bugprone-use-after-move.cpp 33.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
// RUN: %check_clang_tidy %s bugprone-use-after-move %t -- -- -std=c++17 -fno-delayed-template-parsing

typedef decltype(nullptr) nullptr_t;

namespace std {
typedef unsigned size_t;

template <typename T>
struct unique_ptr {
  unique_ptr();
  T *get() const;
  explicit operator bool() const;
  void reset(T *ptr);
  T &operator*() const;
  T *operator->() const;
  T& operator[](size_t i) const;
};

template <typename T>
struct shared_ptr {
  shared_ptr();
  T *get() const;
  explicit operator bool() const;
  void reset(T *ptr);
  T &operator*() const;
  T *operator->() const;
};

template <typename T>
struct weak_ptr {
  weak_ptr();
  bool expired() const;
};

#define DECLARE_STANDARD_CONTAINER(name) \
  template <typename T>                  \
  struct name {                          \
    name();                              \
    void clear();                        \
    bool empty();                        \
  }

#define DECLARE_STANDARD_CONTAINER_WITH_ASSIGN(name) \
  template <typename T>                              \
  struct name {                                      \
    name();                                          \
    void clear();                                    \
    bool empty();                                    \
    void assign(size_t, const T &);                  \
  }

DECLARE_STANDARD_CONTAINER_WITH_ASSIGN(basic_string);
DECLARE_STANDARD_CONTAINER_WITH_ASSIGN(vector);
DECLARE_STANDARD_CONTAINER_WITH_ASSIGN(deque);
DECLARE_STANDARD_CONTAINER_WITH_ASSIGN(forward_list);
DECLARE_STANDARD_CONTAINER_WITH_ASSIGN(list);
DECLARE_STANDARD_CONTAINER(set);
DECLARE_STANDARD_CONTAINER(map);
DECLARE_STANDARD_CONTAINER(multiset);
DECLARE_STANDARD_CONTAINER(multimap);
DECLARE_STANDARD_CONTAINER(unordered_set);
DECLARE_STANDARD_CONTAINER(unordered_map);
DECLARE_STANDARD_CONTAINER(unordered_multiset);
DECLARE_STANDARD_CONTAINER(unordered_multimap);

typedef basic_string<char> string;

template <typename>
struct remove_reference;

template <typename _Tp>
struct remove_reference {
  typedef _Tp type;
};

template <typename _Tp>
struct remove_reference<_Tp &> {
  typedef _Tp type;
};

template <typename _Tp>
struct remove_reference<_Tp &&> {
  typedef _Tp type;
};

template <typename _Tp>
constexpr typename std::remove_reference<_Tp>::type &&move(_Tp &&__t) noexcept {
  return static_cast<typename remove_reference<_Tp>::type &&>(__t);
}

} // namespace std

class A {
public:
  A();
  A(const A &);
  A(A &&);

  A &operator=(const A &);
  A &operator=(A &&);

  void foo() const;
  int getInt() const;

  operator bool() const;

  int i;
};

template <class T>
class AnnotatedContainer {
public:
  AnnotatedContainer();

  void foo() const;
  [[clang::reinitializes]] void clear();
};

////////////////////////////////////////////////////////////////////////////////
// General tests.

// Simple case.
void simple() {
  A a;
  a.foo();
  A other_a = std::move(a);
  a.foo();
  // CHECK-NOTES: [[@LINE-1]]:3: warning: 'a' used after it was moved
  // CHECK-NOTES: [[@LINE-3]]:15: note: move occurred here
}

// A warning should only be emitted for one use-after-move.
void onlyFlagOneUseAfterMove() {
  A a;
  a.foo();
  A other_a = std::move(a);
  a.foo();
  // CHECK-NOTES: [[@LINE-1]]:3: warning: 'a' used after it was moved
  // CHECK-NOTES: [[@LINE-3]]:15: note: move occurred here
  a.foo();
}

void moveAfterMove() {
  // Move-after-move also counts as a use.
  {
    A a;
    std::move(a);
    std::move(a);
    // CHECK-NOTES: [[@LINE-1]]:15: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  // This is also true if the move itself turns into the use on the second loop
  // iteration.
  {
    A a;
    for (int i = 0; i < 10; ++i) {
      std::move(a);
      // CHECK-NOTES: [[@LINE-1]]:17: warning: 'a' used after it was moved
      // CHECK-NOTES: [[@LINE-2]]:7: note: move occurred here
      // CHECK-NOTES: [[@LINE-3]]:17: note: the use happens in a later loop
    }
  }
}

