Selection.cpp 33.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
//===--- Selection.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "Selection.h"
#include "SourceCode.h"
#include "support/Logger.h"
#include "support/Trace.h"
#include "clang/AST/ASTTypeTraits.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Lex/Lexer.h"
#include "clang/Tooling/Syntax/Tokens.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <string>

namespace clang {
namespace clangd {
namespace {
using Node = SelectionTree::Node;
using ast_type_traits::DynTypedNode;

// Measure the fraction of selections that were enabled by recovery AST.
void recordMetrics(const SelectionTree &S) {
  static constexpr trace::Metric SelectionUsedRecovery(
      "selection_recovery", trace::Metric::Distribution);
  static constexpr trace::Metric RecoveryType("selection_recovery_type",
                                              trace::Metric::Distribution);
  const auto *Common = S.commonAncestor();
  for (const auto *N = Common; N; N = N->Parent) {
    if (const auto *RE = N->ASTNode.get<RecoveryExpr>()) {
      SelectionUsedRecovery.record(1); // used recovery ast.
      RecoveryType.record(RE->isTypeDependent() ? 0 : 1);
      return;
    }
  }
  if (Common)
    SelectionUsedRecovery.record(0); // unused.
}

// An IntervalSet maintains a set of disjoint subranges of an array.
//
// Initially, it contains the entire array.
//           [-----------------------------------------------------------]
//
// When a range is erased(), it will typically split the array in two.
//  Claim:                     [--------------------]
//  after:   [----------------]                      [-------------------]
//
// erase() returns the segments actually erased. Given the state above:
//  Claim:          [---------------------------------------]
//  Out:            [---------]                      [------]
//  After:   [-----]                                         [-----------]
//
// It is used to track (expanded) tokens not yet associated with an AST node.
// On traversing an AST node, its token range is erased from the unclaimed set.
// The tokens actually removed are associated with that node, and hit-tested
// against the selection to determine whether the node is selected.
template <typename T> class IntervalSet {
public:
  IntervalSet(llvm::ArrayRef<T> Range) { UnclaimedRanges.insert(Range); }

  // Removes the elements of Claim from the set, modifying or removing ranges
  // that overlap it.
  // Returns the continuous subranges of Claim that were actually removed.
  llvm::SmallVector<llvm::ArrayRef<T>, 4> erase(llvm::ArrayRef<T> Claim) {
    llvm::SmallVector<llvm::ArrayRef<T>, 4> Out;
    if (Claim.empty())
      return Out;

    // General case:
    // Claim:                   [-----------------]
    // UnclaimedRanges: [-A-] [-B-] [-C-] [-D-] [-E-] [-F-] [-G-]
    // Overlap:               ^first                  ^second
    // Ranges C and D are fully included. Ranges B and E must be trimmed.
    auto Overlap = std::make_pair(
        UnclaimedRanges.lower_bound({Claim.begin(), Claim.begin()}), // C
        UnclaimedRanges.lower_bound({Claim.end(), Claim.end()}));    // F
    // Rewind to cover B.
    if (Overlap.first != UnclaimedRanges.begin()) {
      --Overlap.first;
      // ...unless B isn't selected at all.
      if (Overlap.first->end() <= Claim.begin())
        ++Overlap.first;
    }
    if (Overlap.first == Overlap.second)
      return Out;

    // First, copy all overlapping ranges into the output.
    auto OutFirst = Out.insert(Out.end(), Overlap.first, Overlap.second);
    // If any of the overlapping ranges were sliced by the claim, split them:
    //  - restrict the returned range to the claimed part
    //  - save the unclaimed part so it can be reinserted
    llvm::ArrayRef<T> RemainingHead, RemainingTail;
    if (Claim.begin() > OutFirst->begin()) {
      RemainingHead = {OutFirst->begin(), Claim.begin()};
      *OutFirst = {Claim.begin(), OutFirst->end()};
    }
    if (Claim.end() < Out.back().end()) {
      RemainingTail = {Claim.end(), Out.back().end()};
      Out.back() = {Out.back().begin(), Claim.end()};
    }

    // Erase all the overlapping ranges (invalidating all iterators).
    UnclaimedRanges.erase(Overlap.first, Overlap.second);
    // Reinsert ranges that were merely trimmed.
    if (!RemainingHead.empty())
      UnclaimedRanges.insert(RemainingHead);
    if (!RemainingTail.empty())
      UnclaimedRanges.insert(RemainingTail);

    return Out;
  }

private:
  using TokenRange = llvm::ArrayRef<T>;
  struct RangeLess {
    bool operator()(llvm::ArrayRef<T> L, llvm::ArrayRef<T> R) const {
      return L.begin() < R.begin();
    }
  };

