RedundantExpressionCheck.cpp 50.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
//===--- RedundantExpressionCheck.cpp - clang-tidy-------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "RedundantExpressionCheck.h"
#include "../utils/Matchers.h"
#include "../utils/OptionsUtils.h"
#include "clang/AST/ASTContext.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Lex/Lexer.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/FormatVariadic.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <string>
#include <vector>

using namespace clang::ast_matchers;
using namespace clang::tidy::matchers;

namespace clang {
namespace tidy {
namespace misc {
namespace {
using llvm::APSInt;

static constexpr llvm::StringLiteral KnownBannedMacroNames[] = {
    "EAGAIN",
    "EWOULDBLOCK",
    "SIGCLD",
    "SIGCHLD",
};

static bool incrementWithoutOverflow(const APSInt &Value, APSInt &Result) {
  Result = Value;
  ++Result;
  return Value < Result;
}

static bool areEquivalentNameSpecifier(const NestedNameSpecifier *Left,
                                       const NestedNameSpecifier *Right) {
  llvm::FoldingSetNodeID LeftID, RightID;
  Left->Profile(LeftID);
  Right->Profile(RightID);
  return LeftID == RightID;
}

static bool areEquivalentExpr(const Expr *Left, const Expr *Right) {
  if (!Left || !Right)
    return !Left && !Right;

  Left = Left->IgnoreParens();
  Right = Right->IgnoreParens();

  // Compare classes.
  if (Left->getStmtClass() != Right->getStmtClass())
    return false;

  // Compare children.
  Expr::const_child_iterator LeftIter = Left->child_begin();
  Expr::const_child_iterator RightIter = Right->child_begin();
  while (LeftIter != Left->child_end() && RightIter != Right->child_end()) {
    if (!areEquivalentExpr(dyn_cast_or_null<Expr>(*LeftIter),
                           dyn_cast_or_null<Expr>(*RightIter)))
      return false;
    ++LeftIter;
    ++RightIter;
  }
  if (LeftIter != Left->child_end() || RightIter != Right->child_end())
    return false;

  // Perform extra checks.
  switch (Left->getStmtClass()) {
  default:
    return false;

  case Stmt::CharacterLiteralClass:
    return cast<CharacterLiteral>(Left)->getValue() ==
           cast<CharacterLiteral>(Right)->getValue();
  case Stmt::IntegerLiteralClass: {
    llvm::APInt LeftLit = cast<IntegerLiteral>(Left)->getValue();
    llvm::APInt RightLit = cast<IntegerLiteral>(Right)->getValue();
    return LeftLit.getBitWidth() == RightLit.getBitWidth() &&
           LeftLit == RightLit;
  }
  case Stmt::FloatingLiteralClass:
    return cast<FloatingLiteral>(Left)->getValue().bitwiseIsEqual(
        cast<FloatingLiteral>(Right)->getValue());
  case Stmt::StringLiteralClass:
    return cast<StringLiteral>(Left)->getBytes() ==
           cast<StringLiteral>(Right)->getBytes();
  case Stmt::CXXOperatorCallExprClass:
    return cast<CXXOperatorCallExpr>(Left)->getOperator() ==
           cast<CXXOperatorCallExpr>(Right)->getOperator();
  case Stmt::DependentScopeDeclRefExprClass:
    if (cast<DependentScopeDeclRefExpr>(Left)->getDeclName() !=
        cast<DependentScopeDeclRefExpr>(Right)->getDeclName())
      return false;
    return areEquivalentNameSpecifier(
        cast<DependentScopeDeclRefExpr>(Left)->getQualifier(),
        cast<DependentScopeDeclRefExpr>(Right)->getQualifier());
  case Stmt::DeclRefExprClass:
    return cast<DeclRefExpr>(Left)->getDecl() ==
           cast<DeclRefExpr>(Right)->getDecl();
  case Stmt::MemberExprClass:
    return cast<MemberExpr>(Left)->getMemberDecl() ==
           cast<MemberExpr>(Right)->getMemberDecl();
  case Stmt::CXXFoldExprClass:
    return cast<CXXFoldExpr>(Left)->getOperator() ==
           cast<CXXFoldExpr>(Right)->getOperator();
  case Stmt::CXXFunctionalCastExprClass:
  case Stmt::CStyleCastExprClass:
    return cast<ExplicitCastExpr>(Left)->getTypeAsWritten() ==
           cast<ExplicitCastExpr>(Right)->getTypeAsWritten();
  case Stmt::CallExprClass:
  case Stmt::ImplicitCastExprClass:
  case Stmt::ArraySubscriptExprClass:
    return true;
  case Stmt::UnaryOperatorClass:
    if (cast<UnaryOperator>(Left)->isIncrementDecrementOp())
      return false;
    return cast<UnaryOperator>(Left)->getOpcode() ==
           cast<UnaryOperator>(Right)->getOpcode();
  case Stmt::BinaryOperatorClass:
    return cast<BinaryOperator>(Left)->getOpcode() ==
           cast<BinaryOperator>(Right)->getOpcode();
  case Stmt::UnaryExprOrTypeTraitExprClass:
    const auto *LeftUnaryExpr =
        cast<UnaryExprOrTypeTraitExpr>(Left);
    const auto *RightUnaryExpr =
        cast<UnaryExprOrTypeTraitExpr>(Right);
    if (LeftUnaryExpr->isArgumentType() && RightUnaryExpr->isArgumentType())
      return LeftUnaryExpr->getArgumentType() ==
             RightUnaryExpr->getArgumentType();
    else if (!LeftUnaryExpr->isArgumentType() &&
             !RightUnaryExpr->isArgumentType())
      return areEquivalentExpr(LeftUnaryExpr->getArgumentExpr(),
                               RightUnaryExpr->getArgumentExpr());

    return false;
  }
}

// For a given expression 'x', returns whether the ranges covered by the
// relational operators are equivalent (i.e.  x <= 4 is equivalent to x < 5).
static bool areEquivalentRanges(BinaryOperatorKind OpcodeLHS,
                                const APSInt &ValueLHS,
                                BinaryOperatorKind OpcodeRHS,
                                const APSInt &ValueRHS) {
  assert(APSInt::compareValues(ValueLHS, ValueRHS) <= 0 &&
         "Values must be ordered");
  // Handle the case where constants are the same: x <= 4  <==>  x <= 4.
  if (APSInt::compareValues(ValueLHS, ValueRHS) == 0)
    return OpcodeLHS == OpcodeRHS;