// Checks also works on function parameters that have a use-after move.
void parameters(A a) {
  std::move(a);
  a.foo();
  // CHECK-NOTES: [[@LINE-1]]:3: warning: 'a' used after it was moved
  // CHECK-NOTES: [[@LINE-3]]:3: note: move occurred here
}

void standardSmartPtr() {
  // std::unique_ptr<>, std::shared_ptr<> and std::weak_ptr<> are guaranteed to
  // be null after a std::move. So the check only flags accesses that would
  // dereference the pointer.
  {
    std::unique_ptr<A> ptr;
    std::move(ptr);
    ptr.get();
    static_cast<bool>(ptr);
    *ptr;
    // CHECK-NOTES: [[@LINE-1]]:6: warning: 'ptr' used after it was moved
    // CHECK-NOTES: [[@LINE-5]]:5: note: move occurred here
  }
  {
    std::unique_ptr<A> ptr;
    std::move(ptr);
    ptr->foo();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'ptr' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  {
    std::unique_ptr<A> ptr;
    std::move(ptr);
    ptr[0];
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'ptr' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  {
    std::shared_ptr<A> ptr;
    std::move(ptr);
    ptr.get();
    static_cast<bool>(ptr);
    *ptr;
    // CHECK-NOTES: [[@LINE-1]]:6: warning: 'ptr' used after it was moved
    // CHECK-NOTES: [[@LINE-5]]:5: note: move occurred here
  }
  {
    std::shared_ptr<A> ptr;
    std::move(ptr);
    ptr->foo();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'ptr' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  {
    // std::weak_ptr<> cannot be dereferenced directly, so we only check that
    // member functions may be called on it after a move.
    std::weak_ptr<A> ptr;
    std::move(ptr);
    ptr.expired();
  }
  // Make sure we recognize std::unique_ptr<> or std::shared_ptr<> if they're
  // wrapped in a typedef.
  {
    typedef std::unique_ptr<A> PtrToA;
    PtrToA ptr;
    std::move(ptr);
    ptr.get();
  }
  {
    typedef std::shared_ptr<A> PtrToA;
    PtrToA ptr;
    std::move(ptr);
    ptr.get();
  }
  // And we don't get confused if the template argument is a little more
  // involved.
  {
    struct B {
      typedef A AnotherNameForA;
    };
    std::unique_ptr<B::AnotherNameForA> ptr;
    std::move(ptr);
    ptr.get();
  }
  // Make sure we treat references to smart pointers correctly.
  {
    std::unique_ptr<A> ptr;
    std::unique_ptr<A>& ref_to_ptr = ptr;
    std::move(ref_to_ptr);
    ref_to_ptr.get();
  }
  {
    std::unique_ptr<A> ptr;
    std::unique_ptr<A>&& rvalue_ref_to_ptr = std::move(ptr);
    std::move(rvalue_ref_to_ptr);
    rvalue_ref_to_ptr.get();
  }
  // We don't give any special treatment to types that are called "unique_ptr"
  // or "shared_ptr" but are not in the "::std" namespace.
  {
    struct unique_ptr {
      void get();
    } ptr;
    std::move(ptr);
    ptr.get();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'ptr' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
}

// The check also works in member functions.
class Container {
  void useAfterMoveInMemberFunction() {
    A a;
    std::move(a);
    a.foo();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
};

// We see the std::move() if it's inside a declaration.
void moveInDeclaration() {
  A a;
  A another_a(std::move(a));
  a.foo();
  // CHECK-NOTES: [[@LINE-1]]:3: warning: 'a' used after it was moved
  // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
}