  // Disjoint sorted unclaimed ranges of expanded tokens.
  std::set<llvm::ArrayRef<T>, RangeLess> UnclaimedRanges;
};

// Sentinel value for the selectedness of a node where we've seen no tokens yet.
// This resolves to Unselected if no tokens are ever seen.
// But Unselected + Complete -> Partial, while NoTokens + Complete --> Complete.
// This value is never exposed publicly.
constexpr SelectionTree::Selection NoTokens =
    static_cast<SelectionTree::Selection>(
        static_cast<unsigned char>(SelectionTree::Complete + 1));

// Nodes start with NoTokens, and then use this function to aggregate the
// selectedness as more tokens are found.
void update(SelectionTree::Selection &Result, SelectionTree::Selection New) {
  if (New == NoTokens)
    return;
  if (Result == NoTokens)
    Result = New;
  else if (Result != New)
    // Can only be completely selected (or unselected) if all tokens are.
    Result = SelectionTree::Partial;
}

// As well as comments, don't count semicolons as real tokens.
// They're not properly claimed as expr-statement is missing from the AST.
bool shouldIgnore(const syntax::Token &Tok) {
  return Tok.kind() == tok::comment || Tok.kind() == tok::semi;
}

// Determine whether 'Target' is the first expansion of the macro
// argument whose top-level spelling location is 'SpellingLoc'.
bool isFirstExpansion(FileID Target, SourceLocation SpellingLoc,
                      const SourceManager &SM) {
  SourceLocation Prev = SpellingLoc;
  while (true) {
    // If the arg is expanded multiple times, getMacroArgExpandedLocation()
    // returns the first expansion.
    SourceLocation Next = SM.getMacroArgExpandedLocation(Prev);
    // So if we reach the target, target is the first-expansion of the
    // first-expansion ...
    if (SM.getFileID(Next) == Target)
      return true;

    // Otherwise, if the FileID stops changing, we've reached the innermost
    // macro expansion, and Target was on a different branch.
    if (SM.getFileID(Next) == SM.getFileID(Prev))
      return false;

    Prev = Next;
  }
  return false;
}

// SelectionTester can determine whether a range of tokens from the PP-expanded
// stream (corresponding to an AST node) is considered selected.
//
// When the tokens result from macro expansions, the appropriate tokens in the
// main file are examined (macro invocation or args). Similarly for #includes.
// However, only the first expansion of a given spelled token is considered
// selected.
//
// It tests each token in the range (not just the endpoints) as contiguous
// expanded tokens may not have contiguous spellings (with macros).
//
// Non-token text, and tokens not modeled in the AST (comments, semicolons)
// are ignored when determining selectedness.
class SelectionTester {
public:
  // The selection is offsets [SelBegin, SelEnd) in SelFile.
  SelectionTester(const syntax::TokenBuffer &Buf, FileID SelFile,
                  unsigned SelBegin, unsigned SelEnd, const SourceManager &SM)
      : SelFile(SelFile), SM(SM) {
    // Find all tokens (partially) selected in the file.
    auto AllSpelledTokens = Buf.spelledTokens(SelFile);
    const syntax::Token *SelFirst =
        llvm::partition_point(AllSpelledTokens, [&](const syntax::Token &Tok) {
          return SM.getFileOffset(Tok.endLocation()) <= SelBegin;
        });
    const syntax::Token *SelLimit = std::partition_point(
        SelFirst, AllSpelledTokens.end(), [&](const syntax::Token &Tok) {
          return SM.getFileOffset(Tok.location()) < SelEnd;
        });
    auto Sel = llvm::makeArrayRef(SelFirst, SelLimit);
    // Find which of these are preprocessed to nothing and should be ignored.
    std::vector<bool> PPIgnored(Sel.size(), false);
    for (const syntax::TokenBuffer::Expansion &X :
         Buf.expansionsOverlapping(Sel)) {
      if (X.Expanded.empty()) {
        for (const syntax::Token &Tok : X.Spelled) {
          if (&Tok >= SelFirst && &Tok < SelLimit)
            PPIgnored[&Tok - SelFirst] = true;
        }
      }
    }
    // Precompute selectedness and offset for selected spelled tokens.
    for (unsigned I = 0; I < Sel.size(); ++I) {
      if (shouldIgnore(Sel[I]) || PPIgnored[I])
        continue;
      SpelledTokens.emplace_back();
      Tok &S = SpelledTokens.back();
      S.Offset = SM.getFileOffset(Sel[I].location());
      if (S.Offset >= SelBegin && S.Offset + Sel[I].length() <= SelEnd)
        S.Selected = SelectionTree::Complete;
      else
        S.Selected = SelectionTree::Partial;
    }
  }