  // Handle the case where constants are off by one: x <= 4  <==>  x < 5.
  APSInt ValueLHS_plus1;
  return ((OpcodeLHS == BO_LE && OpcodeRHS == BO_LT) ||
          (OpcodeLHS == BO_GT && OpcodeRHS == BO_GE)) &&
         incrementWithoutOverflow(ValueLHS, ValueLHS_plus1) &&
         APSInt::compareValues(ValueLHS_plus1, ValueRHS) == 0;
}

// For a given expression 'x', returns whether the ranges covered by the
// relational operators are fully disjoint (i.e. x < 4  and  x > 7).
static bool areExclusiveRanges(BinaryOperatorKind OpcodeLHS,
                               const APSInt &ValueLHS,
                               BinaryOperatorKind OpcodeRHS,
                               const APSInt &ValueRHS) {
  assert(APSInt::compareValues(ValueLHS, ValueRHS) <= 0 &&
         "Values must be ordered");

  // Handle cases where the constants are the same.
  if (APSInt::compareValues(ValueLHS, ValueRHS) == 0) {
    switch (OpcodeLHS) {
    case BO_EQ:
      return OpcodeRHS == BO_NE || OpcodeRHS == BO_GT || OpcodeRHS == BO_LT;
    case BO_NE:
      return OpcodeRHS == BO_EQ;
    case BO_LE:
      return OpcodeRHS == BO_GT;
    case BO_GE:
      return OpcodeRHS == BO_LT;
    case BO_LT:
      return OpcodeRHS == BO_EQ || OpcodeRHS == BO_GT || OpcodeRHS == BO_GE;
    case BO_GT:
      return OpcodeRHS == BO_EQ || OpcodeRHS == BO_LT || OpcodeRHS == BO_LE;
    default:
      return false;
    }
  }

  // Handle cases where the constants are different.
  if ((OpcodeLHS == BO_EQ || OpcodeLHS == BO_LT || OpcodeLHS == BO_LE) &&
      (OpcodeRHS == BO_EQ || OpcodeRHS == BO_GT || OpcodeRHS == BO_GE))
    return true;

  // Handle the case where constants are off by one: x > 5 && x < 6.
  APSInt ValueLHS_plus1;
  if (OpcodeLHS == BO_GT && OpcodeRHS == BO_LT &&
      incrementWithoutOverflow(ValueLHS, ValueLHS_plus1) &&
      APSInt::compareValues(ValueLHS_plus1, ValueRHS) == 0)
    return true;

  return false;
}

// Returns whether the ranges covered by the union of both relational
// expressions cover the whole domain (i.e. x < 10  and  x > 0).
static bool rangesFullyCoverDomain(BinaryOperatorKind OpcodeLHS,
                                   const APSInt &ValueLHS,
                                   BinaryOperatorKind OpcodeRHS,
                                   const APSInt &ValueRHS) {
  assert(APSInt::compareValues(ValueLHS, ValueRHS) <= 0 &&
         "Values must be ordered");

  // Handle cases where the constants are the same:  x < 5 || x >= 5.
  if (APSInt::compareValues(ValueLHS, ValueRHS) == 0) {
    switch (OpcodeLHS) {
    case BO_EQ:
      return OpcodeRHS == BO_NE;
    case BO_NE:
      return OpcodeRHS == BO_EQ;
    case BO_LE:
      return OpcodeRHS == BO_GT || OpcodeRHS == BO_GE;
    case BO_LT:
      return OpcodeRHS == BO_GE;
    case BO_GE:
      return OpcodeRHS == BO_LT || OpcodeRHS == BO_LE;
    case BO_GT:
      return OpcodeRHS == BO_LE;
    default:
      return false;
    }
  }

  // Handle the case where constants are off by one: x <= 4 || x >= 5.
  APSInt ValueLHS_plus1;
  if (OpcodeLHS == BO_LE && OpcodeRHS == BO_GE &&
      incrementWithoutOverflow(ValueLHS, ValueLHS_plus1) &&
      APSInt::compareValues(ValueLHS_plus1, ValueRHS) == 0)
    return true;

  // Handle cases where the constants are different: x > 4 || x <= 7.
  if ((OpcodeLHS == BO_GT || OpcodeLHS == BO_GE) &&
      (OpcodeRHS == BO_LT || OpcodeRHS == BO_LE))
    return true;

  // Handle cases where constants are different but both ops are !=, like:
  // x != 5 || x != 10
  if (OpcodeLHS == BO_NE && OpcodeRHS == BO_NE)
    return true;

  return false;
}

static bool rangeSubsumesRange(BinaryOperatorKind OpcodeLHS,
                               const APSInt &ValueLHS,
                               BinaryOperatorKind OpcodeRHS,
                               const APSInt &ValueRHS) {
  int Comparison = APSInt::compareValues(ValueLHS, ValueRHS);
  switch (OpcodeLHS) {
  case BO_EQ:
    return OpcodeRHS == BO_EQ && Comparison == 0;
  case BO_NE:
    return (OpcodeRHS == BO_NE && Comparison == 0) ||
           (OpcodeRHS == BO_EQ && Comparison != 0) ||
           (OpcodeRHS == BO_LT && Comparison >= 0) ||
           (OpcodeRHS == BO_LE && Comparison > 0) ||
           (OpcodeRHS == BO_GT && Comparison <= 0) ||
           (OpcodeRHS == BO_GE && Comparison < 0);