// We see the std::move if it's inside an initializer list. Initializer lists
// are a special case because they cause ASTContext::getParents() to return
// multiple parents for certain nodes in their subtree. This is because
// RecursiveASTVisitor visits both the syntactic and semantic forms of
// InitListExpr, and the parent-child relationships are different between the
// two forms.
void moveInInitList() {
  struct S {
    A a;
  };
  A a;
  S s{std::move(a)};
  a.foo();
  // CHECK-NOTES: [[@LINE-1]]:3: warning: 'a' used after it was moved
  // CHECK-NOTES: [[@LINE-3]]:7: note: move occurred here
}

void lambdas() {
  // Use-after-moves inside a lambda should be detected.
  {
    A a;
    auto lambda = [a] {
      std::move(a);
      a.foo();
      // CHECK-NOTES: [[@LINE-1]]:7: warning: 'a' used after it was moved
      // CHECK-NOTES: [[@LINE-3]]:7: note: move occurred here
    };
  }
  // This is just as true if the variable was declared inside the lambda.
  {
    auto lambda = [] {
      A a;
      std::move(a);
      a.foo();
      // CHECK-NOTES: [[@LINE-1]]:7: warning: 'a' used after it was moved
      // CHECK-NOTES: [[@LINE-3]]:7: note: move occurred here
    };
  }
  // But don't warn if the move happened inside the lambda but the use happened
  // outside -- because
  // - the 'a' inside the lambda is a copy, and
  // - we don't know when the lambda will get called anyway
  {
    A a;
    auto lambda = [a] {
      std::move(a);
    };
    a.foo();
  }
  // Warn if the use consists of a capture that happens after a move.
  {
    A a;
    std::move(a);
    auto lambda = [a]() { a.foo(); };
    // CHECK-NOTES: [[@LINE-1]]:20: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  // ...even if the capture was implicit.
  {
    A a;
    std::move(a);
    auto lambda = [=]() { a.foo(); };
    // CHECK-NOTES: [[@LINE-1]]:20: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  // Same tests but for capture by reference.
  {
    A a;
    std::move(a);
    auto lambda = [&a]() { a.foo(); };
    // CHECK-NOTES: [[@LINE-1]]:21: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  {
    A a;
    std::move(a);
    auto lambda = [&]() { a.foo(); };
    // CHECK-NOTES: [[@LINE-1]]:20: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  // But don't warn if the move happened after the capture.
  {
    A a;
    auto lambda = [a]() { a.foo(); };
    std::move(a);
  }
  // ...and again, same thing with an implicit move.
  {
    A a;
    auto lambda = [=]() { a.foo(); };
    std::move(a);
  }
  // Same tests but for capture by reference.
  {
    A a;
    auto lambda = [&a]() { a.foo(); };
    std::move(a);
  }
  {
    A a;
    auto lambda = [&]() { a.foo(); };
    std::move(a);
  }
}

// Use-after-moves are detected in uninstantiated templates if the moved type
// is not a dependent type.
template <class T>
void movedTypeIsNotDependentType() {
  T t;
  A a;
  std::move(a);
  a.foo();
  // CHECK-NOTES: [[@LINE-1]]:3: warning: 'a' used after it was moved
  // CHECK-NOTES: [[@LINE-3]]:3: note: move occurred here
}

// And if the moved type is a dependent type, the use-after-move is detected if
// the template is instantiated.
template <class T>
void movedTypeIsDependentType() {
  T t;
  std::move(t);
  t.foo();
  // CHECK-NOTES: [[@LINE-1]]:3: warning: 't' used after it was moved
  // CHECK-NOTES: [[@LINE-3]]:3: note: move occurred here
}
template void movedTypeIsDependentType<A>();

// We handle the case correctly where the move consists of an implicit call
// to a conversion operator.
void implicitConversionOperator() {
  struct Convertible {
    operator A() && { return A(); }
  };
  void takeA(A a);

  Convertible convertible;
  takeA(std::move(convertible));
  convertible;
  // CHECK-NOTES: [[@LINE-1]]:3: warning: 'convertible' used after it was moved
  // CHECK-NOTES: [[@LINE-3]]:9: note: move occurred here
}

// Using decltype on an expression is not a use.
void decltypeIsNotUse() {
  A a;
  std::move(a);
  decltype(a) other_a;
}

// Ignore moves or uses that occur as part of template arguments.
template <int>
class ClassTemplate {
public:
  void foo(A a);
};
template <int>
void functionTemplate(A a);
void templateArgIsNotUse() {
  {
    // A pattern like this occurs in the EXPECT_EQ and ASSERT_EQ macros in
    // Google Test.
    A a;
    ClassTemplate<sizeof(A(std::move(a)))>().foo(std::move(a));
  }
  {
    A a;
    functionTemplate<sizeof(A(std::move(a)))>(std::move(a));
  }
}