  // Test whether a consecutive range of tokens is selected.
  // The tokens are taken from the expanded token stream.
  SelectionTree::Selection
  test(llvm::ArrayRef<syntax::Token> ExpandedTokens) const {
    if (SpelledTokens.empty())
      return NoTokens;
    SelectionTree::Selection Result = NoTokens;
    while (!ExpandedTokens.empty()) {
      // Take consecutive tokens from the same context together for efficiency.
      FileID FID = SM.getFileID(ExpandedTokens.front().location());
      auto Batch = ExpandedTokens.take_while([&](const syntax::Token &T) {
        return SM.getFileID(T.location()) == FID;
      });
      assert(!Batch.empty());
      ExpandedTokens = ExpandedTokens.drop_front(Batch.size());

      update(Result, testChunk(FID, Batch));
    }
    return Result;
  }

  // Cheap check whether any of the tokens in R might be selected.
  // If it returns false, test() will return NoTokens or Unselected.
  // If it returns true, test() may return any value.
  bool mayHit(SourceRange R) const {
    if (SpelledTokens.empty())
      return false;
    auto B = SM.getDecomposedLoc(R.getBegin());
    auto E = SM.getDecomposedLoc(R.getEnd());
    if (B.first == SelFile && E.first == SelFile)
      if (E.second < SpelledTokens.front().Offset ||
          B.second > SpelledTokens.back().Offset)
        return false;
    return true;
  }

private:
  // Hit-test a consecutive range of tokens from a single file ID.
  SelectionTree::Selection
  testChunk(FileID FID, llvm::ArrayRef<syntax::Token> Batch) const {
    assert(!Batch.empty());
    SourceLocation StartLoc = Batch.front().location();
    // There are several possible categories of FileID depending on how the
    // preprocessor was used to generate these tokens:
    //   main file, #included file, macro args, macro bodies.
    // We need to identify the main-file tokens that represent Batch, and
    // determine whether we want to exclusively claim them. Regular tokens
    // represent one AST construct, but a macro invocation can represent many.

    // Handle tokens written directly in the main file.
    if (FID == SelFile) {
      return testTokenRange(SM.getFileOffset(Batch.front().location()),
                            SM.getFileOffset(Batch.back().location()));
    }

    // Handle tokens in another file #included into the main file.
    // Check if the #include is selected, but don't claim it exclusively.
    if (StartLoc.isFileID()) {
      for (SourceLocation Loc = Batch.front().location(); Loc.isValid();
           Loc = SM.getIncludeLoc(SM.getFileID(Loc))) {
        if (SM.getFileID(Loc) == SelFile)
          // FIXME: use whole #include directive, not just the filename string.
          return testToken(SM.getFileOffset(Loc));
      }
      return NoTokens;
    }

    assert(StartLoc.isMacroID());
    // Handle tokens that were passed as a macro argument.
    SourceLocation ArgStart = SM.getTopMacroCallerLoc(StartLoc);
    if (SM.getFileID(ArgStart) == SelFile) {
      if (isFirstExpansion(FID, ArgStart, SM)) {
        SourceLocation ArgEnd =
            SM.getTopMacroCallerLoc(Batch.back().location());
        return testTokenRange(SM.getFileOffset(ArgStart),
                              SM.getFileOffset(ArgEnd));
      } else {
        /* fall through and treat as part of the macro body */
      }
    }

    // Handle tokens produced by non-argument macro expansion.
    // Check if the macro name is selected, don't claim it exclusively.
    auto Expansion = SM.getDecomposedExpansionLoc(StartLoc);
    if (Expansion.first == SelFile)
      // FIXME: also check ( and ) for function-like macros?
      return testToken(Expansion.second);
    else
      return NoTokens;
  }

  // Is the closed token range [Begin, End] selected?
  SelectionTree::Selection testTokenRange(unsigned Begin, unsigned End) const {
    assert(Begin <= End);
    // Outside the selection entirely?
    if (End < SpelledTokens.front().Offset ||
        Begin > SpelledTokens.back().Offset)
      return SelectionTree::Unselected;