  case BO_LT:
    return ((OpcodeRHS == BO_LT && Comparison >= 0) ||
            (OpcodeRHS == BO_LE && Comparison > 0) ||
            (OpcodeRHS == BO_EQ && Comparison > 0));
  case BO_GT:
    return ((OpcodeRHS == BO_GT && Comparison <= 0) ||
            (OpcodeRHS == BO_GE && Comparison < 0) ||
            (OpcodeRHS == BO_EQ && Comparison < 0));
  case BO_LE:
    return (OpcodeRHS == BO_LT || OpcodeRHS == BO_LE || OpcodeRHS == BO_EQ) &&
           Comparison >= 0;
  case BO_GE:
    return (OpcodeRHS == BO_GT || OpcodeRHS == BO_GE || OpcodeRHS == BO_EQ) &&
           Comparison <= 0;
  default:
    return false;
  }
}

static void transformSubToCanonicalAddExpr(BinaryOperatorKind &Opcode,
                                           APSInt &Value) {
  if (Opcode == BO_Sub) {
    Opcode = BO_Add;
    Value = -Value;
  }
}

// to use in the template below
static OverloadedOperatorKind getOp(const BinaryOperator *Op) {
  return BinaryOperator::getOverloadedOperator(Op->getOpcode());
}

static OverloadedOperatorKind getOp(const CXXOperatorCallExpr *Op) {
  if (Op->getNumArgs() != 2)
    return OO_None;
  return Op->getOperator();
}

static std::pair<const Expr *, const Expr *>
getOperands(const BinaryOperator *Op) {
  return {Op->getLHS()->IgnoreParenImpCasts(),
          Op->getRHS()->IgnoreParenImpCasts()};
}

static std::pair<const Expr *, const Expr *>
getOperands(const CXXOperatorCallExpr *Op) {
  return {Op->getArg(0)->IgnoreParenImpCasts(),
          Op->getArg(1)->IgnoreParenImpCasts()};
}

template <typename TExpr>
static const TExpr *checkOpKind(const Expr *TheExpr,
                                OverloadedOperatorKind OpKind) {
  const auto *AsTExpr = dyn_cast_or_null<TExpr>(TheExpr);
  if (AsTExpr && getOp(AsTExpr) == OpKind)
    return AsTExpr;

  return nullptr;
}

// returns true if a subexpression has two directly equivalent operands and
// is already handled by operands/parametersAreEquivalent
template <typename TExpr, unsigned N>
static bool collectOperands(const Expr *Part,
                            SmallVector<const Expr *, N> &AllOperands,
                            OverloadedOperatorKind OpKind) {
  if (const auto *BinOp = checkOpKind<TExpr>(Part, OpKind)) {
    const std::pair<const Expr *, const Expr *> Operands = getOperands(BinOp);
    if (areEquivalentExpr(Operands.first, Operands.second))
      return true;
    return collectOperands<TExpr>(Operands.first, AllOperands, OpKind) ||
           collectOperands<TExpr>(Operands.second, AllOperands, OpKind);
  }

  AllOperands.push_back(Part);
  return false;
}

template <typename TExpr>
static bool hasSameOperatorParent(const Expr *TheExpr,
                                  OverloadedOperatorKind OpKind,
                                  ASTContext &Context) {
  // IgnoreParenImpCasts logic in reverse: skip surrounding uninteresting nodes
  const DynTypedNodeList Parents = Context.getParents(*TheExpr);
  for (ast_type_traits::DynTypedNode DynParent : Parents) {
    if (const auto *Parent = DynParent.get<Expr>()) {
      bool Skip = isa<ParenExpr>(Parent) || isa<ImplicitCastExpr>(Parent) ||
                  isa<FullExpr>(Parent) ||
                  isa<MaterializeTemporaryExpr>(Parent);
      if (Skip && hasSameOperatorParent<TExpr>(Parent, OpKind, Context))
        return true;
      if (checkOpKind<TExpr>(Parent, OpKind))
        return true;
    }
  }

  return false;
}

template <typename TExpr>
static bool
markDuplicateOperands(const TExpr *TheExpr,
                      ast_matchers::internal::BoundNodesTreeBuilder *Builder,
                      ASTContext &Context) {
  const OverloadedOperatorKind OpKind = getOp(TheExpr);
  if (OpKind == OO_None)
    return false;
  // if there are no nested operators of the same kind, it's handled by
  // operands/parametersAreEquivalent
  const std::pair<const Expr *, const Expr *> Operands = getOperands(TheExpr);
  if (!(checkOpKind<TExpr>(Operands.first, OpKind) ||
        checkOpKind<TExpr>(Operands.second, OpKind)))
    return false;

  // if parent is the same kind of operator, it's handled by a previous call to
  // markDuplicateOperands
  if (hasSameOperatorParent<TExpr>(TheExpr, OpKind, Context))
    return false;

  SmallVector<const Expr *, 4> AllOperands;
  if (collectOperands<TExpr>(Operands.first, AllOperands, OpKind))
    return false;
  if (collectOperands<TExpr>(Operands.second, AllOperands, OpKind))
    return false;
  size_t NumOperands = AllOperands.size();
  llvm::SmallBitVector Duplicates(NumOperands);
  for (size_t I = 0; I < NumOperands; I++) {
    if (Duplicates[I])
      continue;
    bool FoundDuplicates = false;

    for (size_t J = I + 1; J < NumOperands; J++) {
      if (AllOperands[J]->HasSideEffects(Context))
        break;

      if (areEquivalentExpr(AllOperands[I], AllOperands[J])) {
        FoundDuplicates = true;
        Duplicates.set(J);
        Builder->setBinding(
            SmallString<11>(llvm::formatv("duplicate{0}", J)),
            ast_type_traits::DynTypedNode::create(*AllOperands[J]));
      }
    }

    if (FoundDuplicates)
      Builder->setBinding(
          SmallString<11>(llvm::formatv("duplicate{0}", I)),
          ast_type_traits::DynTypedNode::create(*AllOperands[I]));
  }

  return Duplicates.any();
}

AST_MATCHER(Expr, isIntegerConstantExpr) {
  if (Node.isInstantiationDependent())
    return false;
  return Node.isIntegerConstantExpr(Finder->getASTContext());
}

