FunctionCognitiveComplexityCheck.cpp
19.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
//===--- FunctionCognitiveComplexityCheck.cpp - clang-tidy ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "FunctionCognitiveComplexityCheck.h"
#include "../ClangTidyDiagnosticConsumer.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/Expr.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/ASTMatchers/ASTMatchers.h"
#include "clang/ASTMatchers/ASTMatchersInternal.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/DiagnosticIDs.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include <array>
#include <cassert>
#include <stack>
#include <tuple>
#include <type_traits>
#include <utility>
using namespace clang::ast_matchers;
namespace clang {
namespace tidy {
namespace readability {
namespace {
struct CognitiveComplexity final {
// Any increment is based on some combination of reasons.
// For details you can look at the Specification at
// https://www.sonarsource.com/docs/CognitiveComplexity.pdf
// or user-facing docs at
// http://clang.llvm.org/extra/clang-tidy/checks/readability-function-cognitive-complexity.html
// Here are all the possible reasons:
enum Criteria : uint8_t {
None = 0U,
// B1, increases cognitive complexity (by 1)
// What causes it:
// * if, else if, else, ConditionalOperator (not BinaryConditionalOperator)
// * SwitchStmt
// * ForStmt, CXXForRangeStmt
// * WhileStmt, DoStmt
// * CXXCatchStmt
// * GotoStmt, IndirectGotoStmt (but not BreakStmt, ContinueStmt)
// * sequences of binary logical operators (BinOpLAnd, BinOpLOr)
// * each method in a recursion cycle (not implemented)
Increment = 1U << 0,
// B2, increases current nesting level (by 1)
// What causes it:
// * if, else if, else, ConditionalOperator (not BinaryConditionalOperator)
// * SwitchStmt
// * ForStmt, CXXForRangeStmt
// * WhileStmt, DoStmt
// * CXXCatchStmt
// * nested CXXConstructor, CXXDestructor, CXXMethod (incl. C++11 Lambda)
// * GNU Statement Expression
// * Apple Block declaration
IncrementNesting = 1U << 1,
// B3, increases cognitive complexity by the current nesting level
// Applied before IncrementNesting
// What causes it:
// * IfStmt, ConditionalOperator (not BinaryConditionalOperator)
// * SwitchStmt
// * ForStmt, CXXForRangeStmt
// * WhileStmt, DoStmt
// * CXXCatchStmt
PenalizeNesting = 1U << 2,
All = Increment | PenalizeNesting | IncrementNesting,
};
// The helper struct used to record one increment occurrence, with all the
// details nessesary.
struct Detail {
const SourceLocation Loc; // What caused the increment?
const unsigned short Nesting; // How deeply nested is Loc located?
const Criteria C; // The criteria of the increment
Detail(SourceLocation SLoc, unsigned short CurrentNesting, Criteria Crit)
: Loc(SLoc), Nesting(CurrentNesting), C(Crit) {}
// To minimize the sizeof(Detail), we only store the minimal info there.
// This function is used to convert from the stored info into the usable
// information - what message to output, how much of an increment did this
// occurrence actually result in.
std::pair<unsigned, unsigned short> process() const {
assert(C != Criteria::None && "invalid criteria");
unsigned MsgId; // The id of the message to output.
unsigned short Increment; // How much of an increment?
if (C == Criteria::All) {
Increment = 1 + Nesting;
MsgId = 0;
} else if (C == (Criteria::Increment | Criteria::IncrementNesting)) {
Increment = 1;
MsgId = 1;
} else if (C == Criteria::Increment) {
Increment = 1;
MsgId = 2;
} else if (C == Criteria::IncrementNesting) {
Increment = 0; // Unused in this message.
MsgId = 3;
} else
llvm_unreachable("should not get to here.");
return std::make_pair(MsgId, Increment);
}
};
// Limit of 25 is the "upstream"'s default.
static constexpr unsigned DefaultLimit = 25U;
// Based on the publicly-avaliable numbers for some big open-source projects
// https://sonarcloud.io/projects?languages=c%2Ccpp&size=5 we can estimate:
// value ~20 would result in no allocs for 98% of functions, ~12 for 96%, ~10
// for 91%, ~8 for 88%, ~6 for 84%, ~4 for 77%, ~2 for 64%, and ~1 for 37%.
static_assert(sizeof(Detail) <= 8,
"Since we use SmallVector to minimize the amount of "
"allocations, we also need to consider the price we pay for "
"that in terms of stack usage. "
"Thus, it is good to minimize the size of the Detail struct.");
SmallVector<Detail, DefaultLimit> Details; // 25 elements is 200 bytes.
// Yes, 25 is a magic number. This is the seemingly-sane default for the
// upper limit for function cognitive complexity. Thus it would make sense
// to avoid allocations for any function that does not violate the limit.
