intermediate floating-point operands
of an expression to be computed with greater precision than is expressible in
their type, so Clang may avoid intermediate truncations in certain cases; this may
lead to results that are inconsistent with native arithmetic.
It is recommended that portable code use _Float16
instead of __fp16
,
as it has been defined by the C standards committee and has behavior that is
more familiar to most programmers.
Because __fp16
operands are always immediately promoted to float
, the
common real type of __fp16
and _Float16
for the purposes of the usual
arithmetic conversions is float
.
A literal can be given _Float16
type using the suffix f16
. For example,
3.14f16
.
Because default argument promotion only applies to the standard floating-point
types, _Float16
values are not promoted to double
when passed as variadic
or untyped arguments. As a consequence, some caution must be taken when using
certain library facilities with _Float16
; for example, there is no printf
format
specifier for _Float16
, and (unlike float
) it will not be implicitly promoted to
double
when passed to printf
, so the programmer must explicitly cast it to
double
before using it with an %f
or similar specifier.
Messages on deprecated
and unavailable
Attributes
An optional string message can be added to the deprecated
and
unavailable
attributes. For example:
void explode(void) __attribute__((deprecated("extremely unsafe, use 'combust' instead!!!")));
If the deprecated or unavailable declaration is used, the message will be incorporated into the appropriate diagnostic:
harmless.c:4:3: warning: 'explode' is deprecated: extremely unsafe, use 'combust' instead!!!
[-Wdeprecated-declarations]
explode();
^
Query for this feature with
__has_extension(attribute_deprecated_with_message)
and
__has_extension(attribute_unavailable_with_message)
.
Attributes on Enumerators
Clang allows attributes to be written on individual enumerators. This allows enumerators to be deprecated, made unavailable, etc. The attribute must appear after the enumerator name and before any initializer, like so:
enum OperationMode {
OM_Invalid,
OM_Normal,
OM_Terrified __attribute__((deprecated)),
OM_AbortOnError __attribute__((deprecated)) = 4
};
Attributes on the enum
declaration do not apply to individual enumerators.
Query for this feature with __has_extension(enumerator_attributes)
.
'User-Specified' System Frameworks
Clang provides a mechanism by which frameworks can be built in such a way that they will always be treated as being "system frameworks", even if they are not present in a system framework directory. This can be useful to system framework developers who want to be able to test building other applications with development builds of their framework, including the manner in which the compiler changes warning behavior for system headers.
Framework developers can opt-in to this mechanism by creating a
".system_framework
" file at the top-level of their framework. That is, the
framework should have contents like:
.../TestFramework.framework
.../TestFramework.framework/.system_framework
.../TestFramework.framework/Headers
.../TestFramework.framework/Headers/TestFramework.h
...
Clang will treat the presence of this file as an indicator that the framework should be treated as a system framework, regardless of how it was found in the framework search path. For consistency, we recommend that such files never be included in installed versions of the framework.
Checks for Standard Language Features
The __has_feature
macro can be used to query if certain standard language
features are enabled. The __has_extension
macro can be used to query if
language features are available as an extension when compiling for a standard
which does not provide them. The features which can be tested are listed here.
Since Clang 3.4, the C++ SD-6 feature test macros are also supported.
These are macros with names of the form __cpp_<feature_name>
, and are
intended to be a portable way to query the supported features of the compiler.
See the C++ status page for
information on the version of SD-6 supported by each Clang release, and the
macros provided by that revision of the recommendations.
C++98
The features listed below are part of the C++98 standard. These features are enabled by default when compiling C++ code.
C++ exceptions
Use __has_feature(cxx_exceptions)
to determine if C++ exceptions have been
enabled. For example, compiling code with -fno-exceptions
disables C++
exceptions.
C++ RTTI
Use __has_feature(cxx_rtti)
to determine if C++ RTTI has been enabled. For
example, compiling code with -fno-rtti
disables the use of RTTI.
C++11
The features listed below are part of the C++11 standard. As a result, all
these features are enabled with the -std=c++11
or -std=gnu++11
option
when compiling C++ code.
C++11 SFINAE includes access control
Use __has_feature(cxx_access_control_sfinae)
or
__has_extension(cxx_access_control_sfinae)
to determine whether
access-control errors (e.g., calling a private constructor) are considered to
be template argument deduction errors (aka SFINAE errors), per C++ DR1170.
C++11 alias templates
Use __has_feature(cxx_alias_templates)
or
__has_extension(cxx_alias_templates)
to determine if support for C++11's
alias declarations and alias templates is enabled.
C++11 alignment specifiers
Use __has_feature(cxx_alignas)
or __has_extension(cxx_alignas)
to
determine if support for alignment specifiers using alignas
is enabled.
Use __has_feature(cxx_alignof)
or __has_extension(cxx_alignof)
to
determine if support for the alignof
keyword is enabled.
C++11 attributes
Use __has_feature(cxx_attributes)
or __has_extension(cxx_attributes)
to
determine if support for attribute parsing with C++11's square bracket notation
is enabled.
C++11 generalized constant expressions
Use __has_feature(cxx_constexpr)
to determine if support for generalized
constant expressions (e.g., constexpr
) is enabled.
C++11 decltype()
Use __has_feature(cxx_decltype)
or __has_extension(cxx_decltype)
to
determine if support for the decltype()
specifier is enabled. C++11's
decltype
does not require type-completeness of a function call expression.
Use __has_feature(cxx_decltype_incomplete_return_types)
or
__has_extension(cxx_decltype_incomplete_return_types)
to determine if
support for this feature is enabled.
C++11 default template arguments in function templates
Use __has_feature(cxx_default_function_template_args)
or
__has_extension(cxx_default_function_template_args)
to determine if support
for default template arguments in function templates is enabled.
C++11 default
ed functions
Use __has_feature(cxx_defaulted_functions)
or
__has_extension(cxx_defaulted_functions)
to determine if support for
defaulted function definitions (with = default
) is enabled.
C++11 delegating constructors
Use __has_feature(cxx_delegating_constructors)
to determine if support for
delegating constructors is enabled.
C++11 deleted
functions
Use __has_feature(cxx_deleted_functions)
or
__has_extension(cxx_deleted_functions)
to determine if support for deleted
function definitions (with = delete
) is enabled.
C++11 explicit conversion functions
Use __has_feature(cxx_explicit_conversions)
to determine if support for
explicit
conversion functions is enabled.
C++11 generalized initializers
Use __has_feature(cxx_generalized_initializers)
to determine if support for
generalized initializers (using braced lists and std::initializer_list
) is
enabled.
C++11 implicit move constructors/assignment operators
Use __has_feature(cxx_implicit_moves)
to determine if Clang will implicitly
generate move constructors and move assignment operators where needed.
C++11 inheriting constructors
Use __has_feature(cxx_inheriting_constructors)
to determine if support for
inheriting constructors is enabled.
C++11 inline namespaces
Use __has_feature(cxx_inline_namespaces)
or
__has_extension(cxx_inline_namespaces)
to determine if support for inline
namespaces is enabled.
C++11 lambdas
Use __has_feature(cxx_lambdas)
or __has_extension(cxx_lambdas)
to
determine if support for lambdas is enabled.
C++11 local and unnamed types as template arguments
Use __has_feature(cxx_local_type_template_args)
or
__has_extension(cxx_local_type_template_args)
to determine if support for
local and unnamed types as template arguments is enabled.
C++11 noexcept
Use __has_feature(cxx_noexcept)
or __has_extension(cxx_noexcept)
to
determine if support for noexcept exception specifications is enabled.
C++11 in-class non-static data member initialization
Use __has_feature(cxx_nonstatic_member_init)
to determine whether in-class
initialization of non-static data members is enabled.
C++11 nullptr
Use __has_feature(cxx_nullptr)
or __has_extension(cxx_nullptr)
to
determine if support for nullptr
is enabled.
C++11 override control
Use __has_feature(cxx_override_control)
or
__has_extension(cxx_override_control)
to determine if support for the
override control keywords is enabled.
C++11 reference-qualified functions
Use __has_feature(cxx_reference_qualified_functions)
or
__has_extension(cxx_reference_qualified_functions)
to determine if support
for reference-qualified functions (e.g., member functions with &
or &&
applied to *this
) is enabled.
C++11 range-based for
loop
Use __has_feature(cxx_range_for)
or __has_extension(cxx_range_for)
to
determine if support for the range-based for loop is enabled.
C++11 raw string literals
Use __has_feature(cxx_raw_string_literals)
to determine if support for raw
string literals (e.g., R"x(foo\bar)x"
) is enabled.
C++11 rvalue references
Use __has_feature(cxx_rvalue_references)
or
__has_extension(cxx_rvalue_references)
to determine if support for rvalue
references is enabled.
C++11 static_assert()
Use __has_feature(cxx_static_assert)
or
__has_extension(cxx_static_assert)
to determine if support for compile-time
assertions using static_assert
is enabled.
C++11 thread_local
Use __has_feature(cxx_thread_local)
to determine if support for
thread_local
variables is enabled.
C++11 type inference
Use __has_feature(cxx_auto_type)
or __has_extension(cxx_auto_type)
to
determine C++11 type inference is supported using the auto
specifier. If
this is disabled, auto
will instead be a storage class specifier, as in C
or C++98.
C++11 strongly typed enumerations
Use __has_feature(cxx_strong_enums)
or
__has_extension(cxx_strong_enums)
to determine if support for strongly
typed, scoped enumerations is enabled.
C++11 trailing return type
Use __has_feature(cxx_trailing_return)
or
__has_extension(cxx_trailing_return)
to determine if support for the
alternate function declaration syntax with trailing return type is enabled.
C++11 Unicode string literals
Use __has_feature(cxx_unicode_literals)
to determine if support for Unicode
string literals is enabled.
C++11 unrestricted unions
Use __has_feature(cxx_unrestricted_unions)
to determine if support for
unrestricted unions is enabled.
C++11 user-defined literals
Use __has_feature(cxx_user_literals)
to determine if support for
user-defined literals is enabled.
C++11 variadic templates
Use __has_feature(cxx_variadic_templates)
or
__has_extension(cxx_variadic_templates)
to determine if support for
variadic templates is enabled.
C++14
The features listed below are part of the C++14 standard. As a result, all
these features are enabled with the -std=C++14
or -std=gnu++14
option
when compiling C++ code.
C++14 binary literals
Use __has_feature(cxx_binary_literals)
or
__has_extension(cxx_binary_literals)
to determine whether
binary literals (for instance, 0b10010
) are recognized. Clang supports this
feature as an extension in all language modes.
C++14 contextual conversions
Use __has_feature(cxx_contextual_conversions)
or
__has_extension(cxx_contextual_conversions)
to determine if the C++14 rules
are used when performing an implicit conversion for an array bound in a
new-expression, the operand of a delete-expression, an integral constant
expression, or a condition in a switch
statement.
C++14 decltype(auto)
Use __has_feature(cxx_decltype_auto)
or
__has_extension(cxx_decltype_auto)
to determine if support
for the decltype(auto)
placeholder type is enabled.
C++14 default initializers for aggregates
Use __has_feature(cxx_aggregate_nsdmi)
or
__has_extension(cxx_aggregate_nsdmi)
to determine if support
for default initializers in aggregate members is enabled.
C++14 digit separators
Use __cpp_digit_separators
to determine if support for digit separators
using single quotes (for instance, 10'000
) is enabled. At this time, there
is no corresponding __has_feature
name
C++14 generalized lambda capture
Use __has_feature(cxx_init_captures)
or
__has_extension(cxx_init_captures)
to determine if support for
lambda captures with explicit initializers is enabled
(for instance, [n(0)] { return ++n; }
).
C++14 generic lambdas
Use __has_feature(cxx_generic_lambdas)
or
__has_extension(cxx_generic_lambdas)
to determine if support for generic
(polymorphic) lambdas is enabled
(for instance, [] (auto x) { return x + 1; }
).