    // Compute range of tokens.
    auto B = llvm::partition_point(
        SpelledTokens, [&](const Tok &T) { return T.Offset < Begin; });
    auto E = std::partition_point(
        B, SpelledTokens.end(), [&](const Tok &T) { return T.Offset <= End; });

    // Aggregate selectedness of tokens in range.
    bool ExtendsOutsideSelection = Begin < SpelledTokens.front().Offset ||
                                   End > SpelledTokens.back().Offset;
    SelectionTree::Selection Result =
        ExtendsOutsideSelection ? SelectionTree::Unselected : NoTokens;
    for (auto It = B; It != E; ++It)
      update(Result, It->Selected);
    return Result;
  }

  // Is the token at `Offset` selected?
  SelectionTree::Selection testToken(unsigned Offset) const {
    // Outside the selection entirely?
    if (Offset < SpelledTokens.front().Offset ||
        Offset > SpelledTokens.back().Offset)
      return SelectionTree::Unselected;
    // Find the token, if it exists.
    auto It = llvm::partition_point(
        SpelledTokens, [&](const Tok &T) { return T.Offset < Offset; });
    if (It != SpelledTokens.end() && It->Offset == Offset)
      return It->Selected;
    return NoTokens;
  }

  struct Tok {
    unsigned Offset;
    SelectionTree::Selection Selected;
  };
  std::vector<Tok> SpelledTokens;
  FileID SelFile;
  const SourceManager &SM;
};

// Show the type of a node for debugging.
void printNodeKind(llvm::raw_ostream &OS, const DynTypedNode &N) {
  if (const TypeLoc *TL = N.get<TypeLoc>()) {
    // TypeLoc is a hierarchy, but has only a single ASTNodeKind.
    // Synthesize the name from the Type subclass (except for QualifiedTypeLoc).
    if (TL->getTypeLocClass() == TypeLoc::Qualified)
      OS << "QualifiedTypeLoc";
    else
      OS << TL->getType()->getTypeClassName() << "TypeLoc";
  } else {
    OS << N.getNodeKind().asStringRef();
  }
}

#ifndef NDEBUG
std::string printNodeToString(const DynTypedNode &N, const PrintingPolicy &PP) {
  std::string S;
  llvm::raw_string_ostream OS(S);
  printNodeKind(OS, N);
  OS << " ";
  return std::move(OS.str());
}
#endif

bool isImplicit(const Stmt *S) {
  // Some Stmts are implicit and shouldn't be traversed, but there's no
  // "implicit" attribute on Stmt/Expr.
  // Unwrap implicit casts first if present (other nodes too?).
  if (auto *ICE = llvm::dyn_cast<ImplicitCastExpr>(S))
    S = ICE->getSubExprAsWritten();
  // Implicit this in a MemberExpr is not filtered out by RecursiveASTVisitor.
  // It would be nice if RAV handled this (!shouldTraverseImplicitCode()).
  if (auto *CTI = llvm::dyn_cast<CXXThisExpr>(S))
    if (CTI->isImplicit())
      return true;
  // Refs to operator() and [] are (almost?) always implicit as part of calls.
  if (auto *DRE = llvm::dyn_cast<DeclRefExpr>(S)) {
    if (auto *FD = llvm::dyn_cast<FunctionDecl>(DRE->getDecl())) {
      switch (FD->getOverloadedOperator()) {
      case OO_Call:
      case OO_Subscript:
        return true;
      default:
        break;
      }
    }
  }
  return false;
}

// We find the selection by visiting written nodes in the AST, looking for nodes
// that intersect with the selected character range.
//
// While traversing, we maintain a parent stack. As nodes pop off the stack,
// we decide whether to keep them or not. To be kept, they must either be
// selected or contain some nodes that are.
//
// For simple cases (not inside macros) we prune subtrees that don't intersect.
class SelectionVisitor : public RecursiveASTVisitor<SelectionVisitor> {
public:
  // Runs the visitor to gather selected nodes and their ancestors.
  // If there is any selection, the root (TUDecl) is the first node.
  static std::deque<Node> collect(ASTContext &AST,
                                  const syntax::TokenBuffer &Tokens,
                                  const PrintingPolicy &PP, unsigned Begin,
                                  unsigned End, FileID File) {
    SelectionVisitor V(AST, Tokens, PP, Begin, End, File);
    V.TraverseAST(AST);
    assert(V.Stack.size() == 1 && "Unpaired push/pop?");
    assert(V.Stack.top() == &V.Nodes.front());
    return std::move(V.Nodes);
  }