AST_MATCHER(BinaryOperator, operandsAreEquivalent) {
  return areEquivalentExpr(Node.getLHS(), Node.getRHS());
}

AST_MATCHER(BinaryOperator, nestedOperandsAreEquivalent) {
  return markDuplicateOperands(&Node, Builder, Finder->getASTContext());
}

AST_MATCHER(ConditionalOperator, expressionsAreEquivalent) {
  return areEquivalentExpr(Node.getTrueExpr(), Node.getFalseExpr());
}

AST_MATCHER(CallExpr, parametersAreEquivalent) {
  return Node.getNumArgs() == 2 &&
         areEquivalentExpr(Node.getArg(0), Node.getArg(1));
}

AST_MATCHER(CXXOperatorCallExpr, nestedParametersAreEquivalent) {
  return markDuplicateOperands(&Node, Builder, Finder->getASTContext());
}

AST_MATCHER(BinaryOperator, binaryOperatorIsInMacro) {
  return Node.getOperatorLoc().isMacroID();
}

AST_MATCHER(ConditionalOperator, conditionalOperatorIsInMacro) {
  return Node.getQuestionLoc().isMacroID() || Node.getColonLoc().isMacroID();
}

AST_MATCHER(Expr, isMacro) { return Node.getExprLoc().isMacroID(); }

AST_MATCHER_P(Expr, expandedByMacro, ArrayRef<llvm::StringLiteral>, Names) {
  const SourceManager &SM = Finder->getASTContext().getSourceManager();
  const LangOptions &LO = Finder->getASTContext().getLangOpts();
  SourceLocation Loc = Node.getExprLoc();
  while (Loc.isMacroID()) {
    StringRef MacroName = Lexer::getImmediateMacroName(Loc, SM, LO);
    if (llvm::is_contained(Names, MacroName))
      return true;
    Loc = SM.getImmediateMacroCallerLoc(Loc);
  }
  return false;
}

// Returns a matcher for integer constant expressions.
static ast_matchers::internal::Matcher<Expr>
matchIntegerConstantExpr(StringRef Id) {
  std::string CstId = (Id + "-const").str();
  return expr(isIntegerConstantExpr()).bind(CstId);
}

// Retrieves the integer expression matched by 'matchIntegerConstantExpr' with
// name 'Id' and stores it into 'ConstExpr', the value of the expression is
// stored into `Value`.
static bool retrieveIntegerConstantExpr(const MatchFinder::MatchResult &Result,
                                        StringRef Id, APSInt &Value,
                                        const Expr *&ConstExpr) {
  std::string CstId = (Id + "-const").str();
  ConstExpr = Result.Nodes.getNodeAs<Expr>(CstId);
  if (!ConstExpr)
    return false;
  Optional<llvm::APSInt> R = ConstExpr->getIntegerConstantExpr(*Result.Context);
  if (!R)
    return false;
  Value = *R;
  return true;
}

// Overloaded `retrieveIntegerConstantExpr` for compatibility.
static bool retrieveIntegerConstantExpr(const MatchFinder::MatchResult &Result,
                                        StringRef Id, APSInt &Value) {
  const Expr *ConstExpr = nullptr;
  return retrieveIntegerConstantExpr(Result, Id, Value, ConstExpr);
}

// Returns a matcher for symbolic expressions (matches every expression except
// ingeter constant expressions).
static ast_matchers::internal::Matcher<Expr> matchSymbolicExpr(StringRef Id) {
  std::string SymId = (Id + "-sym").str();
  return ignoringParenImpCasts(
      expr(unless(isIntegerConstantExpr())).bind(SymId));
}

// Retrieves the expression matched by 'matchSymbolicExpr' with name 'Id' and
// stores it into 'SymExpr'.
static bool retrieveSymbolicExpr(const MatchFinder::MatchResult &Result,
                                 StringRef Id, const Expr *&SymExpr) {
  std::string SymId = (Id + "-sym").str();
  if (const auto *Node = Result.Nodes.getNodeAs<Expr>(SymId)) {
    SymExpr = Node;
    return true;
  }
  return false;
}

// Match a binary operator between a symbolic expression and an integer constant
// expression.
static ast_matchers::internal::Matcher<Expr>
matchBinOpIntegerConstantExpr(StringRef Id) {
  const auto BinOpCstExpr =
      expr(anyOf(binaryOperator(hasAnyOperatorName("+", "|", "&"),
                                hasOperands(matchSymbolicExpr(Id),
                                            matchIntegerConstantExpr(Id))),
                 binaryOperator(hasOperatorName("-"),
                                hasLHS(matchSymbolicExpr(Id)),
                                hasRHS(matchIntegerConstantExpr(Id)))))
          .bind(Id);
  return ignoringParenImpCasts(BinOpCstExpr);
}

// Retrieves sub-expressions matched by 'matchBinOpIntegerConstantExpr' with
// name 'Id'.
static bool
retrieveBinOpIntegerConstantExpr(const MatchFinder::MatchResult &Result,
                                 StringRef Id, BinaryOperatorKind &Opcode,
                                 const Expr *&Symbol, APSInt &Value) {
  if (const auto *BinExpr = Result.Nodes.getNodeAs<BinaryOperator>(Id)) {
    Opcode = BinExpr->getOpcode();
    return retrieveSymbolicExpr(Result, Id, Symbol) &&
           retrieveIntegerConstantExpr(Result, Id, Value);
  }
  return false;
}