// The grand total Cognitive Complexity of the function.
unsigned Total = 0;
// The function used to store new increment, calculate the total complexity.
void account(SourceLocation Loc, unsigned short Nesting, Criteria C);
};
// All the possible messages that can be output. The choice of the message
// to use is based of the combination of the CognitiveComplexity::Criteria.
// It would be nice to have it in CognitiveComplexity struct, but then it is
// not static.
static const std::array<const StringRef, 4> Msgs = {{
// B1 + B2 + B3
"+%0, including nesting penalty of %1, nesting level increased to %2",
// B1 + B2
"+%0, nesting level increased to %2",
// B1
"+%0",
// B2
"nesting level increased to %2",
}};
// Criteria is a bitset, thus a few helpers are needed.
CognitiveComplexity::Criteria operator|(CognitiveComplexity::Criteria LHS,
CognitiveComplexity::Criteria RHS) {
return static_cast<CognitiveComplexity::Criteria>(
static_cast<std::underlying_type<CognitiveComplexity::Criteria>::type>(
LHS) |
static_cast<std::underlying_type<CognitiveComplexity::Criteria>::type>(
RHS));
}
CognitiveComplexity::Criteria operator&(CognitiveComplexity::Criteria LHS,
CognitiveComplexity::Criteria RHS) {
return static_cast<CognitiveComplexity::Criteria>(
static_cast<std::underlying_type<CognitiveComplexity::Criteria>::type>(
LHS) &
static_cast<std::underlying_type<CognitiveComplexity::Criteria>::type>(
RHS));
}
CognitiveComplexity::Criteria &operator|=(CognitiveComplexity::Criteria &LHS,
CognitiveComplexity::Criteria RHS) {
LHS = operator|(LHS, RHS);
return LHS;
}
CognitiveComplexity::Criteria &operator&=(CognitiveComplexity::Criteria &LHS,
CognitiveComplexity::Criteria RHS) {
LHS = operator&(LHS, RHS);
return LHS;
}
void CognitiveComplexity::account(SourceLocation Loc, unsigned short Nesting,
Criteria C) {
C &= Criteria::All;
assert(C != Criteria::None && "invalid criteria");
Details.emplace_back(Loc, Nesting, C);
const Detail &D = Details.back();
unsigned MsgId;
unsigned short Increase;
std::tie(MsgId, Increase) = D.process();
Total += Increase;
}
class FunctionASTVisitor final
: public RecursiveASTVisitor<FunctionASTVisitor> {
using Base = RecursiveASTVisitor<FunctionASTVisitor>;
// The current nesting level (increased by Criteria::IncrementNesting).
unsigned short CurrentNestingLevel = 0;
// Used to efficiently know the last type of the binary sequence operator
// that was encountered. It would make sense for the function call to start
// the new sequence, thus it is a stack.
using OBO = Optional<BinaryOperator::Opcode>;
std::stack<OBO, SmallVector<OBO, 4>> BinaryOperatorsStack;
public:
bool TraverseStmtWithIncreasedNestingLevel(Stmt *Node) {
++CurrentNestingLevel;
bool ShouldContinue = Base::TraverseStmt(Node);
--CurrentNestingLevel;
return ShouldContinue;
}
bool TraverseDeclWithIncreasedNestingLevel(Decl *Node) {
++CurrentNestingLevel;
bool ShouldContinue = Base::TraverseDecl(Node);
--CurrentNestingLevel;
return ShouldContinue;
}
bool TraverseIfStmt(IfStmt *Node, bool InElseIf = false) {
if (!Node)
return Base::TraverseIfStmt(Node);
{
CognitiveComplexity::Criteria Reasons;
Reasons = CognitiveComplexity::Criteria::None;
// "If" increases cognitive complexity.
Reasons |= CognitiveComplexity::Criteria::Increment;
// "If" increases nesting level.
Reasons |= CognitiveComplexity::Criteria::IncrementNesting;
if (!InElseIf) {
// "If" receives a nesting increment commensurate with it's nested
// depth, if it is not part of "else if".
Reasons |= CognitiveComplexity::Criteria::PenalizeNesting;
}
CC.account(Node->getIfLoc(), CurrentNestingLevel, Reasons);
}
// If this IfStmt is *NOT* "else if", then only the body (i.e. "Then" and
// "Else") is traversed with increased Nesting level.