C++14 relaxed constexpr
Use __has_feature(cxx_relaxed_constexpr)
or
__has_extension(cxx_relaxed_constexpr)
to determine if variable
declarations, local variable modification, and control flow constructs
are permitted in constexpr
functions.
C++14 return type deduction
Use __has_feature(cxx_return_type_deduction)
or
__has_extension(cxx_return_type_deduction)
to determine if support
for return type deduction for functions (using auto
as a return type)
is enabled.
C++14 runtime-sized arrays
Use __has_feature(cxx_runtime_array)
or
__has_extension(cxx_runtime_array)
to determine if support
for arrays of runtime bound (a restricted form of variable-length arrays)
is enabled.
Clang's implementation of this feature is incomplete.
C++14 variable templates
Use __has_feature(cxx_variable_templates)
or
__has_extension(cxx_variable_templates)
to determine if support for
templated variable declarations is enabled.
C11
The features listed below are part of the C11 standard. As a result, all these
features are enabled with the -std=c11
or -std=gnu11
option when
compiling C code. Additionally, because these features are all
backward-compatible, they are available as extensions in all language modes.
C11 alignment specifiers
Use __has_feature(c_alignas)
or __has_extension(c_alignas)
to determine
if support for alignment specifiers using _Alignas
is enabled.
Use __has_feature(c_alignof)
or __has_extension(c_alignof)
to determine
if support for the _Alignof
keyword is enabled.
C11 atomic operations
Use __has_feature(c_atomic)
or __has_extension(c_atomic)
to determine
if support for atomic types using _Atomic
is enabled. Clang also provides
:ref:`a set of builtins <langext-__c11_atomic>` which can be used to implement
the <stdatomic.h>
operations on _Atomic
types. Use
__has_include(<stdatomic.h>)
to determine if C11's <stdatomic.h>
header
is available.
Clang will use the system's <stdatomic.h>
header when one is available, and
will otherwise use its own. When using its own, implementations of the atomic
operations are provided as macros. In the cases where C11 also requires a real
function, this header provides only the declaration of that function (along
with a shadowing macro implementation), and you must link to a library which
provides a definition of the function if you use it instead of the macro.
C11 generic selections
Use __has_feature(c_generic_selections)
or
__has_extension(c_generic_selections)
to determine if support for generic
selections is enabled.
As an extension, the C11 generic selection expression is available in all languages supported by Clang. The syntax is the same as that given in the C11 standard.
In C, type compatibility is decided according to the rules given in the appropriate standard, but in C++, which lacks the type compatibility rules used in C, types are considered compatible only if they are equivalent.
C11 _Static_assert()
Use __has_feature(c_static_assert)
or __has_extension(c_static_assert)
to determine if support for compile-time assertions using _Static_assert
is
enabled.
C11 _Thread_local
Use __has_feature(c_thread_local)
or __has_extension(c_thread_local)
to determine if support for _Thread_local
variables is enabled.
Modules
Use __has_feature(modules)
to determine if Modules have been enabled.
For example, compiling code with -fmodules
enables the use of Modules.
More information could be found here.
Type Trait Primitives
Type trait primitives are special builtin constant expressions that can be used by the standard C++ library to facilitate or simplify the implementation of user-facing type traits in the <type_traits> header.
They are not intended to be used directly by user code because they are implementation-defined and subject to change -- as such they're tied closely to the supported set of system headers, currently:
- LLVM's own libc++
- GNU libstdc++
- The Microsoft standard C++ library
Clang supports the GNU C++ type traits and a subset of the Microsoft Visual C++ type traits, as well as nearly all of the Embarcadero C++ type traits.
The following type trait primitives are supported by Clang. Those traits marked
(C++) provide implementations for type traits specified by the C++ standard;
__X(...)
has the same semantics and constraints as the corresponding
std::X_t<...>
or std::X_v<...>
type trait.
-
__array_rank(type)
(Embarcadero): Returns the number of levels of array in the typetype
:0
iftype
is not an array type, and__array_rank(element) + 1
iftype
is an array ofelement
. -
__array_extent(type, dim)
(Embarcadero): Thedim
'th array bound in the typetype
, or0
ifdim >= __array_rank(type)
. -
__has_nothrow_assign
(GNU, Microsoft, Embarcadero): Deprecated, use__is_nothrow_assignable
instead. -
__has_nothrow_move_assign
(GNU, Microsoft): Deprecated, use__is_nothrow_assignable
instead. -
__has_nothrow_copy
(GNU, Microsoft): Deprecated, use__is_nothrow_constructible
instead. -
__has_nothrow_constructor
(GNU, Microsoft): Deprecated, use__is_nothrow_constructible
instead. -
__has_trivial_assign
(GNU, Microsoft, Embarcadero): Deprecated, use__is_trivially_assignable
instead. -
__has_trivial_move_assign
(GNU, Microsoft): Deprecated, use__is_trivially_assignable
instead. -
__has_trivial_copy
(GNU, Microsoft): Deprecated, use__is_trivially_constructible
instead. -
__has_trivial_constructor
(GNU, Microsoft): Deprecated, use__is_trivially_constructible
instead. -
__has_trivial_move_constructor
(GNU, Microsoft): Deprecated, use__is_trivially_constructible
instead. -
__has_trivial_destructor
(GNU, Microsoft, Embarcadero): Deprecated, use__is_trivially_destructible
instead. -
__has_unique_object_representations
(C++, GNU) -
__has_virtual_destructor
(C++, GNU, Microsoft, Embarcadero) -
__is_abstract
(C++, GNU, Microsoft, Embarcadero) -
__is_aggregate
(C++, GNU, Microsoft) -
__is_arithmetic
(C++, Embarcadero) -
__is_array
(C++, Embarcadero) -
__is_assignable
(C++, MSVC 2015) -
__is_base_of
(C++, GNU, Microsoft, Embarcadero) -
__is_class
(C++, GNU, Microsoft, Embarcadero) -
__is_complete_type(type)
(Embarcadero): Returntrue
iftype
is a complete type. Warning: this trait is dangerous because it can return different values at different points in the same program. -
__is_compound
(C++, Embarcadero) -
__is_const
(C++, Embarcadero) -
__is_constructible
(C++, MSVC 2013) -
__is_convertible
(C++, Embarcadero) -
__is_convertible_to
(Microsoft): Synonym for__is_convertible
. -
__is_destructible
(C++, MSVC 2013): Only available in-fms-extensions
mode. -
__is_empty
(C++, GNU, Microsoft, Embarcadero) -
__is_enum
(C++, GNU, Microsoft, Embarcadero) -
__is_final
(C++, GNU, Microsoft) -
__is_floating_point
(C++, Embarcadero) -
__is_function
(C++, Embarcadero) -
__is_fundamental
(C++, Embarcadero) -
__is_integral
(C++, Embarcadero) -
__is_interface_class
(Microsoft): Returnsfalse
, even for types defined with__interface
. -
__is_literal
(Clang): Synonym for__is_literal_type
. -
__is_literal_type
(C++, GNU, Microsoft): Note, the corresponding standard trait was deprecated in C++17 and removed in C++20. -
__is_lvalue_reference
(C++, Embarcadero) -
__is_member_object_pointer
(C++, Embarcadero) -
__is_member_function_pointer
(C++, Embarcadero) -
__is_member_pointer
(C++, Embarcadero) -
__is_nothrow_assignable
(C++, MSVC 2013) -
__is_nothrow_constructible
(C++, MSVC 2013) -
__is_nothrow_destructible
(C++, MSVC 2013) Only available in-fms-extensions
mode. -
__is_object
(C++, Embarcadero) -
__is_pod
(C++, GNU, Microsoft, Embarcadero): Note, the corresponding standard trait was deprecated in C++20. -
__is_pointer
(C++, Embarcadero) -
__is_polymorphic
(C++, GNU, Microsoft, Embarcadero) -
__is_reference
(C++, Embarcadero) -
__is_rvalue_reference
(C++, Embarcadero) -
__is_same
(C++, Embarcadero) -
__is_same_as
(GCC): Synonym for__is_same
. -
__is_scalar
(C++, Embarcadero) -
__is_sealed
(Microsoft): Synonym for__is_final
. -
__is_signed
(C++, Embarcadero): Returns false for enumeration types, and returns true for floating-point types. Note, before Clang 10, returned true for enumeration types if the underlying type was signed, and returned false for floating-point types. -
__is_standard_layout
(C++, GNU, Microsoft, Embarcadero) -
__is_trivial
(C++, GNU, Microsoft, Embarcadero) -
__is_trivially_assignable
(C++, GNU, Microsoft) -
__is_trivially_constructible
(C++, GNU, Microsoft) -
__is_trivially_copyable
(C++, GNU, Microsoft) -
__is_trivially_destructible
(C++, MSVC 2013) -
__is_union
(C++, GNU, Microsoft, Embarcadero) -
__is_unsigned
(C++, Embarcadero) Note that this currently returns true for enumeration types if the underlying type is unsigned, in violation of the requirements forstd::is_unsigned
. This behavior is likely to change in a future version of Clang. -
__is_void
(C++, Embarcadero) -
__is_volatile
(C++, Embarcadero) -
__reference_binds_to_temporary(T, U)
(Clang): Determines whether a reference of typeT
bound to an expression of typeU
would bind to a materialized temporary object. IfT
is not a reference type the result is false. Note this trait will also return false when the initialization ofT
fromU
is ill-formed. -
__underlying_type
(C++, GNU, Microsoft)
In addition, the following expression traits are supported:
-
__is_lvalue_expr(e)
(Embarcadero): Returns true ife
is an lvalue expression. Deprecated, use__is_lvalue_reference(decltype((e)))
instead. -
__is_rvalue_expr(e)
(Embarcadero): Returns true ife
is a prvalue expression. Deprecated, use!__is_reference(decltype((e)))
instead.
There are multiple ways to detect support for a type trait __X
in the
compiler, depending on the oldest version of Clang you wish to support.
- From Clang 10 onwards,
__has_builtin(__X)
can be used. - From Clang 6 onwards,
!__is_identifier(__X)
can be used. - From Clang 3 onwards,
__has_feature(X)
can be used, but only supports the following traits:__has_nothrow_assign
__has_nothrow_copy
__has_nothrow_constructor
__has_trivial_assign
__has_trivial_copy
__has_trivial_constructor
__has_trivial_destructor
__has_virtual_destructor
__is_abstract
__is_base_of
__is_class
__is_constructible
__is_convertible_to
__is_empty
__is_enum
__is_final
__is_literal
__is_standard_layout
__is_pod
__is_polymorphic
__is_sealed
__is_trivial
__is_trivially_assignable
__is_trivially_constructible
__is_trivially_copyable
__is_union
__underlying_type
A simplistic usage example as might be seen in standard C++ headers follows:
#if __has_builtin(__is_convertible_to)
template<typename From, typename To>
struct is_convertible_to {
static const bool value = __is_convertible_to(From, To);
};
#else
// Emulate type trait for compatibility with other compilers.
#endif
Blocks
The syntax and high level language feature description is in :doc:`BlockLanguageSpec<BlockLanguageSpec>`. Implementation and ABI details for the clang implementation are in :doc:`Block-ABI-Apple<Block-ABI-Apple>`.
Query for this feature with __has_extension(blocks)
.
ASM Goto with Output Constraints
In addition to the functionality provided by GCC's extended assembly, clang supports output constraints with the goto form.
The goto form of GCC's extended assembly allows the programmer to branch to a C label from within an inline assembly block. Clang extends this behavior by allowing the programmer to use output constraints:
int foo(int x) {
int y;
asm goto("# %0 %1 %l2" : "=r"(y) : "r"(x) : : err);
return y;
err:
return -1;
}
It's important to note that outputs are valid only on the "fallthrough" branch. Using outputs on an indirect branch may result in undefined behavior. For example, in the function above, use of the value assigned to y in the err block is undefined behavior.