// Ignore moves of global variables.
A global_a;
void ignoreGlobalVariables() {
  std::move(global_a);
  global_a.foo();
}

// Ignore moves of member variables.
class IgnoreMemberVariables {
  A a;
  static A static_a;

  void f() {
    std::move(a);
    a.foo();

    std::move(static_a);
    static_a.foo();
  }
};

////////////////////////////////////////////////////////////////////////////////
// Tests involving control flow.

void useAndMoveInLoop() {
  // Warn about use-after-moves if they happen in a later loop iteration than
  // the std::move().
  {
    A a;
    for (int i = 0; i < 10; ++i) {
      a.foo();
      // CHECK-NOTES: [[@LINE-1]]:7: warning: 'a' used after it was moved
      // CHECK-NOTES: [[@LINE+2]]:7: note: move occurred here
      // CHECK-NOTES: [[@LINE-3]]:7: note: the use happens in a later loop
      std::move(a);
    }
  }
  // However, this case shouldn't be flagged -- the scope of the declaration of
  // 'a' is important.
  {
    for (int i = 0; i < 10; ++i) {
      A a;
      a.foo();
      std::move(a);
    }
  }
  // Same as above, except that we have an unrelated variable being declared in
  // the same declaration as 'a'. This case is interesting because it tests that
  // the synthetic DeclStmts generated by the CFG are sequenced correctly
  // relative to the other statements.
  {
    for (int i = 0; i < 10; ++i) {
      A a, other;
      a.foo();
      std::move(a);
    }
  }
  // Don't warn if we return after the move.
  {
    A a;
    for (int i = 0; i < 10; ++i) {
      a.foo();
      if (a.getInt() > 0) {
        std::move(a);
        return;
      }
    }
  }
}

void differentBranches(int i) {
  // Don't warn if the use is in a different branch from the move.
  {
    A a;
    if (i > 0) {
      std::move(a);
    } else {
      a.foo();
    }
  }
  // Same thing, but with a ternary operator.
  {
    A a;
    i > 0 ? (void)std::move(a) : a.foo();
  }
  // A variation on the theme above.
  {
    A a;
    a.getInt() > 0 ? a.getInt() : A(std::move(a)).getInt();
  }
  // Same thing, but with a switch statement.
  {
    A a;
    switch (i) {
    case 1:
      std::move(a);
      break;
    case 2:
      a.foo();
      break;
    }
  }
  // However, if there's a fallthrough, we do warn.
  {
    A a;
    switch (i) {
    case 1:
      std::move(a);
    case 2:
      a.foo();
      // CHECK-NOTES: [[@LINE-1]]:7: warning: 'a' used after it was moved
      // CHECK-NOTES: [[@LINE-4]]:7: note: move occurred here
      break;
    }
  }
}

// False positive: A use-after-move is flagged even though the "if (b)" and
// "if (!b)" are mutually exclusive.
void mutuallyExclusiveBranchesFalsePositive(bool b) {
  A a;
  if (b) {
    std::move(a);
  }
  if (!b) {
    a.foo();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-5]]:5: note: move occurred here
  }
}

// Destructors marked [[noreturn]] are handled correctly in the control flow
// analysis. (These are used in some styles of assertion macros.)
class FailureLogger {
public:
  FailureLogger();
  [[noreturn]] ~FailureLogger();
  void log(const char *);
};
#define ASSERT(x) \
  while (x)       \
  FailureLogger().log(#x)
bool operationOnA(A);
void noreturnDestructor() {
  A a;
  // The while loop in the ASSERT() would ordinarily have the potential to cause
  // a use-after-move because the second iteration of the loop would be using a
  // variable that had been moved from in the first iteration. Check that the
  // CFG knows that the second iteration of the loop is never reached because
  // the FailureLogger destructor is marked [[noreturn]].
  ASSERT(operationOnA(std::move(a)));
}
#undef ASSERT