// Matches relational expressions: 'Expr <op> k' (i.e. x < 2, x != 3, 12 <= x).
static ast_matchers::internal::Matcher<Expr>
matchRelationalIntegerConstantExpr(StringRef Id) {
  std::string CastId = (Id + "-cast").str();
  std::string SwapId = (Id + "-swap").str();
  std::string NegateId = (Id + "-negate").str();
  std::string OverloadId = (Id + "-overload").str();

  const auto RelationalExpr = ignoringParenImpCasts(binaryOperator(
      isComparisonOperator(), expr().bind(Id),
      anyOf(allOf(hasLHS(matchSymbolicExpr(Id)),
                  hasRHS(matchIntegerConstantExpr(Id))),
            allOf(hasLHS(matchIntegerConstantExpr(Id)),
                  hasRHS(matchSymbolicExpr(Id)), expr().bind(SwapId)))));

  // A cast can be matched as a comparator to zero. (i.e. if (x) is equivalent
  // to if (x != 0)).
  const auto CastExpr =
      implicitCastExpr(hasCastKind(CK_IntegralToBoolean),
                       hasSourceExpression(matchSymbolicExpr(Id)))
          .bind(CastId);

  const auto NegateRelationalExpr =
      unaryOperator(hasOperatorName("!"),
                    hasUnaryOperand(anyOf(CastExpr, RelationalExpr)))
          .bind(NegateId);

  // Do not bind to double negation.
  const auto NegateNegateRelationalExpr =
      unaryOperator(hasOperatorName("!"),
                    hasUnaryOperand(unaryOperator(
                        hasOperatorName("!"),
                        hasUnaryOperand(anyOf(CastExpr, RelationalExpr)))));

  const auto OverloadedOperatorExpr =
      cxxOperatorCallExpr(
          hasAnyOverloadedOperatorName("==", "!=", "<", "<=", ">", ">="),
          // Filter noisy false positives.
          unless(isMacro()), unless(isInTemplateInstantiation()))
          .bind(OverloadId);

  return anyOf(RelationalExpr, CastExpr, NegateRelationalExpr,
               NegateNegateRelationalExpr, OverloadedOperatorExpr);
}

// Checks whether a function param is non constant reference type, and may
// be modified in the function.
static bool isNonConstReferenceType(QualType ParamType) {
  return ParamType->isReferenceType() &&
         !ParamType.getNonReferenceType().isConstQualified();
}

// Checks whether the arguments of an overloaded operator can be modified in the
// function.
// For operators that take an instance and a constant as arguments, only the
// first argument (the instance) needs to be checked, since the constant itself
// is a temporary expression. Whether the second parameter is checked is
// controlled by the parameter `ParamsToCheckCount`.
static bool
canOverloadedOperatorArgsBeModified(const CXXOperatorCallExpr *OperatorCall,
                                    bool checkSecondParam) {
  const auto *OperatorDecl =
      dyn_cast_or_null<FunctionDecl>(OperatorCall->getCalleeDecl());
  // if we can't find the declaration, conservatively assume it can modify
  // arguments
  if (!OperatorDecl)
    return true;

  unsigned ParamCount = OperatorDecl->getNumParams();

  // Overloaded operators declared inside a class have only one param.
  // These functions must be declared const in order to not be able to modify
  // the instance of the class they are called through.
  if (ParamCount == 1 &&
      !OperatorDecl->getType()->castAs<FunctionType>()->isConst())
    return true;

  if (isNonConstReferenceType(OperatorDecl->getParamDecl(0)->getType()))
    return true;

  return checkSecondParam && ParamCount == 2 &&
         isNonConstReferenceType(OperatorDecl->getParamDecl(1)->getType());
}

// Retrieves sub-expressions matched by 'matchRelationalIntegerConstantExpr'
// with name 'Id'.
static bool retrieveRelationalIntegerConstantExpr(
    const MatchFinder::MatchResult &Result, StringRef Id,
    const Expr *&OperandExpr, BinaryOperatorKind &Opcode, const Expr *&Symbol,
    APSInt &Value, const Expr *&ConstExpr) {
  std::string CastId = (Id + "-cast").str();
  std::string SwapId = (Id + "-swap").str();
  std::string NegateId = (Id + "-negate").str();
  std::string OverloadId = (Id + "-overload").str();

  if (const auto *Bin = Result.Nodes.getNodeAs<BinaryOperator>(Id)) {
    // Operand received with explicit comparator.
    Opcode = Bin->getOpcode();
    OperandExpr = Bin;

    if (!retrieveIntegerConstantExpr(Result, Id, Value, ConstExpr))
      return false;
  } else if (const auto *Cast = Result.Nodes.getNodeAs<CastExpr>(CastId)) {
    // Operand received with implicit comparator (cast).
    Opcode = BO_NE;
    OperandExpr = Cast;
    Value = APSInt(32, false);
  } else if (const auto *OverloadedOperatorExpr =
                 Result.Nodes.getNodeAs<CXXOperatorCallExpr>(OverloadId)) {
    if (canOverloadedOperatorArgsBeModified(OverloadedOperatorExpr, false))
      return false;

    if (const auto *Arg = OverloadedOperatorExpr->getArg(1)) {
      if (!Arg->isValueDependent() &&
          !Arg->isIntegerConstantExpr(*Result.Context))
        return false;
    }
    Symbol = OverloadedOperatorExpr->getArg(0);
    OperandExpr = OverloadedOperatorExpr;
    Opcode = BinaryOperator::getOverloadedOpcode(OverloadedOperatorExpr->getOperator());

    return BinaryOperator::isComparisonOp(Opcode);
  } else {
    return false;
  }

  if (!retrieveSymbolicExpr(Result, Id, Symbol))
    return false;

  if (Result.Nodes.getNodeAs<Expr>(SwapId))
    Opcode = BinaryOperator::reverseComparisonOp(Opcode);
  if (Result.Nodes.getNodeAs<Expr>(NegateId))
    Opcode = BinaryOperator::negateComparisonOp(Opcode);
  return true;
}