  // We traverse all "well-behaved" nodes the same way:
  //  - push the node onto the stack
  //  - traverse its children recursively
  //  - pop it from the stack
  //  - hit testing: is intersection(node, selection) - union(children) empty?
  //  - attach it to the tree if it or any children hit the selection
  //
  // Two categories of nodes are not "well-behaved":
  //  - those without source range information, we don't record those
  //  - those that can't be stored in DynTypedNode.
  // We're missing some interesting things like Attr due to the latter.
  bool TraverseDecl(Decl *X) {
    if (X && isa<TranslationUnitDecl>(X))
      return Base::TraverseDecl(X); // Already pushed by constructor.
    // Base::TraverseDecl will suppress children, but not this node itself.
    if (X && X->isImplicit())
      return true;
    return traverseNode(X, [&] { return Base::TraverseDecl(X); });
  }
  bool TraverseTypeLoc(TypeLoc X) {
    return traverseNode(&X, [&] { return Base::TraverseTypeLoc(X); });
  }
  bool TraverseTemplateArgumentLoc(const TemplateArgumentLoc &X) {
    return traverseNode(&X,
                        [&] { return Base::TraverseTemplateArgumentLoc(X); });
  }
  bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc X) {
    return traverseNode(
        &X, [&] { return Base::TraverseNestedNameSpecifierLoc(X); });
  }
  bool TraverseConstructorInitializer(CXXCtorInitializer *X) {
    return traverseNode(
        X, [&] { return Base::TraverseConstructorInitializer(X); });
  }
  // Stmt is the same, but this form allows the data recursion optimization.
  bool dataTraverseStmtPre(Stmt *X) {
    if (!X || isImplicit(X))
      return false;
    auto N = DynTypedNode::create(*X);
    if (canSafelySkipNode(N))
      return false;
    push(std::move(N));
    if (shouldSkipChildren(X)) {
      pop();
      return false;
    }
    return true;
  }
  bool dataTraverseStmtPost(Stmt *X) {
    pop();
    return true;
  }
  // QualifiedTypeLoc is handled strangely in RecursiveASTVisitor: the derived
  // TraverseTypeLoc is not called for the inner UnqualTypeLoc.
  // This means we'd never see 'int' in 'const int'! Work around that here.
  // (The reason for the behavior is to avoid traversing the nested Type twice,
  // but we ignore TraverseType anyway).
  bool TraverseQualifiedTypeLoc(QualifiedTypeLoc QX) {
    return traverseNode<TypeLoc>(
        &QX, [&] { return TraverseTypeLoc(QX.getUnqualifiedLoc()); });
  }
  // Uninteresting parts of the AST that don't have locations within them.
  bool TraverseNestedNameSpecifier(NestedNameSpecifier *) { return true; }
  bool TraverseType(QualType) { return true; }

  // The DeclStmt for the loop variable claims to cover the whole range
  // inside the parens, this causes the range-init expression to not be hit.
  // Traverse the loop VarDecl instead, which has the right source range.
  bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
    return traverseNode(S, [&] {
      return TraverseStmt(S->getInit()) && TraverseDecl(S->getLoopVariable()) &&
             TraverseStmt(S->getRangeInit()) && TraverseStmt(S->getBody());
    });
  }
  // OpaqueValueExpr blocks traversal, we must explicitly traverse it.
  bool TraverseOpaqueValueExpr(OpaqueValueExpr *E) {
    return traverseNode(E, [&] { return TraverseStmt(E->getSourceExpr()); });
  }
  // We only want to traverse the *syntactic form* to understand the selection.
  bool TraversePseudoObjectExpr(PseudoObjectExpr *E) {
    return traverseNode(E, [&] { return TraverseStmt(E->getSyntacticForm()); });
  }

private:
  using Base = RecursiveASTVisitor<SelectionVisitor>;

  SelectionVisitor(ASTContext &AST, const syntax::TokenBuffer &Tokens,
                   const PrintingPolicy &PP, unsigned SelBegin, unsigned SelEnd,
                   FileID SelFile)
      : SM(AST.getSourceManager()), LangOpts(AST.getLangOpts()),
#ifndef NDEBUG
        PrintPolicy(PP),
#endif
        TokenBuf(Tokens), SelChecker(Tokens, SelFile, SelBegin, SelEnd, SM),
        UnclaimedExpandedTokens(Tokens.expandedTokens()) {
    // Ensure we have a node for the TU decl, regardless of traversal scope.
    Nodes.emplace_back();
    Nodes.back().ASTNode = DynTypedNode::create(*AST.getTranslationUnitDecl());
    Nodes.back().Parent = nullptr;
    Nodes.back().Selected = SelectionTree::Unselected;
    Stack.push(&Nodes.back());
  }