Query for this feature with __has_extension(gnu_asm_goto_with_outputs)
.
Objective-C Features
Related result types
According to Cocoa conventions, Objective-C methods with certain names
("init
", "alloc
", etc.) always return objects that are an instance of
the receiving class's type. Such methods are said to have a "related result
type", meaning that a message send to one of these methods will have the same
static type as an instance of the receiver class. For example, given the
following classes:
@interface NSObject
+ (id)alloc;
- (id)init;
@end
@interface NSArray : NSObject
@end
and this common initialization pattern
NSArray *array = [[NSArray alloc] init];
the type of the expression [NSArray alloc]
is NSArray*
because
alloc
implicitly has a related result type. Similarly, the type of the
expression [[NSArray alloc] init]
is NSArray*
, since init
has a
related result type and its receiver is known to have the type NSArray *
.
If neither alloc
nor init
had a related result type, the expressions
would have had type id
, as declared in the method signature.
A method with a related result type can be declared by using the type
instancetype
as its result type. instancetype
is a contextual keyword
that is only permitted in the result type of an Objective-C method, e.g.
@interface A
+ (instancetype)constructAnA;
@end
The related result type can also be inferred for some methods. To determine
whether a method has an inferred related result type, the first word in the
camel-case selector (e.g., "init
" in "initWithObjects
") is considered,
and the method will have a related result type if its return type is compatible
with the type of its class and if:
- the first word is "
alloc
" or "new
", and the method is a class method, or - the first word is "
autorelease
", "init
", "retain
", or "self
", and the method is an instance method.
If a method with a related result type is overridden by a subclass method, the subclass method must also return a type that is compatible with the subclass type. For example:
@interface NSString : NSObject
- (NSUnrelated *)init; // incorrect usage: NSUnrelated is not NSString or a superclass of NSString
@end
Related result types only affect the type of a message send or property access
via the given method. In all other respects, a method with a related result
type is treated the same way as method that returns id
.
Use __has_feature(objc_instancetype)
to determine whether the
instancetype
contextual keyword is available.
Automatic reference counting
Clang provides support for :doc:`automated reference counting
<AutomaticReferenceCounting>` in Objective-C, which eliminates the need
for manual retain
/release
/autorelease
message sends. There are three
feature macros associated with automatic reference counting:
__has_feature(objc_arc)
indicates the availability of automated reference
counting in general, while __has_feature(objc_arc_weak)
indicates that
automated reference counting also includes support for __weak
pointers to
Objective-C objects. __has_feature(objc_arc_fields)
indicates that C structs
are allowed to have fields that are pointers to Objective-C objects managed by
automatic reference counting.
Weak references
Clang supports ARC-style weak and unsafe references in Objective-C even
outside of ARC mode. Weak references must be explicitly enabled with
the -fobjc-weak
option; use __has_feature((objc_arc_weak))
to test whether they are enabled. Unsafe references are enabled
unconditionally. ARC-style weak and unsafe references cannot be used
when Objective-C garbage collection is enabled.
Except as noted below, the language rules for the __weak
and
__unsafe_unretained
qualifiers (and the weak
and
unsafe_unretained
property attributes) are just as laid out
in the :doc:`ARC specification <AutomaticReferenceCounting>`.
In particular, note that some classes do not support forming weak
references to their instances, and note that special care must be
taken when storing weak references in memory where initialization
and deinitialization are outside the responsibility of the compiler
(such as in malloc
-ed memory).
Loading from a __weak
variable always implicitly retains the
loaded value. In non-ARC modes, this retain is normally balanced
by an implicit autorelease. This autorelease can be suppressed
by performing the load in the receiver position of a -retain
message send (e.g. [weakReference retain]
); note that this performs
only a single retain (the retain done when primitively loading from
the weak reference).
For the most part, __unsafe_unretained
in non-ARC modes is just the
default behavior of variables and therefore is not needed. However,
it does have an effect on the semantics of block captures: normally,
copying a block which captures an Objective-C object or block pointer
causes the captured pointer to be retained or copied, respectively,
but that behavior is suppressed when the captured variable is qualified
with __unsafe_unretained
.
Note that the __weak
qualifier formerly meant the GC qualifier in
all non-ARC modes and was silently ignored outside of GC modes. It now
means the ARC-style qualifier in all non-GC modes and is no longer
allowed if not enabled by either -fobjc-arc
or -fobjc-weak
.
It is expected that -fobjc-weak
will eventually be enabled by default
in all non-GC Objective-C modes.
Enumerations with a fixed underlying type
Clang provides support for C++11 enumerations with a fixed underlying type within Objective-C. For example, one can write an enumeration type as:
typedef enum : unsigned char { Red, Green, Blue } Color;
This specifies that the underlying type, which is used to store the enumeration
value, is unsigned char
.
Use __has_feature(objc_fixed_enum)
to determine whether support for fixed
underlying types is available in Objective-C.
Interoperability with C++11 lambdas
Clang provides interoperability between C++11 lambdas and blocks-based APIs, by
permitting a lambda to be implicitly converted to a block pointer with the
corresponding signature. For example, consider an API such as NSArray
's
array-sorting method:
- (NSArray *)sortedArrayUsingComparator:(NSComparator)cmptr;
NSComparator
is simply a typedef for the block pointer NSComparisonResult
(^)(id, id)
, and parameters of this type are generally provided with block
literals as arguments. However, one can also use a C++11 lambda so long as it
provides the same signature (in this case, accepting two parameters of type
id
and returning an NSComparisonResult
):
NSArray *array = @[@"string 1", @"string 21", @"string 12", @"String 11",
@"String 02"];
const NSStringCompareOptions comparisonOptions
= NSCaseInsensitiveSearch | NSNumericSearch |
NSWidthInsensitiveSearch | NSForcedOrderingSearch;
NSLocale *currentLocale = [NSLocale currentLocale];
NSArray *sorted
= [array sortedArrayUsingComparator:[=](id s1, id s2) -> NSComparisonResult {
NSRange string1Range = NSMakeRange(0, [s1 length]);
return [s1 compare:s2 options:comparisonOptions
range:string1Range locale:currentLocale];
}];
NSLog(@"sorted: %@", sorted);
This code relies on an implicit conversion from the type of the lambda expression (an unnamed, local class type called the closure type) to the corresponding block pointer type. The conversion itself is expressed by a conversion operator in that closure type that produces a block pointer with the same signature as the lambda itself, e.g.,
operator NSComparisonResult (^)(id, id)() const;
This conversion function returns a new block that simply forwards the two
parameters to the lambda object (which it captures by copy), then returns the
result. The returned block is first copied (with Block_copy
) and then
autoreleased. As an optimization, if a lambda expression is immediately
converted to a block pointer (as in the first example, above), then the block
is not copied and autoreleased: rather, it is given the same lifetime as a
block literal written at that point in the program, which avoids the overhead
of copying a block to the heap in the common case.
The conversion from a lambda to a block pointer is only available in Objective-C++, and not in C++ with blocks, due to its use of Objective-C memory management (autorelease).
Object Literals and Subscripting
Clang provides support for :doc:`Object Literals and Subscripting
<ObjectiveCLiterals>` in Objective-C, which simplifies common Objective-C
programming patterns, makes programs more concise, and improves the safety of
container creation. There are several feature macros associated with object
literals and subscripting: __has_feature(objc_array_literals)
tests the
availability of array literals; __has_feature(objc_dictionary_literals)
tests the availability of dictionary literals;
__has_feature(objc_subscripting)
tests the availability of object
subscripting.
Objective-C Autosynthesis of Properties
Clang provides support for autosynthesis of declared properties. Using this
feature, clang provides default synthesis of those properties not declared
@dynamic and not having user provided backing getter and setter methods.
__has_feature(objc_default_synthesize_properties)
checks for availability
of this feature in version of clang being used.
Objective-C retaining behavior attributes
In Objective-C, functions and methods are generally assumed to follow the
Cocoa Memory Management
conventions for ownership of object arguments and
return values. However, there are exceptions, and so Clang provides attributes
to allow these exceptions to be documented. This are used by ARC and the
static analyzer Some exceptions may be
better described using the objc_method_family
attribute instead.
Usage: The ns_returns_retained
, ns_returns_not_retained
,
ns_returns_autoreleased
, cf_returns_retained
, and
cf_returns_not_retained
attributes can be placed on methods and functions
that return Objective-C or CoreFoundation objects. They are commonly placed at
the end of a function prototype or method declaration:
id foo() __attribute__((ns_returns_retained));
- (NSString *)bar:(int)x __attribute__((ns_returns_retained));
The *_returns_retained
attributes specify that the returned object has a +1
retain count. The *_returns_not_retained
attributes specify that the return
object has a +0 retain count, even if the normal convention for its selector
would be +1. ns_returns_autoreleased
specifies that the returned object is
+0, but is guaranteed to live at least as long as the next flush of an
autorelease pool.
Usage: The ns_consumed
and cf_consumed
attributes can be placed on
an parameter declaration; they specify that the argument is expected to have a
+1 retain count, which will be balanced in some way by the function or method.
The ns_consumes_self
attribute can only be placed on an Objective-C
method; it specifies that the method expects its self
parameter to have a
+1 retain count, which it will balance in some way.
void foo(__attribute__((ns_consumed)) NSString *string);
- (void) bar __attribute__((ns_consumes_self));
- (void) baz:(id) __attribute__((ns_consumed)) x;
Further examples of these attributes are available in the static analyzer's list of annotations for analysis.
Query for these features with __has_attribute(ns_consumed)
,
__has_attribute(ns_returns_retained)
, etc.
Objective-C @available
It is possible to use the newest SDK but still build a program that can run on
older versions of macOS and iOS by passing -mmacosx-version-min=
/
-miphoneos-version-min=
.
Before LLVM 5.0, when calling a function that exists only in the OS that's
newer than the target OS (as determined by the minimum deployment version),
programmers had to carefully check if the function exists at runtime, using
null checks for weakly-linked C functions, +class
for Objective-C classes,
and -respondsToSelector:
or +instancesRespondToSelector:
for
Objective-C methods. If such a check was missed, the program would compile
fine, run fine on newer systems, but crash on older systems.
As of LLVM 5.0, -Wunguarded-availability
uses the availability attributes together
with the new @available()
keyword to assist with this issue.
When a method that's introduced in the OS newer than the target OS is called, a
-Wunguarded-availability warning is emitted if that call is not guarded:
void my_fun(NSSomeClass* var) {
// If fancyNewMethod was added in e.g. macOS 10.12, but the code is
// built with -mmacosx-version-min=10.11, then this unconditional call
// will emit a -Wunguarded-availability warning:
[var fancyNewMethod];
}
To fix the warning and to avoid the crash on macOS 10.11, wrap it in
if(@available())
:
void my_fun(NSSomeClass* var) {
if (@available(macOS 10.12, *)) {
[var fancyNewMethod];
} else {
// Put fallback behavior for old macOS versions (and for non-mac
// platforms) here.
}
}
The *
is required and means that platforms not explicitly listed will take
the true branch, and the compiler will emit -Wunguarded-availability
warnings for unlisted platforms based on those platform's deployment target.
More than one platform can be listed in @available()
:
void my_fun(NSSomeClass* var) {
if (@available(macOS 10.12, iOS 10, *)) {
[var fancyNewMethod];
}
}
If the caller of my_fun()
already checks that my_fun()
is only called
on 10.12, then add an availability attribute to it,
which will also suppress the warning and require that calls to my_fun() are
checked:
API_AVAILABLE(macos(10.12)) void my_fun(NSSomeClass* var) {
[var fancyNewMethod]; // Now ok.
}
@available()
is only available in Objective-C code. To use the feature
in C and C++ code, use the __builtin_available()
spelling instead.