// Checks for expressions like (X == 4) && (Y != 9)
static bool areSidesBinaryConstExpressions(const BinaryOperator *&BinOp, const ASTContext *AstCtx) {
  const auto *LhsBinOp = dyn_cast<BinaryOperator>(BinOp->getLHS());
  const auto *RhsBinOp = dyn_cast<BinaryOperator>(BinOp->getRHS());

  if (!LhsBinOp || !RhsBinOp)
    return false;

  auto IsIntegerConstantExpr = [AstCtx](const Expr *E) {
    return !E->isValueDependent() && E->isIntegerConstantExpr(*AstCtx);
  };

  if ((IsIntegerConstantExpr(LhsBinOp->getLHS()) ||
       IsIntegerConstantExpr(LhsBinOp->getRHS())) &&
      (IsIntegerConstantExpr(RhsBinOp->getLHS()) ||
       IsIntegerConstantExpr(RhsBinOp->getRHS())))
    return true;
  return false;
}

// Retrieves integer constant subexpressions from binary operator expressions
// that have two equivalent sides.
// E.g.: from (X == 5) && (X == 5) retrieves 5 and 5.
static bool retrieveConstExprFromBothSides(const BinaryOperator *&BinOp,
                                           BinaryOperatorKind &MainOpcode,
                                           BinaryOperatorKind &SideOpcode,
                                           const Expr *&LhsConst,
                                           const Expr *&RhsConst,
                                           const ASTContext *AstCtx) {
  assert(areSidesBinaryConstExpressions(BinOp, AstCtx) &&
         "Both sides of binary operator must be constant expressions!");

  MainOpcode = BinOp->getOpcode();

  const auto *BinOpLhs = cast<BinaryOperator>(BinOp->getLHS());
  const auto *BinOpRhs = cast<BinaryOperator>(BinOp->getRHS());

  auto IsIntegerConstantExpr = [AstCtx](const Expr *E) {
    return !E->isValueDependent() && E->isIntegerConstantExpr(*AstCtx);
  };

  LhsConst = IsIntegerConstantExpr(BinOpLhs->getLHS()) ? BinOpLhs->getLHS()
                                                       : BinOpLhs->getRHS();
  RhsConst = IsIntegerConstantExpr(BinOpRhs->getLHS()) ? BinOpRhs->getLHS()
                                                       : BinOpRhs->getRHS();

  if (!LhsConst || !RhsConst)
    return false;

  assert(BinOpLhs->getOpcode() == BinOpRhs->getOpcode() &&
         "Sides of the binary operator must be equivalent expressions!");

  SideOpcode = BinOpLhs->getOpcode();

  return true;
}

static bool isSameRawIdentifierToken(const Token &T1, const Token &T2,
                        const SourceManager &SM) {
  if (T1.getKind() != T2.getKind())
    return false;
  if (T1.isNot(tok::raw_identifier))
    return true;
  if (T1.getLength() != T2.getLength())
    return false;
  return StringRef(SM.getCharacterData(T1.getLocation()), T1.getLength()) ==
         StringRef(SM.getCharacterData(T2.getLocation()), T2.getLength());
}

bool isTokAtEndOfExpr(SourceRange ExprSR, Token T, const SourceManager &SM) {
  return SM.getExpansionLoc(ExprSR.getEnd()) == T.getLocation();
}

/// Returns true if both LhsEpxr and RhsExpr are
/// macro expressions and they are expanded
/// from different macros.
static bool areExprsFromDifferentMacros(const Expr *LhsExpr,
                                        const Expr *RhsExpr,
                                        const ASTContext *AstCtx) {
  if (!LhsExpr || !RhsExpr)
    return false;
  SourceRange Lsr = LhsExpr->getSourceRange();
  SourceRange Rsr = RhsExpr->getSourceRange();
  if (!Lsr.getBegin().isMacroID() || !Rsr.getBegin().isMacroID())
    return false;

  const SourceManager &SM = AstCtx->getSourceManager();
  const LangOptions &LO = AstCtx->getLangOpts();

  std::pair<FileID, unsigned> LsrLocInfo =
      SM.getDecomposedLoc(SM.getExpansionLoc(Lsr.getBegin()));
  std::pair<FileID, unsigned> RsrLocInfo =
      SM.getDecomposedLoc(SM.getExpansionLoc(Rsr.getBegin()));
  const llvm::MemoryBuffer *MB = SM.getBuffer(LsrLocInfo.first);

  const char *LTokenPos = MB->getBufferStart() + LsrLocInfo.second;
  const char *RTokenPos = MB->getBufferStart() + RsrLocInfo.second;
  Lexer LRawLex(SM.getLocForStartOfFile(LsrLocInfo.first), LO,
                MB->getBufferStart(), LTokenPos, MB->getBufferEnd());
  Lexer RRawLex(SM.getLocForStartOfFile(RsrLocInfo.first), LO,
                MB->getBufferStart(), RTokenPos, MB->getBufferEnd());

  Token LTok, RTok;
  do { // Compare the expressions token-by-token.
    LRawLex.LexFromRawLexer(LTok);
    RRawLex.LexFromRawLexer(RTok);
  } while (!LTok.is(tok::eof) && !RTok.is(tok::eof) &&
           isSameRawIdentifierToken(LTok, RTok, SM) &&
           !isTokAtEndOfExpr(Lsr, LTok, SM) &&
           !isTokAtEndOfExpr(Rsr, RTok, SM));
  return (!isTokAtEndOfExpr(Lsr, LTok, SM) ||
          !isTokAtEndOfExpr(Rsr, RTok, SM)) ||
         !isSameRawIdentifierToken(LTok, RTok, SM);
}

static bool areExprsMacroAndNonMacro(const Expr *&LhsExpr,
                                     const Expr *&RhsExpr) {
  if (!LhsExpr || !RhsExpr)
    return false;

  SourceLocation LhsLoc = LhsExpr->getExprLoc();
  SourceLocation RhsLoc = RhsExpr->getExprLoc();

  return LhsLoc.isMacroID() != RhsLoc.isMacroID();
}
} // namespace

void RedundantExpressionCheck::registerMatchers(MatchFinder *Finder) {
  const auto AnyLiteralExpr = ignoringParenImpCasts(
      anyOf(cxxBoolLiteral(), characterLiteral(), integerLiteral()));

  const auto BannedIntegerLiteral =
      integerLiteral(expandedByMacro(KnownBannedMacroNames));