  // Generic case of TraverseFoo. Func should be the call to Base::TraverseFoo.
  // Node is always a pointer so the generic code can handle any null checks.
  template <typename T, typename Func>
  bool traverseNode(T *Node, const Func &Body) {
    if (Node == nullptr)
      return true;
    auto N = DynTypedNode::create(*Node);
    if (canSafelySkipNode(N))
      return true;
    push(DynTypedNode::create(*Node));
    bool Ret = Body();
    pop();
    return Ret;
  }

  // HIT TESTING
  //
  // We do rough hit testing on the way down the tree to avoid traversing
  // subtrees that don't touch the selection (canSafelySkipNode), but
  // fine-grained hit-testing is mostly done on the way back up (in pop()).
  // This means children get to claim parts of the selection first, and parents
  // are only selected if they own tokens that no child owned.
  //
  // Nodes *usually* nest nicely: a child's getSourceRange() lies within the
  // parent's, and a node (transitively) owns all tokens in its range.
  //
  // Exception 1: child range claims tokens that should be owned by the parent.
  //              e.g. in `void foo(int);`, the FunctionTypeLoc should own
  //              `void (int)` but the parent FunctionDecl should own `foo`.
  // To handle this case, certain nodes claim small token ranges *before*
  // their children are traversed. (see earlySourceRange).
  //
  // Exception 2: siblings both claim the same node.
  //              e.g. `int x, y;` produces two sibling VarDecls.
  //                    ~~~~~ x
  //                    ~~~~~~~~ y
  // Here the first ("leftmost") sibling claims the tokens it wants, and the
  // other sibling gets what's left. So selecting "int" only includes the left
  // VarDecl in the selection tree.

  // An optimization for a common case: nodes outside macro expansions that
  // don't intersect the selection may be recursively skipped.
  bool canSafelySkipNode(const DynTypedNode &N) {
    SourceRange S = N.getSourceRange();
    if (auto *TL = N.get<TypeLoc>()) {
      // DeclTypeTypeLoc::getSourceRange() is incomplete, which would lead to
      // failing
      // to descend into the child expression.
      // decltype(2+2);
      // ~~~~~~~~~~~~~ <-- correct range
      // ~~~~~~~~      <-- range reported by getSourceRange()
      // ~~~~~~~~~~~~  <-- range with this hack(i.e, missing closing paren)
      // FIXME: Alter DecltypeTypeLoc to contain parentheses locations and get
      // rid of this patch.
      if (auto DT = TL->getAs<DecltypeTypeLoc>())
        S.setEnd(DT.getUnderlyingExpr()->getEndLoc());
    }
    if (!SelChecker.mayHit(S)) {
      dlog("{1}skip: {0}", printNodeToString(N, PrintPolicy), indent());
      dlog("{1}skipped range = {0}", S.printToString(SM), indent(1));
      return true;
    }
    return false;
  }

  // There are certain nodes we want to treat as leaves in the SelectionTree,
  // although they do have children.
  bool shouldSkipChildren(const Stmt *X) const {
    // UserDefinedLiteral (e.g. 12_i) has two children (12 and _i).
    // Unfortunately TokenBuffer sees 12_i as one token and can't split it.
    // So we treat UserDefinedLiteral as a leaf node, owning the token.
    return llvm::isa<UserDefinedLiteral>(X);
  }

  // Pushes a node onto the ancestor stack. Pairs with pop().
  // Performs early hit detection for some nodes (on the earlySourceRange).
  void push(DynTypedNode Node) {
    SourceRange Early = earlySourceRange(Node);
    dlog("{1}push: {0}", printNodeToString(Node, PrintPolicy), indent());
    Nodes.emplace_back();
    Nodes.back().ASTNode = std::move(Node);
    Nodes.back().Parent = Stack.top();
    Nodes.back().Selected = NoTokens;
    Stack.push(&Nodes.back());
    claimRange(Early, Nodes.back().Selected);
  }