////////////////////////////////////////////////////////////////////////////////
// Tests for reinitializations

template <class T>
void swap(T &a, T &b) {
  T tmp = std::move(a);
  a = std::move(b);
  b = std::move(tmp);
}
void assignments(int i) {
  // Don't report a use-after-move if the variable was assigned to in the
  // meantime.
  {
    A a;
    std::move(a);
    a = A();
    a.foo();
  }
  // The assignment should also be recognized if move, assignment and use don't
  // all happen in the same block (but the assignment is still guaranteed to
  // prevent a use-after-move).
  {
    A a;
    if (i == 1) {
      std::move(a);
      a = A();
    }
    if (i == 2) {
      a.foo();
    }
  }
  {
    A a;
    if (i == 1) {
      std::move(a);
    }
    if (i == 2) {
      a = A();
      a.foo();
    }
  }
  // The built-in assignment operator should also be recognized as a
  // reinitialization. (std::move() may be called on built-in types in template
  // code.)
  {
    int a1 = 1, a2 = 2;
    swap(a1, a2);
  }
  // A std::move() after the assignment makes the variable invalid again.
  {
    A a;
    std::move(a);
    a = A();
    std::move(a);
    a.foo();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  // Report a use-after-move if we can't be sure that the variable was assigned
  // to.
  {
    A a;
    std::move(a);
    if (i < 10) {
      a = A();
    }
    if (i > 5) {
      a.foo();
      // CHECK-NOTES: [[@LINE-1]]:7: warning: 'a' used after it was moved
      // CHECK-NOTES: [[@LINE-7]]:5: note: move occurred here
    }
  }
}

// Passing the object to a function through a non-const pointer or reference
// counts as a re-initialization.
void passByNonConstPointer(A *);
void passByNonConstReference(A &);
void passByNonConstPointerIsReinit() {
  {
    A a;
    std::move(a);
    passByNonConstPointer(&a);
    a.foo();
  }
  {
    A a;
    std::move(a);
    passByNonConstReference(a);
    a.foo();
  }
}

// Passing the object through a const pointer or reference counts as a use --
// since the called function cannot reinitialize the object.
void passByConstPointer(const A *);
void passByConstReference(const A &);
void passByConstPointerIsUse() {
  {
    // Declaring 'a' as const so that no ImplicitCastExpr is inserted into the
    // AST -- we wouldn't want the check to rely solely on that to detect a
    // const pointer argument.
    const A a;
    std::move(a);
    passByConstPointer(&a);
    // CHECK-NOTES: [[@LINE-1]]:25: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  const A a;
  std::move(a);
  passByConstReference(a);
  // CHECK-NOTES: [[@LINE-1]]:24: warning: 'a' used after it was moved
  // CHECK-NOTES: [[@LINE-3]]:3: note: move occurred here
}

// Clearing a standard container using clear() is treated as a
// re-initialization.
void standardContainerClearIsReinit() {
  {
    std::string container;
    std::move(container);
    container.clear();
    container.empty();
  }
  {
    std::vector<int> container;
    std::move(container);
    container.clear();
    container.empty();

    auto container2 = container;
    std::move(container2);
    container2.clear();
    container2.empty();
  }
  {
    std::deque<int> container;
    std::move(container);
    container.clear();
    container.empty();
  }
  {
    std::forward_list<int> container;
    std::move(container);
    container.clear();
    container.empty();
  }
  {
    std::list<int> container;
    std::move(container);
    container.clear();
    container.empty();
  }
  {
    std::set<int> container;
    std::move(container);
    container.clear();
    container.empty();
  }
  {
    std::map<int> container;
    std::move(container);
    container.clear();
    container.empty();
  }
  {
    std::multiset<int> container;
    std::move(container);
    container.clear();
    container.empty();
  }
  {
    std::multimap<int> container;
    std::move(container);
    container.clear();
    container.empty();
  }
  {
    std::unordered_set<int> container;
    std::move(container);
    container.clear();
    container.empty();
  }
  {
    std::unordered_map<int> container;
    std::move(container);
    container.clear();
    container.empty();
  }
  {
    std::unordered_multiset<int> container;
    std::move(container);
    container.clear();
    container.empty();
  }
  {
    std::unordered_multimap<int> container;
    std::move(container);
    container.clear();
    container.empty();
  }
  // This should also work for typedefs of standard containers.
  {
    typedef std::vector<int> IntVector;
    IntVector container;
    std::move(container);
    container.clear();
    container.empty();
  }
  // But it shouldn't work for non-standard containers.
  {
    // This might be called "vector", but it's not in namespace "std".
    struct vector {
      void clear() {}
    } container;
    std::move(container);
    container.clear();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'container' used after it was
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  // An intervening clear() on a different container does not reinitialize.
  {
    std::vector<int> container1, container2;
    std::move(container1);
    container2.clear();
    container1.empty();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'container1' used after it was
    // CHECK-NOTES: [[@LINE-4]]:5: note: move occurred here
  }
}