  // Binary with equivalent operands, like (X != 2 && X != 2).
  Finder->addMatcher(
      traverse(ast_type_traits::TK_AsIs,
               binaryOperator(
                   anyOf(isComparisonOperator(),
                         hasAnyOperatorName("-", "/", "%", "|", "&", "^", "&&",
                                            "||", "=")),
                   operandsAreEquivalent(),
                   // Filter noisy false positives.
                   unless(isInTemplateInstantiation()),
                   unless(binaryOperatorIsInMacro()),
                   unless(hasType(realFloatingPointType())),
                   unless(hasEitherOperand(hasType(realFloatingPointType()))),
                   unless(hasLHS(AnyLiteralExpr)),
                   unless(hasDescendant(BannedIntegerLiteral)))
                   .bind("binary")),
      this);

  // Logical or bitwise operator with equivalent nested operands, like (X && Y
  // && X) or (X && (Y && X))
  Finder->addMatcher(
      binaryOperator(hasAnyOperatorName("|", "&", "||", "&&", "^"),
                     nestedOperandsAreEquivalent(),
                     // Filter noisy false positives.
                     unless(isInTemplateInstantiation()),
                     unless(binaryOperatorIsInMacro()),
                     // TODO: if the banned macros are themselves duplicated
                     unless(hasDescendant(BannedIntegerLiteral)))
          .bind("nested-duplicates"),
      this);

  // Conditional (trenary) operator with equivalent operands, like (Y ? X : X).
  Finder->addMatcher(
      traverse(ast_type_traits::TK_AsIs,
               conditionalOperator(expressionsAreEquivalent(),
                                   // Filter noisy false positives.
                                   unless(conditionalOperatorIsInMacro()),
                                   unless(isInTemplateInstantiation()))
                   .bind("cond")),
      this);

  // Overloaded operators with equivalent operands.
  Finder->addMatcher(
      traverse(ast_type_traits::TK_AsIs,
               cxxOperatorCallExpr(
                   hasAnyOverloadedOperatorName("-", "/", "%", "|", "&", "^",
                                                "==", "!=", "<", "<=", ">",
                                                ">=", "&&", "||", "="),
                   parametersAreEquivalent(),
                   // Filter noisy false positives.
                   unless(isMacro()), unless(isInTemplateInstantiation()))
                   .bind("call")),
      this);

  // Overloaded operators with equivalent operands.
  Finder->addMatcher(
      cxxOperatorCallExpr(
          hasAnyOverloadedOperatorName("|", "&", "||", "&&", "^"),
          nestedParametersAreEquivalent(), argumentCountIs(2),
          // Filter noisy false positives.
          unless(isMacro()), unless(isInTemplateInstantiation()))
          .bind("nested-duplicates"),
      this);

  // Match expressions like: !(1 | 2 | 3)
  Finder->addMatcher(
      traverse(ast_type_traits::TK_AsIs,
               implicitCastExpr(
                   hasImplicitDestinationType(isInteger()),
                   has(unaryOperator(
                           hasOperatorName("!"),
                           hasUnaryOperand(ignoringParenImpCasts(binaryOperator(
                               hasAnyOperatorName("|", "&"),
                               hasLHS(anyOf(
                                   binaryOperator(hasAnyOperatorName("|", "&")),
                                   integerLiteral())),
                               hasRHS(integerLiteral())))))
                           .bind("logical-bitwise-confusion")))),
      this);

   // Match expressions like: (X << 8) & 0xFF
   Finder->addMatcher(
          traverse(
          ast_type_traits::TK_AsIs,
      binaryOperator(
          hasOperatorName("&"),
          hasOperands(
              ignoringParenImpCasts(
                  binaryOperator(hasOperatorName("<<"),
                              hasRHS(ignoringParenImpCasts(
                                     integerLiteral().bind("shift-const"))))),
              ignoringParenImpCasts(integerLiteral().bind("and-const"))))
          .bind("left-right-shift-confusion")),
       this);

  // Match common expressions and apply more checks to find redundant
  // sub-expressions.
  //   a) Expr <op> K1 == K2
  //   b) Expr <op> K1 == Expr
  //   c) Expr <op> K1 == Expr <op> K2
  // see: 'checkArithmeticExpr' and 'checkBitwiseExpr'
  const auto BinOpCstLeft = matchBinOpIntegerConstantExpr("lhs");
  const auto BinOpCstRight = matchBinOpIntegerConstantExpr("rhs");
  const auto CstRight = matchIntegerConstantExpr("rhs");
  const auto SymRight = matchSymbolicExpr("rhs");

  // Match expressions like: x <op> 0xFF == 0xF00.
  Finder->addMatcher(traverse(ast_type_traits::TK_AsIs,
                              binaryOperator(isComparisonOperator(),
                                             hasOperands(BinOpCstLeft,
                                             CstRight))
                                  .bind("binop-const-compare-to-const")),
                     this);

  // Match expressions like: x <op> 0xFF == x.
  Finder->addMatcher(
      traverse(
          ast_type_traits::TK_AsIs,
          binaryOperator(isComparisonOperator(),
                         anyOf(allOf(hasLHS(BinOpCstLeft), hasRHS(SymRight)),
                               allOf(hasLHS(SymRight), hasRHS(BinOpCstLeft))))
              .bind("binop-const-compare-to-sym")),
      this);

  // Match expressions like: x <op> 10 == x <op> 12.
  Finder->addMatcher(
      traverse(ast_type_traits::TK_AsIs,
               binaryOperator(isComparisonOperator(), hasLHS(BinOpCstLeft),
                              hasRHS(BinOpCstRight),
                              // Already reported as redundant.
                              unless(operandsAreEquivalent()))
                   .bind("binop-const-compare-to-binop-const")),
      this);

  // Match relational expressions combined with logical operators and find
  // redundant sub-expressions.
  // see: 'checkRelationalExpr'

