Ref.h
6.34 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
//===--- Ref.h ---------------------------------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_TOOLS_EXTRA_CLANGD_INDEX_REF_H
#define LLVM_CLANG_TOOLS_EXTRA_CLANGD_INDEX_REF_H
#include "SymbolID.h"
#include "SymbolLocation.h"
#include "clang/Index/IndexSymbol.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/raw_ostream.h"
#include <cstdint>
#include <set>
#include <utility>
namespace clang {
namespace clangd {
/// Describes the kind of a cross-reference.
///
/// This is a bitfield which can be combined from different kinds.
enum class RefKind : uint8_t {
Unknown = 0,
// Points to symbol declaration. Example:
//
// class Foo;
// ^ Foo declaration
// Foo foo;
// ^ this does not reference Foo declaration
Declaration = 1 << 0,
// Points to symbol definition. Example:
//
// int foo();
// ^ references foo declaration, but not foo definition
// int foo() { return 42; }
// ^ references foo definition, but not declaration
// bool bar() { return true; }
// ^ references both definition and declaration
Definition = 1 << 1,
// Points to symbol reference. Example:
//
// int Foo = 42;
// int Bar = Foo + 1;
// ^ this is a reference to Foo
Reference = 1 << 2,
// The reference explicitly spells out declaration's name. Such references can
// not come from macro expansions or implicit AST nodes.
//
// class Foo { public: Foo() {} };
// ^ references declaration, definition and explicitly spells out name
// #define MACRO Foo
// v there is an implicit constructor call here which is not a spelled ref
// Foo foo;
// ^ this reference explicitly spells out Foo's name
// struct Bar {
// MACRO Internal;
// ^ this references Foo, but does not explicitly spell out its name
// };
Spelled = 1 << 3,
All = Declaration | Definition | Reference | Spelled,
};
inline RefKind operator|(RefKind L, RefKind R) {
return static_cast<RefKind>(static_cast<uint8_t>(L) |
static_cast<uint8_t>(R));
}
inline RefKind &operator|=(RefKind &L, RefKind R) { return L = L | R; }
inline RefKind operator&(RefKind A, RefKind B) {
return static_cast<RefKind>(static_cast<uint8_t>(A) &
static_cast<uint8_t>(B));
}
llvm::raw_ostream &operator<<(llvm::raw_ostream &, RefKind);
/// Represents a symbol occurrence in the source file.
/// Despite the name, it could be a declaration/definition/reference.
///
/// WARNING: Location does not own the underlying data - Copies are shallow.
struct Ref {
/// The source location where the symbol is named.
SymbolLocation Location;
RefKind Kind = RefKind::Unknown;
};
inline bool operator<(const Ref &L, const Ref &R) {
return std::tie(L.Location, L.Kind) < std::tie(R.Location, R.Kind);
}
inline bool operator==(const Ref &L, const Ref &R) {
return std::tie(L.Location, L.Kind) == std::tie(R.Location, R.Kind);
}
llvm::raw_ostream &operator<<(llvm::raw_ostream &, const Ref &);
/// An efficient structure of storing large set of symbol references in memory.
/// Filenames are deduplicated.
class RefSlab {
public:
// Refs are stored in order.
using value_type = std::pair<SymbolID, llvm::ArrayRef<Ref>>;
using const_iterator = std::vector<value_type>::const_iterator;
using iterator = const_iterator;
RefSlab() = default;
RefSlab(RefSlab &&Slab) = default;
RefSlab &operator=(RefSlab &&RHS) = default;
const_iterator begin() const { return Refs.begin(); }
const_iterator end() const { return Refs.end(); }
/// Gets the number of symbols.
size_t size() const { return Refs.size(); }
size_t numRefs() const { return NumRefs; }
bool empty() const { return Refs.empty(); }
size_t bytes() const {
return sizeof(*this) + Arena.getTotalMemory() +
sizeof(value_type) * Refs.capacity();
}
/// RefSlab::Builder is a mutable container that can 'freeze' to RefSlab.
class Builder {
public:
Builder() : UniqueStrings(Arena) {}
/// Adds a ref to the slab. Deep copy: Strings will be owned by the slab.
void insert(const SymbolID &ID, const Ref &S);
/// Consumes the builder to finalize the slab.
RefSlab build() &&;
private:
// A ref we're storing with its symbol to consume with build().
// All strings are interned, so DenseMapInfo can use pointer comparisons.
struct Entry {
SymbolID Symbol;
Ref Reference;
};
friend struct llvm::DenseMapInfo<Entry>;
llvm::BumpPtrAllocator Arena;
llvm::UniqueStringSaver UniqueStrings; // Contents on the arena.
llvm::DenseSet<Entry> Entries;
};
private:
RefSlab(std::vector<value_type> Refs, llvm::BumpPtrAllocator Arena,
size_t NumRefs)
: Arena(std::move(Arena)), Refs(std::move(Refs)), NumRefs(NumRefs) {}
llvm::BumpPtrAllocator Arena;
std::vector<value_type> Refs;
/// Number of all references.
size_t NumRefs = 0;
};
} // namespace clangd
} // namespace clang
namespace llvm {
template <> struct DenseMapInfo<clang::clangd::RefSlab::Builder::Entry> {
using Entry = clang::clangd::RefSlab::Builder::Entry;
static inline Entry getEmptyKey() {
static Entry E{clang::clangd::SymbolID(""), {}};
return E;
}
static inline Entry getTombstoneKey() {
static Entry E{clang::clangd::SymbolID("TOMBSTONE"), {}};
return E;
}
static unsigned getHashValue(const Entry &Val) {
return llvm::hash_combine(
Val.Symbol, reinterpret_cast<uintptr_t>(Val.Reference.Location.FileURI),
Val.Reference.Location.Start.rep(), Val.Reference.Location.End.rep());
}
static bool isEqual(const Entry &LHS, const Entry &RHS) {
return std::tie(LHS.Symbol, LHS.Reference.Location.FileURI,
LHS.Reference.Kind) ==
std::tie(RHS.Symbol, RHS.Reference.Location.FileURI,
RHS.Reference.Kind) &&
LHS.Reference.Location.Start == RHS.Reference.Location.Start &&
LHS.Reference.Location.End == RHS.Reference.Location.End;
}
};
} // namespace llvm
#endif // LLVM_CLANG_TOOLS_EXTRA_CLANGD_INDEX_REF_H