If existing code uses null checks or -respondsToSelector:
, it should
be changed to use @available()
(or __builtin_available
) instead.
-Wunguarded-availability
is disabled by default, but
-Wunguarded-availability-new
, which only emits this warning for APIs
that have been introduced in macOS >= 10.13, iOS >= 11, watchOS >= 4 and
tvOS >= 11, is enabled by default.
Objective-C++ ABI: protocol-qualifier mangling of parameters
Starting with LLVM 3.4, Clang produces a new mangling for parameters whose
type is a qualified-id
(e.g., id<Foo>
). This mangling allows such
parameters to be differentiated from those with the regular unqualified id
type.
This was a non-backward compatible mangling change to the ABI. This change allows proper overloading, and also prevents mangling conflicts with template parameters of protocol-qualified type.
Query the presence of this new mangling with
__has_feature(objc_protocol_qualifier_mangling)
.
Initializer lists for complex numbers in C
clang supports an extension which allows the following in C:
#include <math.h>
#include <complex.h>
complex float x = { 1.0f, INFINITY }; // Init to (1, Inf)
This construct is useful because there is no way to separately initialize the
real and imaginary parts of a complex variable in standard C, given that clang
does not support _Imaginary
. (Clang also supports the __real__
and
__imag__
extensions from gcc, which help in some cases, but are not usable
in static initializers.)
Note that this extension does not allow eliding the braces; the meaning of the following two lines is different:
complex float x[] = { { 1.0f, 1.0f } }; // [0] = (1, 1)
complex float x[] = { 1.0f, 1.0f }; // [0] = (1, 0), [1] = (1, 0)
This extension also works in C++ mode, as far as that goes, but does not apply
to the C++ std::complex
. (In C++11, list initialization allows the same
syntax to be used with std::complex
with the same meaning.)
For GCC compatibility, __builtin_complex(re, im)
can also be used to
construct a complex number from the given real and imaginary components.
Builtin Functions
Clang supports a number of builtin library functions with the same syntax as
GCC, including things like __builtin_nan
, __builtin_constant_p
,
__builtin_choose_expr
, __builtin_types_compatible_p
,
__builtin_assume_aligned
, __sync_fetch_and_add
, etc. In addition to
the GCC builtins, Clang supports a number of builtins that GCC does not, which
are listed here.
Please note that Clang does not and will not support all of the GCC builtins
for vector operations. Instead of using builtins, you should use the functions
defined in target-specific header files like <xmmintrin.h>
, which define
portable wrappers for these. Many of the Clang versions of these functions are
implemented directly in terms of :ref:`extended vector support
<langext-vectors>` instead of builtins, in order to reduce the number of
builtins that we need to implement.
__builtin_assume
__builtin_assume
is used to provide the optimizer with a boolean
invariant that is defined to be true.
Syntax:
__builtin_assume(bool)
Example of Use:
int foo(int x) {
__builtin_assume(x != 0);
// The optimizer may short-circuit this check using the invariant.
if (x == 0)
return do_something();
return do_something_else();
}
Description:
The boolean argument to this function is defined to be true. The optimizer may analyze the form of the expression provided as the argument and deduce from that information used to optimize the program. If the condition is violated during execution, the behavior is undefined. The argument itself is never evaluated, so any side effects of the expression will be discarded.
Query for this feature with __has_builtin(__builtin_assume)
.
__builtin_readcyclecounter
__builtin_readcyclecounter
is used to access the cycle counter register (or
a similar low-latency, high-accuracy clock) on those targets that support it.
Syntax:
__builtin_readcyclecounter()
Example of Use:
unsigned long long t0 = __builtin_readcyclecounter();
do_something();
unsigned long long t1 = __builtin_readcyclecounter();
unsigned long long cycles_to_do_something = t1 - t0; // assuming no overflow
Description:
The __builtin_readcyclecounter()
builtin returns the cycle counter value,
which may be either global or process/thread-specific depending on the target.
As the backing counters often overflow quickly (on the order of seconds) this
should only be used for timing small intervals. When not supported by the
target, the return value is always zero. This builtin takes no arguments and
produces an unsigned long long result.
Query for this feature with __has_builtin(__builtin_readcyclecounter)
. Note
that even if present, its use may depend on run-time privilege or other OS
controlled state.
__builtin_dump_struct
Syntax:
__builtin_dump_struct(&some_struct, &some_printf_func);
Examples:
struct S {
int x, y;
float f;
struct T {
int i;
} t;
};
void func(struct S *s) {
__builtin_dump_struct(s, &printf);
}
Example output:
struct S {
int i : 100
int j : 42
float f : 3.14159
struct T t : struct T {
int i : 1997
}
}
Description:
The '__builtin_dump_struct
' function is used to print the fields of a simple
structure and their values for debugging purposes. The builtin accepts a pointer
to a structure to dump the fields of, and a pointer to a formatted output
function whose signature must be: int (*)(const char *, ...)
and must
support the format specifiers used by printf()
.
__builtin_shufflevector
__builtin_shufflevector
is used to express generic vector
permutation/shuffle/swizzle operations. This builtin is also very important
for the implementation of various target-specific header files like
<xmmintrin.h>
.
Syntax:
__builtin_shufflevector(vec1, vec2, index1, index2, ...)
Examples:
// identity operation - return 4-element vector v1.
__builtin_shufflevector(v1, v1, 0, 1, 2, 3)
// "Splat" element 0 of V1 into a 4-element result.
__builtin_shufflevector(V1, V1, 0, 0, 0, 0)
// Reverse 4-element vector V1.
__builtin_shufflevector(V1, V1, 3, 2, 1, 0)
// Concatenate every other element of 4-element vectors V1 and V2.
__builtin_shufflevector(V1, V2, 0, 2, 4, 6)
// Concatenate every other element of 8-element vectors V1 and V2.
__builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)
// Shuffle v1 with some elements being undefined
__builtin_shufflevector(v1, v1, 3, -1, 1, -1)
Description:
The first two arguments to __builtin_shufflevector
are vectors that have
the same element type. The remaining arguments are a list of integers that
specify the elements indices of the first two vectors that should be extracted
and returned in a new vector. These element indices are numbered sequentially
starting with the first vector, continuing into the second vector. Thus, if
vec1
is a 4-element vector, index 5 would refer to the second element of
vec2
. An index of -1 can be used to indicate that the corresponding element
in the returned vector is a don't care and can be optimized by the backend.
The result of __builtin_shufflevector
is a vector with the same element
type as vec1
/vec2
but that has an element count equal to the number of
indices specified.
Query for this feature with __has_builtin(__builtin_shufflevector)
.
__builtin_convertvector
__builtin_convertvector
is used to express generic vector
type-conversion operations. The input vector and the output vector
type must have the same number of elements.
Syntax:
__builtin_convertvector(src_vec, dst_vec_type)
Examples:
typedef double vector4double __attribute__((__vector_size__(32)));
typedef float vector4float __attribute__((__vector_size__(16)));
typedef short vector4short __attribute__((__vector_size__(8)));
vector4float vf; vector4short vs;
// convert from a vector of 4 floats to a vector of 4 doubles.
__builtin_convertvector(vf, vector4double)
// equivalent to:
(vector4double) { (double) vf[0], (double) vf[1], (double) vf[2], (double) vf[3] }
// convert from a vector of 4 shorts to a vector of 4 floats.
__builtin_convertvector(vs, vector4float)
// equivalent to:
(vector4float) { (float) vs[0], (float) vs[1], (float) vs[2], (float) vs[3] }
Description:
The first argument to __builtin_convertvector
is a vector, and the second
argument is a vector type with the same number of elements as the first
argument.
The result of __builtin_convertvector
is a vector with the same element
type as the second argument, with a value defined in terms of the action of a
C-style cast applied to each element of the first argument.
Query for this feature with __has_builtin(__builtin_convertvector)
.
__builtin_bitreverse
__builtin_bitreverse8
__builtin_bitreverse16
__builtin_bitreverse32
__builtin_bitreverse64
Syntax:
__builtin_bitreverse32(x)
Examples:
uint8_t rev_x = __builtin_bitreverse8(x);
uint16_t rev_x = __builtin_bitreverse16(x);
uint32_t rev_y = __builtin_bitreverse32(y);
uint64_t rev_z = __builtin_bitreverse64(z);
Description:
The '__builtin_bitreverse
' family of builtins is used to reverse
the bitpattern of an integer value; for example 0b10110110
becomes
0b01101101
. These builtins can be used within constant expressions.
__builtin_rotateleft
__builtin_rotateleft8
__builtin_rotateleft16
__builtin_rotateleft32
__builtin_rotateleft64
Syntax:
__builtin_rotateleft32(x, y)
Examples:
uint8_t rot_x = __builtin_rotateleft8(x, y);
uint16_t rot_x = __builtin_rotateleft16(x, y);
uint32_t rot_x = __builtin_rotateleft32(x, y);
uint64_t rot_x = __builtin_rotateleft64(x, y);
Description:
The '__builtin_rotateleft
' family of builtins is used to rotate
the bits in the first argument by the amount in the second argument.
For example, 0b10000110
rotated left by 11 becomes 0b00110100
.
The shift value is treated as an unsigned amount modulo the size of
the arguments. Both arguments and the result have the bitwidth specified
by the name of the builtin. These builtins can be used within constant
expressions.
__builtin_rotateright
__builtin_rotateright8
__builtin_rotateright16
__builtin_rotateright32
__builtin_rotateright64
Syntax:
__builtin_rotateright32(x, y)
Examples:
uint8_t rot_x = __builtin_rotateright8(x, y);
uint16_t rot_x = __builtin_rotateright16(x, y);
uint32_t rot_x = __builtin_rotateright32(x, y);
uint64_t rot_x = __builtin_rotateright64(x, y);
Description:
The '__builtin_rotateright
' family of builtins is used to rotate
the bits in the first argument by the amount in the second argument.
For example, 0b10000110
rotated right by 3 becomes 0b11010000
.
The shift value is treated as an unsigned amount modulo the size of
the arguments. Both arguments and the result have the bitwidth specified
by the name of the builtin. These builtins can be used within constant
expressions.
__builtin_unreachable
__builtin_unreachable
is used to indicate that a specific point in the
program cannot be reached, even if the compiler might otherwise think it can.
This is useful to improve optimization and eliminates certain warnings. For
example, without the __builtin_unreachable
in the example below, the
compiler assumes that the inline asm can fall through and prints a "function
declared 'noreturn
' should not return" warning.
Syntax:
__builtin_unreachable()
Example of use:
void myabort(void) __attribute__((noreturn));
void myabort(void) {
asm("int3");
__builtin_unreachable();
}
Description:
The __builtin_unreachable()
builtin has completely undefined behavior.
Since it has undefined behavior, it is a statement that it is never reached and
the optimizer can take advantage of this to produce better code. This builtin
takes no arguments and produces a void result.
Query for this feature with __has_builtin(__builtin_unreachable)
.
__builtin_unpredictable
__builtin_unpredictable
is used to indicate that a branch condition is
unpredictable by hardware mechanisms such as branch prediction logic.
Syntax:
__builtin_unpredictable(long long)
Example of use:
if (__builtin_unpredictable(x > 0)) {
foo();
}
Description:
The __builtin_unpredictable()
builtin is expected to be used with control
flow conditions such as in if
and switch
statements.
Query for this feature with __has_builtin(__builtin_unpredictable)
.
__sync_swap
__sync_swap
is used to atomically swap integers or pointers in memory.
Syntax:
type __sync_swap(type *ptr, type value, ...)
Example of Use:
int old_value = __sync_swap(&value, new_value);
Description:
The __sync_swap()
builtin extends the existing __sync_*()
family of
atomic intrinsics to allow code to atomically swap the current value with the
new value. More importantly, it helps developers write more efficient and
correct code by avoiding expensive loops around
__sync_bool_compare_and_swap()
or relying on the platform specific
implementation details of __sync_lock_test_and_set()
. The
__sync_swap()
builtin is a full barrier.