  // Pops a node off the ancestor stack, and finalizes it. Pairs with push().
  // Performs primary hit detection.
  void pop() {
    Node &N = *Stack.top();
    dlog("{1}pop: {0}", printNodeToString(N.ASTNode, PrintPolicy), indent(-1));
    claimRange(N.ASTNode.getSourceRange(), N.Selected);
    if (N.Selected == NoTokens)
      N.Selected = SelectionTree::Unselected;
    if (N.Selected || !N.Children.empty()) {
      // Attach to the tree.
      N.Parent->Children.push_back(&N);
    } else {
      // Neither N any children are selected, it doesn't belong in the tree.
      assert(&N == &Nodes.back());
      Nodes.pop_back();
    }
    Stack.pop();
  }

  // Returns the range of tokens that this node will claim directly, and
  // is not available to the node's children.
  // Usually empty, but sometimes children cover tokens but shouldn't own them.
  SourceRange earlySourceRange(const DynTypedNode &N) {
    if (const Decl *D = N.get<Decl>()) {
      // We want constructor name to be claimed by TypeLoc not the constructor
      // itself. Similar for deduction guides, we rather want to select the
      // underlying TypeLoc.
      // FIXME: Unfortunately this doesn't work, even though RecursiveASTVisitor
      // traverses the underlying TypeLoc inside DeclarationName, it is null for
      // constructors.
      if (isa<CXXConstructorDecl>(D) || isa<CXXDeductionGuideDecl>(D))
        return SourceRange();
      // This will capture Field, Function, MSProperty, NonTypeTemplateParm and
      // VarDecls. We want the name in the declarator to be claimed by the decl
      // and not by any children. For example:
      // void [[foo]]();
      // int (*[[s]])();
      // struct X { int [[hash]] [32]; [[operator]] int();}
      if (const auto *DD = llvm::dyn_cast<DeclaratorDecl>(D))
        return DD->getLocation();
    } else if (const auto *CCI = N.get<CXXCtorInitializer>()) {
      // : [[b_]](42)
      return CCI->getMemberLocation();
    }
    return SourceRange();
  }

  // Perform hit-testing of a complete Node against the selection.
  // This runs for every node in the AST, and must be fast in common cases.
  // This is usually called from pop(), so we can take children into account.
  // The existing state of Result is relevant (early/late claims can interact).
  void claimRange(SourceRange S, SelectionTree::Selection &Result) {
    for (const auto &ClaimedRange :
         UnclaimedExpandedTokens.erase(TokenBuf.expandedTokens(S)))
      update(Result, SelChecker.test(ClaimedRange));

    if (Result && Result != NoTokens)
      dlog("{1}hit selection: {0}", S.printToString(SM), indent());
  }

  std::string indent(int Offset = 0) {
    // Cast for signed arithmetic.
    int Amount = int(Stack.size()) + Offset;
    assert(Amount >= 0);
    return std::string(Amount, ' ');
  }

  SourceManager &SM;
  const LangOptions &LangOpts;
#ifndef NDEBUG
  const PrintingPolicy &PrintPolicy;
#endif
  const syntax::TokenBuffer &TokenBuf;
  std::stack<Node *> Stack;
  SelectionTester SelChecker;
  IntervalSet<syntax::Token> UnclaimedExpandedTokens;
  std::deque<Node> Nodes; // Stable pointers as we add more nodes.
};

} // namespace

llvm::SmallString<256> abbreviatedString(DynTypedNode N,
                                         const PrintingPolicy &PP) {
  llvm::SmallString<256> Result;
  {
    llvm::raw_svector_ostream OS(Result);
    N.print(OS, PP);
  }
  auto Pos = Result.find('\n');
  if (Pos != llvm::StringRef::npos) {
    bool MoreText =
        !llvm::all_of(llvm::StringRef(Result).drop_front(Pos), llvm::isSpace);
    Result.resize(Pos);
    if (MoreText)
      Result.append(" …");
  }
  return Result;
}

void SelectionTree::print(llvm::raw_ostream &OS, const SelectionTree::Node &N,
                          int Indent) const {
  if (N.Selected)
    OS.indent(Indent - 1) << (N.Selected == SelectionTree::Complete ? '*'
                                                                    : '.');
  else
    OS.indent(Indent);
  printNodeKind(OS, N.ASTNode);
  OS << ' ' << abbreviatedString(N.ASTNode, PrintPolicy) << "\n";
  for (const Node *Child : N.Children)
    print(OS, *Child, Indent + 2);
}

std::string SelectionTree::Node::kind() const {
  std::string S;
  llvm::raw_string_ostream OS(S);
  printNodeKind(OS, ASTNode);
  return std::move(OS.str());
}