// Clearing a standard container using assign() is treated as a
// re-initialization.
void standardContainerAssignIsReinit() {
  {
    std::string container;
    std::move(container);
    container.assign(0, ' ');
    container.empty();
  }
  {
    std::vector<int> container;
    std::move(container);
    container.assign(0, 0);
    container.empty();
  }
  {
    std::deque<int> container;
    std::move(container);
    container.assign(0, 0);
    container.empty();
  }
  {
    std::forward_list<int> container;
    std::move(container);
    container.assign(0, 0);
    container.empty();
  }
  {
    std::list<int> container;
    std::move(container);
    container.clear();
    container.empty();
  }
  // But it doesn't work for non-standard containers.
  {
    // This might be called "vector", but it's not in namespace "std".
    struct vector {
      void assign(std::size_t, int) {}
    } container;
    std::move(container);
    container.assign(0, 0);
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'container' used after it was
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  // An intervening assign() on a different container does not reinitialize.
  {
    std::vector<int> container1, container2;
    std::move(container1);
    container2.assign(0, 0);
    container1.empty();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'container1' used after it was
    // CHECK-NOTES: [[@LINE-4]]:5: note: move occurred here
  }
}

// Resetting the standard smart pointer types using reset() is treated as a
// re-initialization. (We don't test std::weak_ptr<> because it can't be
// dereferenced directly.)
void standardSmartPointerResetIsReinit() {
  {
    std::unique_ptr<A> ptr;
    std::move(ptr);
    ptr.reset(new A);
    *ptr;
  }
  {
    std::shared_ptr<A> ptr;
    std::move(ptr);
    ptr.reset(new A);
    *ptr;
  }
}

void reinitAnnotation() {
  {
    AnnotatedContainer<int> obj;
    std::move(obj);
    obj.foo();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'obj' used after it was
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  {
    AnnotatedContainer<int> obj;
    std::move(obj);
    obj.clear();
    obj.foo();
  }
  {
    // Calling clear() on a different object to the one that was moved is not
    // considered a reinitialization.
    AnnotatedContainer<int> obj1, obj2;
    std::move(obj1);
    obj2.clear();
    obj1.foo();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'obj1' used after it was
    // CHECK-NOTES: [[@LINE-4]]:5: note: move occurred here
  }
}

////////////////////////////////////////////////////////////////////////////////
// Tests related to order of evaluation within expressions

// Relative sequencing of move and use.
void passByRvalueReference(int i, A &&a);
void passByValue(int i, A a);
void passByValue(A a, int i);
A g(A, A &&);
int intFromA(A &&);
int intFromInt(int);
void sequencingOfMoveAndUse() {
  // This case is fine because the move only happens inside
  // passByRvalueReference(). At this point, a.getInt() is guaranteed to have
  // been evaluated.
  {
    A a;
    passByRvalueReference(a.getInt(), std::move(a));
  }
  // However, if we pass by value, the move happens when the move constructor is
  // called to create a temporary, and this happens before the call to
  // passByValue(). Because the order in which arguments are evaluated isn't
  // defined, the move may happen before the call to a.getInt().
  //
  // Check that we warn about a potential use-after move for both orderings of
  // a.getInt() and std::move(a), independent of the order in which the
  // arguments happen to get evaluated by the compiler.
  {
    A a;
    passByValue(a.getInt(), std::move(a));
    // CHECK-NOTES: [[@LINE-1]]:17: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-2]]:29: note: move occurred here
    // CHECK-NOTES: [[@LINE-3]]:17: note: the use and move are unsequenced
  }
  {
    A a;
    passByValue(std::move(a), a.getInt());
    // CHECK-NOTES: [[@LINE-1]]:31: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-2]]:17: note: move occurred here
    // CHECK-NOTES: [[@LINE-3]]:31: note: the use and move are unsequenced
  }
  // An even more convoluted example.
  {
    A a;
    g(g(a, std::move(a)), g(a, std::move(a)));
    // CHECK-NOTES: [[@LINE-1]]:9: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-2]]:27: note: move occurred here
    // CHECK-NOTES: [[@LINE-3]]:9: note: the use and move are unsequenced
    // CHECK-NOTES: [[@LINE-4]]:29: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-5]]:7: note: move occurred here
    // CHECK-NOTES: [[@LINE-6]]:29: note: the use and move are unsequenced
  }
  // This case is fine because the actual move only happens inside the call to
  // operator=(). a.getInt(), by necessity, is evaluated before that call.
  {
    A a;
    A vec[1];
    vec[a.getInt()] = std::move(a);
  }
  // However, in the following case, the move happens before the assignment, and
  // so the order of evaluation is not guaranteed.
  {
    A a;
    int v[3];
    v[a.getInt()] = intFromA(std::move(a));
    // CHECK-NOTES: [[@LINE-1]]:7: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-2]]:21: note: move occurred here
    // CHECK-NOTES: [[@LINE-3]]:7: note: the use and move are unsequenced
  }
  {
    A a;
    int v[3];
    v[intFromA(std::move(a))] = intFromInt(a.i);
    // CHECK-NOTES: [[@LINE-1]]:44: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-2]]:7: note: move occurred here
    // CHECK-NOTES: [[@LINE-3]]:44: note: the use and move are unsequenced
  }
}