__builtin_addressof
__builtin_addressof
performs the functionality of the built-in &
operator, ignoring any operator&
overload. This is useful in constant
expressions in C++11, where there is no other way to take the address of an
object that overloads operator&
.
Example of use:
template<typename T> constexpr T *addressof(T &value) {
return __builtin_addressof(value);
}
__builtin_operator_new
and __builtin_operator_delete
A call to __builtin_operator_new(args)
is exactly the same as a call to
::operator new(args)
, except that it allows certain optimizations
that the C++ standard does not permit for a direct function call to
::operator new
(in particular, removing new
/ delete
pairs and
merging allocations), and that the call is required to resolve to a
replaceable global allocation function.
Likewise, __builtin_operator_delete
is exactly the same as a call to
::operator delete(args)
, except that it permits optimizations
and that the call is required to resolve to a
replaceable global deallocation function.
These builtins are intended for use in the implementation of std::allocator
and other similar allocation libraries, and are only available in C++.
Query for this feature with __has_builtin(__builtin_operator_new)
or
__has_builtin(__builtin_operator_delete)
:
- If the value is at least
201802L
, the builtins behave as described above.- If the value is non-zero, the builtins may not support calling arbitrary replaceable global (de)allocation functions, but do support calling at least
::operator new(size_t)
and::operator delete(void*)
.
__builtin_preserve_access_index
__builtin_preserve_access_index
specifies a code section where
array subscript access and structure/union member access are relocatable
under bpf compile-once run-everywhere framework. Debuginfo (typically
with -g
) is needed, otherwise, the compiler will exit with an error.
The return type for the intrinsic is the same as the type of the
argument.
Syntax:
type __builtin_preserve_access_index(type arg)
Example of Use:
struct t {
int i;
int j;
union {
int a;
int b;
} c[4];
};
struct t *v = ...;
int *pb =__builtin_preserve_access_index(&v->c[3].b);
__builtin_preserve_access_index(v->j);
__builtin_unique_stable_name
__builtin_unique_stable_name()
is a builtin that takes a type or expression and
produces a string literal containing a unique name for the type (or type of the
expression) that is stable across split compilations.
In cases where the split compilation needs to share a unique token for a type across the boundary (such as in an offloading situation), this name can be used for lookup purposes.
This builtin is superior to RTTI for this purpose for two reasons. First, this value is computed entirely at compile time, so it can be used in constant expressions. Second, this value encodes lambda functions based on line-number rather than the order in which it appears in a function. This is valuable because it is stable in cases where an unrelated lambda is introduced conditionally in the same function.
The current implementation of this builtin uses a slightly modified Itanium
Mangler to produce the unique name. The lambda ordinal is replaced with one or
more line/column pairs in the format LINE->COL
, separated with a ~
character. Typically, only one pair will be included, however in the case of
macro expansions the entire macro expansion stack is expressed.
Multiprecision Arithmetic Builtins
Clang provides a set of builtins which expose multiprecision arithmetic in a manner amenable to C. They all have the following form:
unsigned x = ..., y = ..., carryin = ..., carryout;
unsigned sum = __builtin_addc(x, y, carryin, &carryout);
Thus one can form a multiprecision addition chain in the following manner:
unsigned *x, *y, *z, carryin=0, carryout;
z[0] = __builtin_addc(x[0], y[0], carryin, &carryout);
carryin = carryout;
z[1] = __builtin_addc(x[1], y[1], carryin, &carryout);
carryin = carryout;
z[2] = __builtin_addc(x[2], y[2], carryin, &carryout);
carryin = carryout;
z[3] = __builtin_addc(x[3], y[3], carryin, &carryout);
The complete list of builtins are:
unsigned char __builtin_addcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
unsigned short __builtin_addcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
unsigned __builtin_addc (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
unsigned long __builtin_addcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
unsigned long long __builtin_addcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
unsigned char __builtin_subcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
unsigned short __builtin_subcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
unsigned __builtin_subc (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
unsigned long __builtin_subcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
unsigned long long __builtin_subcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
Checked Arithmetic Builtins
Clang provides a set of builtins that implement checked arithmetic for security critical applications in a manner that is fast and easily expressible in C. As an example of their usage:
errorcode_t security_critical_application(...) {
unsigned x, y, result;
...
if (__builtin_mul_overflow(x, y, &result))
return kErrorCodeHackers;
...
use_multiply(result);
...
}
Clang provides the following checked arithmetic builtins:
bool __builtin_add_overflow (type1 x, type2 y, type3 *sum);
bool __builtin_sub_overflow (type1 x, type2 y, type3 *diff);
bool __builtin_mul_overflow (type1 x, type2 y, type3 *prod);
bool __builtin_uadd_overflow (unsigned x, unsigned y, unsigned *sum);
bool __builtin_uaddl_overflow (unsigned long x, unsigned long y, unsigned long *sum);
bool __builtin_uaddll_overflow(unsigned long long x, unsigned long long y, unsigned long long *sum);
bool __builtin_usub_overflow (unsigned x, unsigned y, unsigned *diff);
bool __builtin_usubl_overflow (unsigned long x, unsigned long y, unsigned long *diff);
bool __builtin_usubll_overflow(unsigned long long x, unsigned long long y, unsigned long long *diff);
bool __builtin_umul_overflow (unsigned x, unsigned y, unsigned *prod);
bool __builtin_umull_overflow (unsigned long x, unsigned long y, unsigned long *prod);
bool __builtin_umulll_overflow(unsigned long long x, unsigned long long y, unsigned long long *prod);
bool __builtin_sadd_overflow (int x, int y, int *sum);
bool __builtin_saddl_overflow (long x, long y, long *sum);
bool __builtin_saddll_overflow(long long x, long long y, long long *sum);
bool __builtin_ssub_overflow (int x, int y, int *diff);
bool __builtin_ssubl_overflow (long x, long y, long *diff);
bool __builtin_ssubll_overflow(long long x, long long y, long long *diff);
bool __builtin_smul_overflow (int x, int y, int *prod);
bool __builtin_smull_overflow (long x, long y, long *prod);
bool __builtin_smulll_overflow(long long x, long long y, long long *prod);
Each builtin performs the specified mathematical operation on the first two arguments and stores the result in the third argument. If possible, the result will be equal to mathematically-correct result and the builtin will return 0. Otherwise, the builtin will return 1 and the result will be equal to the unique value that is equivalent to the mathematically-correct result modulo two raised to the k power, where k is the number of bits in the result type. The behavior of these builtins is well-defined for all argument values.
The first three builtins work generically for operands of any integer type, including boolean types. The operands need not have the same type as each other, or as the result. The other builtins may implicitly promote or convert their operands before performing the operation.
Query for this feature with __has_builtin(__builtin_add_overflow)
, etc.
Floating point builtins
__builtin_canonicalize
double __builtin_canonicalize(double);
float __builtin_canonicalizef(float);
long double__builtin_canonicalizel(long double);
Returns the platform specific canonical encoding of a floating point number. This canonicalization is useful for implementing certain numeric primitives such as frexp. See LLVM canonicalize intrinsic for more information on the semantics.
String builtins
Clang provides constant expression evaluation support for builtins forms of
the following functions from the C standard library headers
<string.h>
and <wchar.h>
:
memchr
-
memcmp
(and its deprecated BSD / POSIX aliasbcmp
) strchr
strcmp
strlen
strncmp
wcschr
wcscmp
wcslen
wcsncmp
wmemchr
wmemcmp
In each case, the builtin form has the name of the C library function prefixed
by __builtin_
. Example:
void *p = __builtin_memchr("foobar", 'b', 5);
In addition to the above, one further builtin is provided:
char *__builtin_char_memchr(const char *haystack, int needle, size_t size);
__builtin_char_memchr(a, b, c)
is identical to
(char*)__builtin_memchr(a, b, c)
except that its use is permitted within
constant expressions in C++11 onwards (where a cast from void*
to char*
is disallowed in general).
Constant evaluation support for the __builtin_mem*
functions is provided
only for arrays of char
, signed char
, unsigned char
, or char8_t
,
despite these functions accepting an argument of type const void*
.
Support for constant expression evaluation for the above builtins can be detected
with __has_feature(cxx_constexpr_string_builtins)
.
Memory builtins
Clang provides constant expression evaluation support for builtin forms of the
following functions from the C standard library headers
<string.h>
and <wchar.h>
:
memcpy
memmove
wmemcpy
wmemmove
In each case, the builtin form has the name of the C library function prefixed
by __builtin_
.
Constant evaluation support is only provided when the source and destination are pointers to arrays with the same trivially copyable element type, and the given size is an exact multiple of the element size that is no greater than the number of elements accessible through the source and destination operands.
Guaranteed inlined copy
void __builtin_memcpy_inline(void *dst, const void *src, size_t size);
__builtin_memcpy_inline
has been designed as a building block for efficient
memcpy
implementations. It is identical to __builtin_memcpy
but also
guarantees not to call any external functions. See LLVM IR llvm.memcpy.inline intrinsic
for more information.
This is useful to implement a custom version of memcpy
, implemement a
libc
memcpy or work around the absence of a libc
.
Note that the size argument must be a compile time constant.
Note that this intrinsic cannot yet be called in a constexpr
context.
Atomic Min/Max builtins with memory ordering
There are two atomic builtins with min/max in-memory comparison and swap. The syntax and semantics are similar to GCC-compatible __atomic_* builtins.
__atomic_fetch_min
__atomic_fetch_max
The builtins work with signed and unsigned integers and require to specify memory ordering. The return value is the original value that was stored in memory before comparison.
Example:
unsigned int val = __atomic_fetch_min(unsigned int *pi, unsigned int ui, __ATOMIC_RELAXED);
The third argument is one of the memory ordering specifiers __ATOMIC_RELAXED
,
__ATOMIC_CONSUME
, __ATOMIC_ACQUIRE
, __ATOMIC_RELEASE
,
__ATOMIC_ACQ_REL
, or __ATOMIC_SEQ_CST
following C++11 memory model semantics.
In terms or aquire-release ordering barriers these two operations are always considered as operations with load-store semantics, even when the original value is not actually modified after comparison.
__c11_atomic builtins
Clang provides a set of builtins which are intended to be used to implement
C11's <stdatomic.h>
header. These builtins provide the semantics of the
_explicit
form of the corresponding C11 operation, and are named with a
__c11_
prefix. The supported operations, and the differences from
the corresponding C11 operations, are:
__c11_atomic_init
__c11_atomic_thread_fence
__c11_atomic_signal_fence
-
__c11_atomic_is_lock_free
(The argument is the size of the_Atomic(...)
object, instead of its address) __c11_atomic_store
__c11_atomic_load
__c11_atomic_exchange
__c11_atomic_compare_exchange_strong
__c11_atomic_compare_exchange_weak
__c11_atomic_fetch_add
__c11_atomic_fetch_sub
__c11_atomic_fetch_and
__c11_atomic_fetch_or
__c11_atomic_fetch_xor
__c11_atomic_fetch_max
__c11_atomic_fetch_min
The macros __ATOMIC_RELAXED
, __ATOMIC_CONSUME
, __ATOMIC_ACQUIRE
,
__ATOMIC_RELEASE
, __ATOMIC_ACQ_REL
, and __ATOMIC_SEQ_CST
are
provided, with values corresponding to the enumerators of C11's
memory_order
enumeration.
(Note that Clang additionally provides GCC-compatible __atomic_*
builtins and OpenCL 2.0 __opencl_atomic_*
builtins. The OpenCL 2.0
atomic builtins are an explicit form of the corresponding OpenCL 2.0
builtin function, and are named with a __opencl_
prefix. The macros
__OPENCL_MEMORY_SCOPE_WORK_ITEM
, __OPENCL_MEMORY_SCOPE_WORK_GROUP
,
__OPENCL_MEMORY_SCOPE_DEVICE
, __OPENCL_MEMORY_SCOPE_ALL_SVM_DEVICES
,
and __OPENCL_MEMORY_SCOPE_SUB_GROUP
are provided, with values
corresponding to the enumerators of OpenCL's memory_scope
enumeration.)