// Decide which selections emulate a "point" query in between characters.
// If it's ambiguous (the neighboring characters are selectable tokens), returns
// both possibilities in preference order.
// Always returns at least one range - if no tokens touched, and empty range.
static llvm::SmallVector<std::pair<unsigned, unsigned>, 2>
pointBounds(unsigned Offset, const syntax::TokenBuffer &Tokens) {
  const auto &SM = Tokens.sourceManager();
  SourceLocation Loc = SM.getComposedLoc(SM.getMainFileID(), Offset);
  llvm::SmallVector<std::pair<unsigned, unsigned>, 2> Result;
  // Prefer right token over left.
  for (const syntax::Token &Tok :
       llvm::reverse(spelledTokensTouching(Loc, Tokens))) {
    if (shouldIgnore(Tok))
      continue;
    unsigned Offset = Tokens.sourceManager().getFileOffset(Tok.location());
    Result.emplace_back(Offset, Offset + Tok.length());
  }
  if (Result.empty())
    Result.emplace_back(Offset, Offset);
  return Result;
}

bool SelectionTree::createEach(ASTContext &AST,
                               const syntax::TokenBuffer &Tokens,
                               unsigned Begin, unsigned End,
                               llvm::function_ref<bool(SelectionTree)> Func) {
  if (Begin != End)
    return Func(SelectionTree(AST, Tokens, Begin, End));
  for (std::pair<unsigned, unsigned> Bounds : pointBounds(Begin, Tokens))
    if (Func(SelectionTree(AST, Tokens, Bounds.first, Bounds.second)))
      return true;
  return false;
}

SelectionTree SelectionTree::createRight(ASTContext &AST,
                                         const syntax::TokenBuffer &Tokens,
                                         unsigned int Begin, unsigned int End) {
  llvm::Optional<SelectionTree> Result;
  createEach(AST, Tokens, Begin, End, [&](SelectionTree T) {
    Result = std::move(T);
    return true;
  });
  return std::move(*Result);
}

SelectionTree::SelectionTree(ASTContext &AST, const syntax::TokenBuffer &Tokens,
                             unsigned Begin, unsigned End)
    : PrintPolicy(AST.getLangOpts()) {
  // No fundamental reason the selection needs to be in the main file,
  // but that's all clangd has needed so far.
  const SourceManager &SM = AST.getSourceManager();
  FileID FID = SM.getMainFileID();
  PrintPolicy.TerseOutput = true;
  PrintPolicy.IncludeNewlines = false;

  dlog("Computing selection for {0}",
       SourceRange(SM.getComposedLoc(FID, Begin), SM.getComposedLoc(FID, End))
           .printToString(SM));
  Nodes = SelectionVisitor::collect(AST, Tokens, PrintPolicy, Begin, End, FID);
  Root = Nodes.empty() ? nullptr : &Nodes.front();
  recordMetrics(*this);
  dlog("Built selection tree\n{0}", *this);
}

const Node *SelectionTree::commonAncestor() const {
  const Node *Ancestor = Root;
  while (Ancestor->Children.size() == 1 && !Ancestor->Selected)
    Ancestor = Ancestor->Children.front();
  // Returning nullptr here is a bit unprincipled, but it makes the API safer:
  // the TranslationUnitDecl contains all of the preamble, so traversing it is a
  // performance cliff. Callers can check for null and use root() if they want.
  return Ancestor != Root ? Ancestor : nullptr;
}

const DeclContext &SelectionTree::Node::getDeclContext() const {
  for (const Node *CurrentNode = this; CurrentNode != nullptr;
       CurrentNode = CurrentNode->Parent) {
    if (const Decl *Current = CurrentNode->ASTNode.get<Decl>()) {
      if (CurrentNode != this)
        if (auto *DC = dyn_cast<DeclContext>(Current))
          return *DC;
      return *Current->getDeclContext();
    }
  }
  llvm_unreachable("A tree must always be rooted at TranslationUnitDecl.");
}

const SelectionTree::Node &SelectionTree::Node::ignoreImplicit() const {
  if (Children.size() == 1 &&
      Children.front()->ASTNode.getSourceRange() == ASTNode.getSourceRange())
    return Children.front()->ignoreImplicit();
  return *this;
}

const SelectionTree::Node &SelectionTree::Node::outerImplicit() const {
  if (Parent && Parent->ASTNode.getSourceRange() == ASTNode.getSourceRange())
    return Parent->outerImplicit();
  return *this;
}

} // namespace clangd
} // namespace clang