// However if this IfStmt *IS* "else if", then Nesting level is increased
// for the whole IfStmt (i.e. for "Init", "Cond", "Then" and "Else").
if (!InElseIf) {
if (!TraverseStmt(Node->getInit()))
return false;
if (!TraverseStmt(Node->getCond()))
return false;
} else {
if (!TraverseStmtWithIncreasedNestingLevel(Node->getInit()))
return false;
if (!TraverseStmtWithIncreasedNestingLevel(Node->getCond()))
return false;
}
// "Then" always increases nesting level.
if (!TraverseStmtWithIncreasedNestingLevel(Node->getThen()))
return false;
if (!Node->getElse())
return true;
if (auto *E = dyn_cast<IfStmt>(Node->getElse()))
return TraverseIfStmt(E, true);
{
CognitiveComplexity::Criteria Reasons;
Reasons = CognitiveComplexity::Criteria::None;
// "Else" increases cognitive complexity.
Reasons |= CognitiveComplexity::Criteria::Increment;
// "Else" increases nesting level.
Reasons |= CognitiveComplexity::Criteria::IncrementNesting;
// "Else" DOES NOT receive a nesting increment commensurate with it's
// nested depth.
CC.account(Node->getElseLoc(), CurrentNestingLevel, Reasons);
}
// "Else" always increases nesting level.
return TraverseStmtWithIncreasedNestingLevel(Node->getElse());
}
// The currently-being-processed stack entry, which is always the top.
#define CurrentBinaryOperator BinaryOperatorsStack.top()
// In a sequence of binary logical operators, if the new operator is different
// from the previous one, then the cognitive complexity is increased.
bool TraverseBinaryOperator(BinaryOperator *Op) {
if (!Op || !Op->isLogicalOp())
return Base::TraverseBinaryOperator(Op);
// Make sure that there is always at least one frame in the stack.
if (BinaryOperatorsStack.empty())
BinaryOperatorsStack.emplace();
// If this is the first binary operator that we are processing, or the
// previous binary operator was different, there is an increment.
if (!CurrentBinaryOperator || Op->getOpcode() != CurrentBinaryOperator)
CC.account(Op->getOperatorLoc(), CurrentNestingLevel,
CognitiveComplexity::Criteria::Increment);
// We might encounter a function call, which starts a new sequence, thus
// we need to save the current previous binary operator.
const Optional<BinaryOperator::Opcode> BinOpCopy(CurrentBinaryOperator);
// Record the operator that we are currently processing and traverse it.
CurrentBinaryOperator = Op->getOpcode();
bool ShouldContinue = Base::TraverseBinaryOperator(Op);
// And restore the previous binary operator, which might be nonexistent.
CurrentBinaryOperator = BinOpCopy;
return ShouldContinue;
}
// It would make sense for the function call to start the new binary
// operator sequence, thus let's make sure that it creates a new stack frame.
bool TraverseCallExpr(CallExpr *Node) {
// If we are not currently processing any binary operator sequence, then
// no Node-handling is needed.
if (!Node || BinaryOperatorsStack.empty() || !CurrentBinaryOperator)
return Base::TraverseCallExpr(Node);
// Else, do add [uninitialized] frame to the stack, and traverse call.
BinaryOperatorsStack.emplace();
bool ShouldContinue = Base::TraverseCallExpr(Node);
// And remove the top frame.
BinaryOperatorsStack.pop();
return ShouldContinue;
}
#undef CurrentBinaryOperator
bool TraverseStmt(Stmt *Node) {
if (!Node)
return Base::TraverseStmt(Node);
// Three following switch()'es have huge duplication, but it is better to
// keep them separate, to simplify comparing them with the Specification.
CognitiveComplexity::Criteria Reasons = CognitiveComplexity::Criteria::None;
SourceLocation Location = Node->getBeginLoc();
// B1. Increments
// There is an increment for each of the following:
switch (Node->getStmtClass()) {
// if, else if, else are handled in TraverseIfStmt(),
// FIXME: "each method in a recursion cycle" Increment is not implemented.
case Stmt::ConditionalOperatorClass:
case Stmt::SwitchStmtClass:
case Stmt::ForStmtClass:
case Stmt::CXXForRangeStmtClass:
case Stmt::WhileStmtClass:
case Stmt::DoStmtClass:
case Stmt::CXXCatchStmtClass:
case Stmt::GotoStmtClass:
case Stmt::IndirectGotoStmtClass:
Reasons |= CognitiveComplexity::Criteria::Increment;
break;
default:
// break LABEL, continue LABEL increase cognitive complexity,
// but they are not supported in C++ or C.