// Relative sequencing of move and reinitialization. If the two are unsequenced,
// we conservatively assume that the move happens after the reinitialization,
// i.e. the that object does not get reinitialized after the move.
A MutateA(A a);
void passByValue(A a1, A a2);
void sequencingOfMoveAndReinit() {
  // Move and reinitialization as function arguments (which are indeterminately
  // sequenced). Again, check that we warn for both orderings.
  {
    A a;
    passByValue(std::move(a), (a = A()));
    a.foo();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:17: note: move occurred here
  }
  {
    A a;
    passByValue((a = A()), std::move(a));
    a.foo();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:28: note: move occurred here
  }
  // Common usage pattern: Move the object to a function that mutates it in some
  // way, then reassign the result to the object. This pattern is fine.
  {
    A a;
    a = MutateA(std::move(a));
    a.foo();
  }
}

// Relative sequencing of reinitialization and use. If the two are unsequenced,
// we conservatively assume that the reinitialization happens after the use,
// i.e. that the object is not reinitialized at the point in time when it is
// used.
void sequencingOfReinitAndUse() {
  // Reinitialization and use in function arguments. Again, check both possible
  // orderings.
  {
    A a;
    std::move(a);
    passByValue(a.getInt(), (a = A()));
    // CHECK-NOTES: [[@LINE-1]]:17: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  {
    A a;
    std::move(a);
    passByValue((a = A()), a.getInt());
    // CHECK-NOTES: [[@LINE-1]]:28: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
}

// The comma operator sequences its operands.
void commaOperatorSequences() {
  {
    A a;
    A(std::move(a))
    , (a = A());
    a.foo();
  }
  {
    A a;
    (a = A()), A(std::move(a));
    a.foo();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:16: note: move occurred here
  }
}

// An initializer list sequences its initialization clauses.
void initializerListSequences() {
  {
    struct S1 {
      int i;
      A a;
    };
    A a;
    S1 s1{a.getInt(), std::move(a)};
  }
  {
    struct S2 {
      A a;
      int i;
    };
    A a;
    S2 s2{std::move(a), a.getInt()};
    // CHECK-NOTES: [[@LINE-1]]:25: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-2]]:11: note: move occurred here
  }
}

// A declaration statement containing multiple declarations sequences the
// initializer expressions.
void declarationSequences() {
  {
    A a;
    A a1 = a, a2 = std::move(a);
  }
  {
    A a;
    A a1 = std::move(a), a2 = a;
    // CHECK-NOTES: [[@LINE-1]]:31: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-2]]:12: note: move occurred here
  }
}

// The logical operators && and || sequence their operands.
void logicalOperatorsSequence() {
  {
    A a;
    if (a.getInt() > 0 && A(std::move(a)).getInt() > 0) {
      A().foo();
    }
  }
  // A variation: Negate the result of the && (which pushes the && further down
  // into the AST).
  {
    A a;
    if (!(a.getInt() > 0 && A(std::move(a)).getInt() > 0)) {
      A().foo();
    }
  }
  {
    A a;
    if (A(std::move(a)).getInt() > 0 && a.getInt() > 0) {
      // CHECK-NOTES: [[@LINE-1]]:41: warning: 'a' used after it was moved
      // CHECK-NOTES: [[@LINE-2]]:9: note: move occurred here
      A().foo();
    }
  }
  {
    A a;
    if (a.getInt() > 0 || A(std::move(a)).getInt() > 0) {
      A().foo();
    }
  }
  {
    A a;
    if (A(std::move(a)).getInt() > 0 || a.getInt() > 0) {
      // CHECK-NOTES: [[@LINE-1]]:41: warning: 'a' used after it was moved
      // CHECK-NOTES: [[@LINE-2]]:9: note: move occurred here
      A().foo();
    }
  }
}