Low-level ARM exclusive memory builtins
Clang provides overloaded builtins giving direct access to the three key ARM instructions for implementing atomic operations.
T __builtin_arm_ldrex(const volatile T *addr);
T __builtin_arm_ldaex(const volatile T *addr);
int __builtin_arm_strex(T val, volatile T *addr);
int __builtin_arm_stlex(T val, volatile T *addr);
void __builtin_arm_clrex(void);
The types T
currently supported are:
- Integer types with width at most 64 bits (or 128 bits on AArch64).
- Floating-point types
- Pointer types.
Note that the compiler does not guarantee it will not insert stores which clear
the exclusive monitor in between an ldrex
type operation and its paired
strex
. In practice this is only usually a risk when the extra store is on
the same cache line as the variable being modified and Clang will only insert
stack stores on its own, so it is best not to use these operations on variables
with automatic storage duration.
Also, loads and stores may be implicit in code written between the ldrex
and
strex
. Clang will not necessarily mitigate the effects of these either, so
care should be exercised.
For these reasons the higher level atomic primitives should be preferred where possible.
Non-temporal load/store builtins
Clang provides overloaded builtins allowing generation of non-temporal memory accesses.
T __builtin_nontemporal_load(T *addr);
void __builtin_nontemporal_store(T value, T *addr);
The types T
currently supported are:
- Integer types.
- Floating-point types.
- Vector types.
Note that the compiler does not guarantee that non-temporal loads or stores will be used.
C++ Coroutines support builtins
Warning
This is a work in progress. Compatibility across Clang/LLVM releases is not guaranteed.
Clang provides experimental builtins to support C++ Coroutines as defined by https://wg21.link/P0057. The following four are intended to be used by the standard library to implement std::experimental::coroutine_handle type.
Syntax:
void __builtin_coro_resume(void *addr);
void __builtin_coro_destroy(void *addr);
bool __builtin_coro_done(void *addr);
void *__builtin_coro_promise(void *addr, int alignment, bool from_promise)
Example of use:
template <> struct coroutine_handle<void> {
void resume() const { __builtin_coro_resume(ptr); }
void destroy() const { __builtin_coro_destroy(ptr); }
bool done() const { return __builtin_coro_done(ptr); }
// ...
protected:
void *ptr;
};
template <typename Promise> struct coroutine_handle : coroutine_handle<> {
// ...
Promise &promise() const {
return *reinterpret_cast<Promise *>(
__builtin_coro_promise(ptr, alignof(Promise), /*from-promise=*/false));
}
static coroutine_handle from_promise(Promise &promise) {
coroutine_handle p;
p.ptr = __builtin_coro_promise(&promise, alignof(Promise),
/*from-promise=*/true);
return p;
}
};
Other coroutine builtins are either for internal clang use or for use during development of the coroutine feature. See Coroutines in LLVM for more information on their semantics. Note that builtins matching the intrinsics that take token as the first parameter (llvm.coro.begin, llvm.coro.alloc, llvm.coro.free and llvm.coro.suspend) omit the token parameter and fill it to an appropriate value during the emission.
Syntax:
size_t __builtin_coro_size()
void *__builtin_coro_frame()
void *__builtin_coro_free(void *coro_frame)
void *__builtin_coro_id(int align, void *promise, void *fnaddr, void *parts)
bool __builtin_coro_alloc()
void *__builtin_coro_begin(void *memory)
void __builtin_coro_end(void *coro_frame, bool unwind)
char __builtin_coro_suspend(bool final)
bool __builtin_coro_param(void *original, void *copy)
Note that there is no builtin matching the llvm.coro.save intrinsic. LLVM automatically will insert one if the first argument to llvm.coro.suspend is token none. If a user calls __builin_suspend, clang will insert token none as the first argument to the intrinsic.
Source location builtins
Clang provides experimental builtins to support C++ standard library implementation
of std::experimental::source_location
as specified in http://wg21.link/N4600.
With the exception of __builtin_COLUMN
, these builtins are also implemented by
GCC.
Syntax:
const char *__builtin_FILE();
const char *__builtin_FUNCTION();
unsigned __builtin_LINE();
unsigned __builtin_COLUMN(); // Clang only
Example of use:
void my_assert(bool pred, int line = __builtin_LINE(), // Captures line of caller
const char* file = __builtin_FILE(),
const char* function = __builtin_FUNCTION()) {
if (pred) return;
printf("%s:%d assertion failed in function %s\n", file, line, function);
std::abort();
}
struct MyAggregateType {
int x;
int line = __builtin_LINE(); // captures line where aggregate initialization occurs
};
static_assert(MyAggregateType{42}.line == __LINE__);
struct MyClassType {
int line = __builtin_LINE(); // captures line of the constructor used during initialization
constexpr MyClassType(int) { assert(line == __LINE__); }
};
Description:
The builtins __builtin_LINE
, __builtin_FUNCTION
, and __builtin_FILE
return
the values, at the "invocation point", for __LINE__
, __FUNCTION__
, and
__FILE__
respectively. These builtins are constant expressions.
When the builtins appear as part of a default function argument the invocation point is the location of the caller. When the builtins appear as part of a default member initializer, the invocation point is the location of the constructor or aggregate initialization used to create the object. Otherwise the invocation point is the same as the location of the builtin.
When the invocation point of __builtin_FUNCTION
is not a function scope the
empty string is returned.
Alignment builtins
Clang provides builtins to support checking and adjusting alignment of pointers and integers. These builtins can be used to avoid relying on implementation-defined behavior of arithmetic on integers derived from pointers. Additionally, these builtins retain type information and, unlike bitwise arithmetic, they can perform semantic checking on the alignment value.
Syntax:
Type __builtin_align_up(Type value, size_t alignment);
Type __builtin_align_down(Type value, size_t alignment);
bool __builtin_is_aligned(Type value, size_t alignment);
Example of use:
char* global_alloc_buffer;
void* my_aligned_allocator(size_t alloc_size, size_t alignment) {
char* result = __builtin_align_up(global_alloc_buffer, alignment);
// result now contains the value of global_alloc_buffer rounded up to the
// next multiple of alignment.
global_alloc_buffer = result + alloc_size;
return result;
}
void* get_start_of_page(void* ptr) {
return __builtin_align_down(ptr, PAGE_SIZE);
}
void example(char* buffer) {
if (__builtin_is_aligned(buffer, 64)) {
do_fast_aligned_copy(buffer);
} else {
do_unaligned_copy(buffer);
}
}
// In addition to pointers, the builtins can also be used on integer types
// and are evaluatable inside constant expressions.
static_assert(__builtin_align_up(123, 64) == 128, "");
static_assert(__builtin_align_down(123u, 64) == 64u, "");
static_assert(!__builtin_is_aligned(123, 64), "");
Description:
The builtins __builtin_align_up
, __builtin_align_down
, return their
first argument aligned up/down to the next multiple of the second argument.
If the value is already sufficiently aligned, it is returned unchanged.
The builtin __builtin_is_aligned
returns whether the first argument is
aligned to a multiple of the second argument.
All of these builtins expect the alignment to be expressed as a number of bytes.
These builtins can be used for all integer types as well as (non-function)
pointer types. For pointer types, these builtins operate in terms of the integer
address of the pointer and return a new pointer of the same type (including
qualifiers such as const
) with an adjusted address.
When aligning pointers up or down, the resulting value must be within the same
underlying allocation or one past the end (see C17 6.5.6p8, C++ [expr.add]).
This means that arbitrary integer values stored in pointer-type variables must
not be passed to these builtins. For those use cases, the builtins can still be
used, but the operation must be performed on the pointer cast to uintptr_t
.
If Clang can determine that the alignment is not a power of two at compile time, it will result in a compilation failure. If the alignment argument is not a power of two at run time, the behavior of these builtins is undefined.
Non-standard C++11 Attributes
Clang's non-standard C++11 attributes live in the clang
attribute
namespace.
Clang supports GCC's gnu
attribute namespace. All GCC attributes which
are accepted with the __attribute__((foo))
syntax are also accepted as
[[gnu::foo]]
. This only extends to attributes which are specified by GCC
(see the list of GCC function attributes, GCC variable
attributes, and
GCC type attributes). As with the GCC
implementation, these attributes must appertain to the declarator-id in a
declaration, which means they must go either at the start of the declaration or
immediately after the name being declared.
For example, this applies the GNU unused
attribute to a
and f
, and
also applies the GNU noreturn
attribute to f
.
[[gnu::unused]] int a, f [[gnu::noreturn]] ();
Target-Specific Extensions
Clang supports some language features conditionally on some targets.
ARM/AArch64 Language Extensions
Memory Barrier Intrinsics
Clang implements the __dmb
, __dsb
and __isb
intrinsics as defined
in the ARM C Language Extensions Release 2.0.
Note that these intrinsics are implemented as motion barriers that block
reordering of memory accesses and side effect instructions. Other instructions
like simple arithmetic may be reordered around the intrinsic. If you expect to
have no reordering at all, use inline assembly instead.
X86/X86-64 Language Extensions
The X86 backend has these language extensions:
Memory references to specified segments
Annotating a pointer with address space #256 causes it to be code generated relative to the X86 GS segment register, address space #257 causes it to be relative to the X86 FS segment, and address space #258 causes it to be relative to the X86 SS segment. Note that this is a very very low-level feature that should only be used if you know what you're doing (for example in an OS kernel).
Here is an example:
#define GS_RELATIVE __attribute__((address_space(256)))
int foo(int GS_RELATIVE *P) {
return *P;
}
Which compiles to (on X86-32):
_foo:
movl 4(%esp), %eax
movl %gs:(%eax), %eax
ret
You can also use the GCC compatibility macros __seg_fs
and __seg_gs
for
the same purpose. The preprocessor symbols __SEG_FS
and __SEG_GS
indicate their support.
PowerPC Language Extensions
Set the Floating Point Rounding Mode
PowerPC64/PowerPC64le supports the builtin function __builtin_setrnd
to set
the floating point rounding mode. This function will use the least significant
two bits of integer argument to set the floating point rounding mode.
double __builtin_setrnd(int mode);
The effective values for mode are:
- 0 - round to nearest
- 1 - round to zero
- 2 - round to +infinity
- 3 - round to -infinity
Note that the mode argument will modulo 4, so if the integer argument is greater
than 3, it will only use the least significant two bits of the mode.
Namely, __builtin_setrnd(102))
is equal to __builtin_setrnd(2)
.
PowerPC cache builtins
The PowerPC architecture specifies instructions implementing cache operations. Clang provides builtins that give direct programmer access to these cache instructions.
Currently the following builtins are implemented in clang:
__builtin_dcbf
copies the contents of a modified block from the data cache
to main memory and flushes the copy from the data cache.
Syntax:
void __dcbf(const void* addr); /* Data Cache Block Flush */
Example of Use:
int a = 1;
__builtin_dcbf (&a);
Extensions for Static Analysis
Clang supports additional attributes that are useful for documenting program invariants and rules for static analysis tools, such as the Clang Static Analyzer. These attributes are documented in the analyzer's list of source-level annotations.
Extensions for Dynamic Analysis
Use __has_feature(address_sanitizer)
to check if the code is being built
with :doc:`AddressSanitizer`.
Use __has_feature(thread_sanitizer)
to check if the code is being built
with :doc:`ThreadSanitizer`.
Use __has_feature(memory_sanitizer)
to check if the code is being built
with :doc:`MemorySanitizer`.
Use __has_feature(safe_stack)
to check if the code is being built
with :doc:`SafeStack`.