// Regular break/continue do not increase cognitive complexity.
break;
}
// B2. Nesting level
// The following structures increment the nesting level:
switch (Node->getStmtClass()) {
// if, else if, else are handled in TraverseIfStmt(),
// Nested methods and such are handled in TraverseDecl.
case Stmt::ConditionalOperatorClass:
case Stmt::SwitchStmtClass:
case Stmt::ForStmtClass:
case Stmt::CXXForRangeStmtClass:
case Stmt::WhileStmtClass:
case Stmt::DoStmtClass:
case Stmt::CXXCatchStmtClass:
case Stmt::LambdaExprClass:
case Stmt::StmtExprClass:
Reasons |= CognitiveComplexity::Criteria::IncrementNesting;
break;
default:
break;
}
// B3. Nesting increments
// The following structures receive a nesting increment
// commensurate with their nested depth inside B2 structures:
switch (Node->getStmtClass()) {
// if, else if, else are handled in TraverseIfStmt().
case Stmt::ConditionalOperatorClass:
case Stmt::SwitchStmtClass:
case Stmt::ForStmtClass:
case Stmt::CXXForRangeStmtClass:
case Stmt::WhileStmtClass:
case Stmt::DoStmtClass:
case Stmt::CXXCatchStmtClass:
Reasons |= CognitiveComplexity::Criteria::PenalizeNesting;
break;
default:
break;
}
if (Node->getStmtClass() == Stmt::ConditionalOperatorClass) {
// A little beautification.
// For conditional operator "cond ? true : false" point at the "?"
// symbol.
ConditionalOperator *COp = dyn_cast<ConditionalOperator>(Node);
Location = COp->getQuestionLoc();
}
// If we have found any reasons, let's account it.
if (Reasons & CognitiveComplexity::Criteria::All)
CC.account(Location, CurrentNestingLevel, Reasons);
// Did we decide that the nesting level should be increased?
if (!(Reasons & CognitiveComplexity::Criteria::IncrementNesting))
return Base::TraverseStmt(Node);
return TraverseStmtWithIncreasedNestingLevel(Node);
}
// The parameter MainAnalyzedFunction is needed to differentiate between the
// cases where TraverseDecl() is the entry point from
// FunctionCognitiveComplexityCheck::check() and the cases where it was called
// from the FunctionASTVisitor itself. Explanation: if we get a function
// definition (e.g. constructor, destructor, method), the Cognitive Complexity
// specification states that the Nesting level shall be increased. But if this
// function is the entry point, then the Nesting level should not be
// increased. Thus that parameter is there and is used to fall-through
// directly to traversing if this is the main function that is being analyzed.
bool TraverseDecl(Decl *Node, bool MainAnalyzedFunction = false) {
if (!Node || MainAnalyzedFunction)
return Base::TraverseDecl(Node);
// B2. Nesting level
// The following structures increment the nesting level:
switch (Node->getKind()) {
case Decl::Function:
case Decl::CXXMethod:
case Decl::CXXConstructor:
case Decl::CXXDestructor:
case Decl::Block:
break;
default:
// If this is something else, we use early return!
return Base::TraverseDecl(Node);
break;
}
CC.account(Node->getBeginLoc(), CurrentNestingLevel,
CognitiveComplexity::Criteria::IncrementNesting);
return TraverseDeclWithIncreasedNestingLevel(Node);
}
CognitiveComplexity CC;
};
} // namespace
FunctionCognitiveComplexityCheck::FunctionCognitiveComplexityCheck(
StringRef Name, ClangTidyContext *Context)
: ClangTidyCheck(Name, Context),
Threshold(Options.get("Threshold", CognitiveComplexity::DefaultLimit)) {}
void FunctionCognitiveComplexityCheck::storeOptions(
ClangTidyOptions::OptionMap &Opts) {
Options.store(Opts, "Threshold", Threshold);
}
void FunctionCognitiveComplexityCheck::registerMatchers(MatchFinder *Finder) {
Finder->addMatcher(
functionDecl(
allOf(isDefinition(), unless(anyOf(isDefaulted(), isDeleted(),
isImplicit(), isInstantiated()))))
.bind("func"),
this);
}
void FunctionCognitiveComplexityCheck::check(
const MatchFinder::MatchResult &Result) {
const auto *Func = Result.Nodes.getNodeAs<FunctionDecl>("func");
assert(Func->hasBody() && "The matchers should only match the functions that "
"have user-provided body.");
FunctionASTVisitor Visitor;
Visitor.TraverseDecl(const_cast<FunctionDecl *>(Func), true);
if (Visitor.CC.Total <= Threshold)
return;
diag(Func->getLocation(),
"function %0 has cognitive complexity of %1 (threshold %2)")
<< Func << Visitor.CC.Total << Threshold;
// Output all the basic increments of complexity.
for (const auto &Detail : Visitor.CC.Details) {
unsigned MsgId; // The id of the message to output.
unsigned short Increase; // How much of an increment?
std::tie(MsgId, Increase) = Detail.process();
assert(MsgId < Msgs.size() && "MsgId should always be valid");
// Increase, on the other hand, can be 0.
diag(Detail.Loc, Msgs[MsgId], DiagnosticIDs::Note)
<< (unsigned)Increase << (unsigned)Detail.Nesting << 1 + Detail.Nesting;
}
}
} // namespace readability
} // namespace tidy
} // namespace clang