// A range-based for sequences the loop variable declaration before the body.
void forRangeSequences() {
  A v[2] = {A(), A()};
  for (A &a : v) {
    std::move(a);
  }
}

// If a variable is declared in an if, while or switch statement, the init
// statement (for if and switch) is sequenced before the variable declaration,
// which in turn is sequenced before the evaluation of the condition. We place
// all tests inside a for loop to ensure that the checker understands the
// sequencing. If it didn't, then the loop would trigger the "moved twice"
// logic.
void ifWhileAndSwitchSequenceInitDeclAndCondition() {
  for (int i = 0; i < 10; ++i) {
    A a1;
    if (A a2 = std::move(a1)) {
      std::move(a2);
    }
  }
  for (int i = 0; i < 10; ++i) {
    A a1;
    if (A a2 = std::move(a1); a2) {
      std::move(a2);
    }
  }
  for (int i = 0; i < 10; ++i) {
    A a1;
    if (A a2 = std::move(a1); A a3 = std::move(a2)) {
      std::move(a3);
    }
  }
  for (int i = 0; i < 10; ++i) {
    // init followed by condition with move, but without variable declaration.
    if (A a1; A(std::move(a1)).getInt() > 0) {}
  }
  for (int i = 0; i < 10; ++i) {
    if (A a1; A(std::move(a1)).getInt() > a1.getInt()) {}
    // CHECK-NOTES: [[@LINE-1]]:43: warning: 'a1' used after it was moved
    // CHECK-NOTES: [[@LINE-2]]:15: note: move occurred here
    // CHECK-NOTES: [[@LINE-3]]:43: note: the use and move are unsequenced
  }
  for (int i = 0; i < 10; ++i) {
    A a1;
    if (A a2 = std::move(a1); A(a1) > 0) {}
    // CHECK-NOTES: [[@LINE-1]]:33: warning: 'a1' used after it was moved
    // CHECK-NOTES: [[@LINE-2]]:16: note: move occurred here
  }
  while (A a = A()) {
    std::move(a);
  }
  for (int i = 0; i < 10; ++i) {
    A a1;
    switch (A a2 = std::move(a1); a2) {
      case true:
        std::move(a2);
    }
  }
  for (int i = 0; i < 10; ++i) {
    A a1;
    switch (A a2 = a1; A a3 = std::move(a2)) {
      case true:
        std::move(a3);
    }
  }
}

// Some statements in templates (e.g. null, break and continue statements) may
// be shared between the uninstantiated and instantiated versions of the
// template and therefore have multiple parents. Make sure the sequencing code
// handles this correctly.
template <class> void nullStatementSequencesInTemplate() {
  int c = 0;
  (void)c;
  ;
  std::move(c);
}
template void nullStatementSequencesInTemplate<int>();

namespace PR33020 {
class D {
  ~D();
};
struct A {
  D d;
};
class B {
  A a;
};
template <typename T>
class C : T, B {
  void m_fn1() {
    int a;
    std::move(a);
    C c;
  }
};
} // namespace PR33020

namespace UnevalContext {
struct Foo {};
void noExcept() {
  Foo Bar;
  (void) noexcept(Foo{std::move(Bar)});
  Foo Other{std::move(Bar)};
}
void sizeOf() {
  Foo Bar;
  (void)sizeof(Foo{std::move(Bar)});
  Foo Other{std::move(Bar)};
}
void alignOf() {
  Foo Bar;
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wgnu-alignof-expression"
  (void)alignof(Foo{std::move(Bar)});
#pragma clang diagnostic pop
  Foo Other{std::move(Bar)};
}
void typeId() {
  Foo Bar;
  // error: you need to include <typeinfo> before using the 'typeid' operator
  // (void) typeid(Foo{std::move(Bar)}).name();
  Foo Other{std::move(Bar)};
}
} // namespace UnevalContext