Extensions for selectively disabling optimization
Clang provides a mechanism for selectively disabling optimizations in functions and methods.
To disable optimizations in a single function definition, the GNU-style or C++11
non-standard attribute optnone
can be used.
// The following functions will not be optimized.
// GNU-style attribute
__attribute__((optnone)) int foo() {
// ... code
}
// C++11 attribute
[[clang::optnone]] int bar() {
// ... code
}
To facilitate disabling optimization for a range of function definitions, a
range-based pragma is provided. Its syntax is #pragma clang optimize
followed by off
or on
.
All function definitions in the region between an off
and the following
on
will be decorated with the optnone
attribute unless doing so would
conflict with explicit attributes already present on the function (e.g. the
ones that control inlining).
#pragma clang optimize off
// This function will be decorated with optnone.
int foo() {
// ... code
}
// optnone conflicts with always_inline, so bar() will not be decorated.
__attribute__((always_inline)) int bar() {
// ... code
}
#pragma clang optimize on
If no on
is found to close an off
region, the end of the region is the
end of the compilation unit.
Note that a stray #pragma clang optimize on
does not selectively enable
additional optimizations when compiling at low optimization levels. This feature
can only be used to selectively disable optimizations.
The pragma has an effect on functions only at the point of their definition; for function templates, this means that the state of the pragma at the point of an instantiation is not necessarily relevant. Consider the following example:
template<typename T> T twice(T t) {
return 2 * t;
}
#pragma clang optimize off
template<typename T> T thrice(T t) {
return 3 * t;
}
int container(int a, int b) {
return twice(a) + thrice(b);
}
#pragma clang optimize on
In this example, the definition of the template function twice
is outside
the pragma region, whereas the definition of thrice
is inside the region.
The container
function is also in the region and will not be optimized, but
it causes the instantiation of twice
and thrice
with an int
type; of
these two instantiations, twice
will be optimized (because its definition
was outside the region) and thrice
will not be optimized.
Extensions for loop hint optimizations
The #pragma clang loop
directive is used to specify hints for optimizing the
subsequent for, while, do-while, or c++11 range-based for loop. The directive
provides options for vectorization, interleaving, predication, unrolling and
distribution. Loop hints can be specified before any loop and will be ignored if
the optimization is not safe to apply.
There are loop hints that control transformations (e.g. vectorization, loop
unrolling) and there are loop hints that set transformation options (e.g.
vectorize_width
, unroll_count
). Pragmas setting transformation options
imply the transformation is enabled, as if it was enabled via the corresponding
transformation pragma (e.g. vectorize(enable)
). If the transformation is
disabled (e.g. vectorize(disable)
), that takes precedence over
transformations option pragmas implying that transformation.
Vectorization, Interleaving, and Predication
A vectorized loop performs multiple iterations of the original loop in parallel using vector instructions. The instruction set of the target processor determines which vector instructions are available and their vector widths. This restricts the types of loops that can be vectorized. The vectorizer automatically determines if the loop is safe and profitable to vectorize. A vector instruction cost model is used to select the vector width.
Interleaving multiple loop iterations allows modern processors to further improve instruction-level parallelism (ILP) using advanced hardware features, such as multiple execution units and out-of-order execution. The vectorizer uses a cost model that depends on the register pressure and generated code size to select the interleaving count.
Vectorization is enabled by vectorize(enable)
and interleaving is enabled
by interleave(enable)
. This is useful when compiling with -Os
to
manually enable vectorization or interleaving.
#pragma clang loop vectorize(enable)
#pragma clang loop interleave(enable)
for(...) {
...
}
The vector width is specified by vectorize_width(_value_)
and the interleave
count is specified by interleave_count(_value_)
, where
_value_ is a positive integer. This is useful for specifying the optimal
width/count of the set of target architectures supported by your application.
#pragma clang loop vectorize_width(2)
#pragma clang loop interleave_count(2)
for(...) {
...
}
Specifying a width/count of 1 disables the optimization, and is equivalent to
vectorize(disable)
or interleave(disable)
.
Vector predication is enabled by vectorize_predicate(enable)
, for example:
#pragma clang loop vectorize(enable)
#pragma clang loop vectorize_predicate(enable)
for(...) {
...
}
This predicates (masks) all instructions in the loop, which allows the scalar remainder loop (the tail) to be folded into the main vectorized loop. This might be more efficient when vector predication is efficiently supported by the target platform.
Loop Unrolling
Unrolling a loop reduces the loop control overhead and exposes more opportunities for ILP. Loops can be fully or partially unrolled. Full unrolling eliminates the loop and replaces it with an enumerated sequence of loop iterations. Full unrolling is only possible if the loop trip count is known at compile time. Partial unrolling replicates the loop body within the loop and reduces the trip count.
If unroll(enable)
is specified the unroller will attempt to fully unroll the
loop if the trip count is known at compile time. If the fully unrolled code size
is greater than an internal limit the loop will be partially unrolled up to this
limit. If the trip count is not known at compile time the loop will be partially
unrolled with a heuristically chosen unroll factor.
#pragma clang loop unroll(enable)
for(...) {
...
}
If unroll(full)
is specified the unroller will attempt to fully unroll the
loop if the trip count is known at compile time identically to
unroll(enable)
. However, with unroll(full)
the loop will not be unrolled
if the loop count is not known at compile time.
#pragma clang loop unroll(full)
for(...) {
...
}
The unroll count can be specified explicitly with unroll_count(_value_)
where
_value_ is a positive integer. If this value is greater than the trip count the
loop will be fully unrolled. Otherwise the loop is partially unrolled subject
to the same code size limit as with unroll(enable)
.
#pragma clang loop unroll_count(8)
for(...) {
...
}
Unrolling of a loop can be prevented by specifying unroll(disable)
.
Loop Distribution
Loop Distribution allows splitting a loop into multiple loops. This is beneficial for example when the entire loop cannot be vectorized but some of the resulting loops can.
If distribute(enable))
is specified and the loop has memory dependencies
that inhibit vectorization, the compiler will attempt to isolate the offending
operations into a new loop. This optimization is not enabled by default, only
loops marked with the pragma are considered.
#pragma clang loop distribute(enable)
for (i = 0; i < N; ++i) {
S1: A[i + 1] = A[i] + B[i];
S2: C[i] = D[i] * E[i];
}
This loop will be split into two loops between statements S1 and S2. The second loop containing S2 will be vectorized.
Loop Distribution is currently not enabled by default in the optimizer because it can hurt performance in some cases. For example, instruction-level parallelism could be reduced by sequentializing the execution of the statements S1 and S2 above.
If Loop Distribution is turned on globally with
-mllvm -enable-loop-distribution
, specifying distribute(disable)
can
be used the disable it on a per-loop basis.
Additional Information
For convenience multiple loop hints can be specified on a single line.
#pragma clang loop vectorize_width(4) interleave_count(8)
for(...) {
...
}
If an optimization cannot be applied any hints that apply to it will be ignored.
For example, the hint vectorize_width(4)
is ignored if the loop is not
proven safe to vectorize. To identify and diagnose optimization issues use
-Rpass, -Rpass-missed, and -Rpass-analysis command line options. See the
user guide for details.
Extensions to specify floating-point flags
The #pragma clang fp
pragma allows floating-point options to be specified
for a section of the source code. This pragma can only appear at file scope or
at the start of a compound statement (excluding comments). When using within a
compound statement, the pragma is active within the scope of the compound
statement.
Currently, the following settings can be controlled with this pragma:
#pragma clang fp reassociate
allows control over the reassociation
of floating point expressions. When enabled, this pragma allows the expression
x + (y + z)
to be reassociated as (x + y) + z
.
Reassociation can also occur across multiple statements.
This pragma can be used to disable reassociation when it is otherwise
enabled for the translation unit with the -fassociative-math
flag.
The pragma can take two values: on
and off
.
float f(float x, float y, float z)
{
// Enable floating point reassociation across statements
#pragma fp reassociate(on)
float t = x + y;
float v = t + z;
}
#pragma clang fp contract
specifies whether the compiler should
contract a multiply and an addition (or subtraction) into a fused FMA
operation when supported by the target.
The pragma can take three values: on
, fast
and off
. The on
option is identical to using #pragma STDC FP_CONTRACT(ON)
and it allows
fusion as specified the language standard. The fast
option allows fusion
in cases when the language standard does not make this possible (e.g. across
statements in C).
for(...) {
#pragma clang fp contract(fast)
a = b[i] * c[i];
d[i] += a;
}
The pragma can also be used with off
which turns FP contraction off for a
section of the code. This can be useful when fast contraction is otherwise
enabled for the translation unit with the -ffp-contract=fast
flag.
The #pragma float_control
pragma allows precise floating-point
semantics and floating-point exception behavior to be specified
for a section of the source code. This pragma can only appear at file scope or
at the start of a compound statement (excluding comments). When using within a
compound statement, the pragma is active within the scope of the compound
statement. This pragma is modeled after a Microsoft pragma with the
same spelling and syntax. For pragmas specified at file scope, a stack
is supported so that the pragma float_control
settings can be pushed or popped.
When pragma float_control(precise, on)
is enabled, the section of code
governed by the pragma uses precise floating point semantics, effectively
-ffast-math
is disabled and -ffp-contract=on
(fused multiply add) is enabled.
When pragma float_control(except, on)
is enabled, the section of code governed
by the pragma behaves as though the command-line option
-ffp-exception-behavior=strict
is enabled,
when pragma float_control(precise, off)
is enabled, the section of code
governed by the pragma behaves as though the command-line option
-ffp-exception-behavior=ignore
is enabled.
The full syntax this pragma supports is
float_control(except|precise, on|off [, push])
and
float_control(push|pop)
.
The push
and pop
forms, including using push
as the optional
third argument, can only occur at file scope.
for(...) {
// This block will be compiled with -fno-fast-math and -ffp-contract=on
#pragma float_control(precise, on)
a = b[i] * c[i] + e;
}
Specifying an attribute for multiple declarations (#pragma clang attribute)
The #pragma clang attribute
directive can be used to apply an attribute to
multiple declarations. The #pragma clang attribute push
variation of the
directive pushes a new "scope" of #pragma clang attribute
that attributes
can be added to. The #pragma clang attribute (...)
variation adds an
attribute to that scope, and the #pragma clang attribute pop
variation pops
the scope. You can also use #pragma clang attribute push (...)
, which is a
shorthand for when you want to add one attribute to a new scope. Multiple push
directives can be nested inside each other.
The attributes that are used in the #pragma clang attribute
directives
can be written using the GNU-style syntax:
#pragma clang attribute push (__attribute__((annotate("custom"))), apply_to = function)
void function(); // The function now has the annotate("custom") attribute
#pragma clang attribute pop
The attributes can also be written using the C++11 style syntax:
#pragma clang attribute push ([[noreturn]], apply_to = function)
void function(); // The function now has the [[noreturn]] attribute
#pragma clang attribute pop
The __declspec
style syntax is also supported:
#pragma clang attribute push (__declspec(dllexport), apply_to = function)
void function(); // The function now has the __declspec(dllexport) attribute
#pragma clang attribute pop
A single push directive accepts only one attribute regardless of the syntax used.
Because multiple push directives can be nested, if you're writing a macro that
expands to _Pragma("clang attribute")
it's good hygiene (though not
required) to add a namespace to your push/pop directives. A pop directive with a
namespace will pop the innermost push that has that same namespace. This will
ensure that another macro's pop
won't inadvertently pop your attribute. Note
that an pop
without a namespace will pop the innermost push
without a
namespace. push``es with a namespace can only be popped by ``pop
with the
same namespace. For instance:
#define ASSUME_NORETURN_BEGIN _Pragma("clang attribute AssumeNoreturn.push ([[noreturn]], apply_to = function)")
#define ASSUME_NORETURN_END _Pragma("clang attribute AssumeNoreturn.pop")
#define ASSUME_UNAVAILABLE_BEGIN _Pragma("clang attribute Unavailable.push (__attribute__((unavailable)), apply_to=function)")
#define ASSUME_UNAVAILABLE_END _Pragma("clang attribute Unavailable.pop")
ASSUME_NORETURN_BEGIN
ASSUME_UNAVAILABLE_BEGIN
void function(); // function has [[noreturn]] and __attribute__((unavailable))
ASSUME_NORETURN_END
void other_function(); // function has __attribute__((unavailable))
ASSUME_UNAVAILABLE_END
Without the namespaces on the macros, other_function
will be annotated with
[[noreturn]]
instead of __attribute__((unavailable))
. This may seem like
a contrived example, but its very possible for this kind of situation to appear
in real code if the pragmas are spread out across a large file. You can test if
your version of clang supports namespaces on #pragma clang attribute
with
__has_extension(pragma_clang_attribute_namespaces)
.
Subject Match Rules
The set of declarations that receive a single attribute from the attribute stack
depends on the subject match rules that were specified in the pragma. Subject
match rules are specified after the attribute. The compiler expects an
identifier that corresponds to the subject set specifier. The apply_to
specifier is currently the only supported subject set specifier. It allows you
to specify match rules that form a subset of the attribute's allowed subject
set, i.e. the compiler doesn't require all of the attribute's subjects. For
example, an attribute like [[nodiscard]]
whose subject set includes
enum
, record
and hasType(functionType)
, requires the presence of at
least one of these rules after apply_to
:
#pragma clang attribute push([[nodiscard]], apply_to = enum)
enum Enum1 { A1, B1 }; // The enum will receive [[nodiscard]]
struct Record1 { }; // The struct will *not* receive [[nodiscard]]
#pragma clang attribute pop
#pragma clang attribute push([[nodiscard]], apply_to = any(record, enum))
enum Enum2 { A2, B2 }; // The enum will receive [[nodiscard]]
struct Record2 { }; // The struct *will* receive [[nodiscard]]
#pragma clang attribute pop
// This is an error, since [[nodiscard]] can't be applied to namespaces:
#pragma clang attribute push([[nodiscard]], apply_to = any(record, namespace))
#pragma clang attribute pop
Multiple match rules can be specified using the any
match rule, as shown
in the example above. The any
rule applies attributes to all declarations
that are matched by at least one of the rules in the any
. It doesn't nest
and can't be used inside the other match rules. Redundant match rules or rules
that conflict with one another should not be used inside of any
.
Clang supports the following match rules:
-
function
: Can be used to apply attributes to functions. This includes C++ member functions, static functions, operators, and constructors/destructors. -
function(is_member)
: Can be used to apply attributes to C++ member functions. This includes members like static functions, operators, and constructors/destructors. -
hasType(functionType)
: Can be used to apply attributes to functions, C++ member functions, and variables/fields whose type is a function pointer. It does not apply attributes to Objective-C methods or blocks. -
type_alias
: Can be used to apply attributes totypedef
declarations and C++11 type aliases. -
record
: Can be used to apply attributes tostruct
,class
, andunion
declarations. -
record(unless(is_union))
: Can be used to apply attributes only tostruct
andclass
declarations. -
enum
: Can be be used to apply attributes to enumeration declarations. -
enum_constant
: Can be used to apply attributes to enumerators. -
variable
: Can be used to apply attributes to variables, including local variables, parameters, global variables, and static member variables. It does not apply attributes to instance member variables or Objective-C ivars. -
variable(is_thread_local)
: Can be used to apply attributes to thread-local variables only. -
variable(is_global)
: Can be used to apply attributes to global variables only. -
variable(is_local)
: Can be used to apply attributes to local variables only. -
variable(is_parameter)
: Can be used to apply attributes to parameters only. -
variable(unless(is_parameter))
: Can be used to apply attributes to all the variables that are not parameters. -
field
: Can be used to apply attributes to non-static member variables in a record. This includes Objective-C ivars. -
namespace
: Can be used to apply attributes tonamespace
declarations. -
objc_interface
: Can be used to apply attributes to@interface
declarations. -
objc_protocol
: Can be used to apply attributes to@protocol
declarations. -
objc_category
: Can be used to apply attributes to category declarations, including class extensions. -
objc_method
: Can be used to apply attributes to Objective-C methods, including instance and class methods. Implicit methods like implicit property getters and setters do not receive the attribute. -
objc_method(is_instance)
: Can be used to apply attributes to Objective-C instance methods. -
objc_property
: Can be used to apply attributes to@property
declarations. -
block
: Can be used to apply attributes to block declarations. This does not include variables/fields of block pointer type.
The use of unless
in match rules is currently restricted to a strict set of
sub-rules that are used by the supported attributes. That means that even though
variable(unless(is_parameter))
is a valid match rule,
variable(unless(is_thread_local))
is not.
Supported Attributes
Not all attributes can be used with the #pragma clang attribute
directive.
Notably, statement attributes like [[fallthrough]]
or type attributes
like address_space
aren't supported by this directive. You can determine
whether or not an attribute is supported by the pragma by referring to the
:doc:`individual documentation for that attribute <AttributeReference>`.
The attributes are applied to all matching declarations individually, even when the attribute is semantically incorrect. The attributes that aren't applied to any declaration are not verified semantically.
Specifying section names for global objects (#pragma clang section)
The #pragma clang section
directive provides a means to assign section-names
to global variables, functions and static variables.
The section names can be specified as:
#pragma clang section bss="myBSS" data="myData" rodata="myRodata" relro="myRelro" text="myText"
The section names can be reverted back to default name by supplying an empty string to the section kind, for example:
#pragma clang section bss="" data="" text="" rodata="" relro=""
The #pragma clang section
directive obeys the following rules:
- The pragma applies to all global variable, statics and function declarations from the pragma to the end of the translation unit.
- The pragma clang section is enabled automatically, without need of any flags.
- This feature is only defined to work sensibly for ELF targets.
- If section name is specified through _attribute_((section("myname"))), then the attribute name gains precedence.
- Global variables that are initialized to zero will be placed in the named bss section, if one is present.
- The
#pragma clang section
directive does not does try to infer section-kind from the name. For example, naming a section ".bss.mySec
" does NOT mean it will be a bss section name. - The decision about which section-kind applies to each global is taken in the back-end.
Once the section-kind is known, appropriate section name, as specified by the user using
#pragma clang section
directive, is applied to that global.
Specifying Linker Options on ELF Targets
The #pragma comment(lib, ...)
directive is supported on all ELF targets.
The second parameter is the library name (without the traditional Unix prefix of
lib
). This allows you to provide an implicit link of dependent libraries.
Evaluating Object Size Dynamically
Clang supports the builtin __builtin_dynamic_object_size
, the semantics are
the same as GCC's __builtin_object_size
(which Clang also supports), but
__builtin_dynamic_object_size
can evaluate the object's size at runtime.
__builtin_dynamic_object_size
is meant to be used as a drop-in replacement
for __builtin_object_size
in libraries that support it.
For instance, here is a program that __builtin_dynamic_object_size
will make
safer:
void copy_into_buffer(size_t size) {
char* buffer = malloc(size);
strlcpy(buffer, "some string", strlen("some string"));
// Previous line preprocesses to:
// __builtin___strlcpy_chk(buffer, "some string", strlen("some string"), __builtin_object_size(buffer, 0))
}
Since the size of buffer
can't be known at compile time, Clang will fold
__builtin_object_size(buffer, 0)
into -1
. However, if this was written
as __builtin_dynamic_object_size(buffer, 0)
, Clang will fold it into
size
, providing some extra runtime safety.
Extended Integer Types
Clang supports a set of extended integer types under the syntax _ExtInt(N)
where N
is an integer that specifies the number of bits that are used to represent
the type, including the sign bit. The keyword _ExtInt
is a type specifier, thus
it can be used in any place a type can, including as a non-type-template-parameter,
as the type of a bitfield, and as the underlying type of an enumeration.
An extended integer can be declared either signed, or unsigned by using the
signed
/unsigned
keywords. If no sign specifier is used or if the signed
keyword is used, the extended integer type is a signed integer and can represent
negative values.
The N
expression is an integer constant expression, which specifies the number
of bits used to represent the type, following normal integer representations for
both signed and unsigned types. Both a signed and unsigned extended integer of the
same N
value will have the same number of bits in its representation. Many
architectures don't have a way of representing non power-of-2 integers, so these
architectures emulate these types using larger integers. In these cases, they are
expected to follow the 'as-if' rule and do math 'as-if' they were done at the
specified number of bits.
In order to be consistent with the C language specification, and make the extended integer types useful for their intended purpose, extended integers follow the C standard integer conversion ranks. An extended integer type has a greater rank than any integer type with less precision. However, they have lower rank than any of the built in or other integer types (such as __int128). Usual arithmetic conversions also work the same, where the smaller ranked integer is converted to the larger.
The one exception to the C rules for integers for these types is Integer Promotion.
Unary +, -, and ~ operators typically will promote operands to int
. Doing these
promotions would inflate the size of required hardware on some platforms, so extended
integer types aren't subject to the integer promotion rules in these cases.
In languages (such as OpenCL) that define shift by-out-of-range behavior as a mask, non-power-of-two versions of these types use an unsigned remainder operation to constrain the value to the proper range, preventing undefined behavior.
Extended integer types are aligned to the next greatest power-of-2 up to 64 bits.
The size of these types for the purposes of layout and sizeof
are the number of
bits aligned to this calculated alignment. This permits the use of these types in
allocated arrays using common sizeof(Array)/sizeof(ElementType)
pattern.
Extended integer types work with the C _Atomic type modifier, however only precisions that are powers-of-2 greater than 8 bit are accepted.
Extended integer types align with existing calling conventions. They have the same size and alignment as the smallest basic type that can contain them. Types that are larger than 64 bits are handled in the same way as _int128 is handled; they are conceptually treated as struct of register size chunks. They number of chunks are the smallest number that can contain the types which does not necessarily mean a power-of-2 size.
Intrinsics Support within Constant Expressions
The following builtin intrinsics can be used in constant expressions:
__builtin_bitreverse8
__builtin_bitreverse16
__builtin_bitreverse32
__builtin_bitreverse64
__builtin_bswap16
__builtin_bswap32
__builtin_bswap64
__builtin_clrsb
__builtin_clrsbl
__builtin_clrsbll
__builtin_clz
__builtin_clzl
__builtin_clzll
__builtin_clzs
__builtin_ctz
__builtin_ctzl
__builtin_ctzll
__builtin_ctzs
__builtin_ffs
__builtin_ffsl
__builtin_ffsll
__builtin_fpclassify
__builtin_inf
__builtin_isinf
__builtin_isinf_sign
__builtin_isfinite
__builtin_isnan
__builtin_isnormal
__builtin_nan
__builtin_nans
__builtin_parity
__builtin_parityl
__builtin_parityll
__builtin_popcount
__builtin_popcountl
__builtin_popcountll
__builtin_rotateleft8
__builtin_rotateleft16
__builtin_rotateleft32
__builtin_rotateleft64
__builtin_rotateright8
__builtin_rotateright16
__builtin_rotateright32
__builtin_rotateright64
The following x86-specific intrinsics can be used in constant expressions:
_bit_scan_forward
_bit_scan_reverse
__bsfd
__bsfq
__bsrd
__bsrq
__bswap
__bswapd
__bswap64
__bswapq
_castf32_u32
_castf64_u64
_castu32_f32
_castu64_f64
_mm_popcnt_u32
_mm_popcnt_u64
_popcnt32
_popcnt64
__popcntd
__popcntq
__rolb
__rolw
__rold
__rolq
__rorb
__rorw
__rord
__rorq
_rotl
_rotr
_rotwl
_rotwr
_lrotl
_lrotr