  // Match expressions like: x < 2 && x > 2.
  const auto ComparisonLeft = matchRelationalIntegerConstantExpr("lhs");
  const auto ComparisonRight = matchRelationalIntegerConstantExpr("rhs");
  Finder->addMatcher(
      traverse(ast_type_traits::TK_AsIs,
               binaryOperator(hasAnyOperatorName("||", "&&"),
                              hasLHS(ComparisonLeft), hasRHS(ComparisonRight),
                              // Already reported as redundant.
                              unless(operandsAreEquivalent()))
                   .bind("comparisons-of-symbol-and-const")),
      this);
}

void RedundantExpressionCheck::checkArithmeticExpr(
    const MatchFinder::MatchResult &Result) {
  APSInt LhsValue, RhsValue;
  const Expr *LhsSymbol = nullptr, *RhsSymbol = nullptr;
  BinaryOperatorKind LhsOpcode, RhsOpcode;

  if (const auto *ComparisonOperator = Result.Nodes.getNodeAs<BinaryOperator>(
          "binop-const-compare-to-sym")) {
    BinaryOperatorKind Opcode = ComparisonOperator->getOpcode();
    if (!retrieveBinOpIntegerConstantExpr(Result, "lhs", LhsOpcode, LhsSymbol,
                                          LhsValue) ||
        !retrieveSymbolicExpr(Result, "rhs", RhsSymbol) ||
        !areEquivalentExpr(LhsSymbol, RhsSymbol))
      return;

    // Check expressions: x + k == x  or  x - k == x.
    if (LhsOpcode == BO_Add || LhsOpcode == BO_Sub) {
      if ((LhsValue != 0 && Opcode == BO_EQ) ||
          (LhsValue == 0 && Opcode == BO_NE))
        diag(ComparisonOperator->getOperatorLoc(),
             "logical expression is always false");
      else if ((LhsValue == 0 && Opcode == BO_EQ) ||
               (LhsValue != 0 && Opcode == BO_NE))
        diag(ComparisonOperator->getOperatorLoc(),
             "logical expression is always true");
    }
  } else if (const auto *ComparisonOperator =
                 Result.Nodes.getNodeAs<BinaryOperator>(
                     "binop-const-compare-to-binop-const")) {
    BinaryOperatorKind Opcode = ComparisonOperator->getOpcode();

    if (!retrieveBinOpIntegerConstantExpr(Result, "lhs", LhsOpcode, LhsSymbol,
                                          LhsValue) ||
        !retrieveBinOpIntegerConstantExpr(Result, "rhs", RhsOpcode, RhsSymbol,
                                          RhsValue) ||
        !areEquivalentExpr(LhsSymbol, RhsSymbol))
      return;

    transformSubToCanonicalAddExpr(LhsOpcode, LhsValue);
    transformSubToCanonicalAddExpr(RhsOpcode, RhsValue);

    // Check expressions: x + 1 == x + 2  or  x + 1 != x + 2.
    if (LhsOpcode == BO_Add && RhsOpcode == BO_Add) {
      if ((Opcode == BO_EQ && APSInt::compareValues(LhsValue, RhsValue) == 0) ||
          (Opcode == BO_NE && APSInt::compareValues(LhsValue, RhsValue) != 0)) {
        diag(ComparisonOperator->getOperatorLoc(),
             "logical expression is always true");
      } else if ((Opcode == BO_EQ &&
                  APSInt::compareValues(LhsValue, RhsValue) != 0) ||
                 (Opcode == BO_NE &&
                  APSInt::compareValues(LhsValue, RhsValue) == 0)) {
        diag(ComparisonOperator->getOperatorLoc(),
             "logical expression is always false");
      }
    }
  }
}

static bool exprEvaluatesToZero(BinaryOperatorKind Opcode, APSInt Value) {
  return (Opcode == BO_And || Opcode == BO_AndAssign) && Value == 0;
}

static bool exprEvaluatesToBitwiseNegatedZero(BinaryOperatorKind Opcode,
                                              APSInt Value) {
  return (Opcode == BO_Or || Opcode == BO_OrAssign) && ~Value == 0;
}

static bool exprEvaluatesToSymbolic(BinaryOperatorKind Opcode, APSInt Value) {
  return ((Opcode == BO_Or || Opcode == BO_OrAssign) && Value == 0) ||
         ((Opcode == BO_And || Opcode == BO_AndAssign) && ~Value == 0);
}


void RedundantExpressionCheck::checkBitwiseExpr(
    const MatchFinder::MatchResult &Result) {
  if (const auto *ComparisonOperator = Result.Nodes.getNodeAs<BinaryOperator>(
          "binop-const-compare-to-const")) {
    BinaryOperatorKind Opcode = ComparisonOperator->getOpcode();

    APSInt LhsValue, RhsValue;
    const Expr *LhsSymbol = nullptr;
    BinaryOperatorKind LhsOpcode;
    if (!retrieveBinOpIntegerConstantExpr(Result, "lhs", LhsOpcode, LhsSymbol,
                                          LhsValue) ||
        !retrieveIntegerConstantExpr(Result, "rhs", RhsValue))
      return;

    uint64_t LhsConstant = LhsValue.getZExtValue();
    uint64_t RhsConstant = RhsValue.getZExtValue();
    SourceLocation Loc = ComparisonOperator->getOperatorLoc();

    // Check expression: x & k1 == k2  (i.e. x & 0xFF == 0xF00)
    if (LhsOpcode == BO_And && (LhsConstant & RhsConstant) != RhsConstant) {
      if (Opcode == BO_EQ)
        diag(Loc, "logical expression is always false");
      else if (Opcode == BO_NE)
        diag(Loc, "logical expression is always true");
    }

    // Check expression: x | k1 == k2  (i.e. x | 0xFF == 0xF00)
    if (LhsOpcode == BO_Or && (LhsConstant | RhsConstant) != RhsConstant) {
      if (Opcode == BO_EQ)
        diag(Loc, "logical expression is always false");
      else if (Opcode == BO_NE)
        diag(Loc, "logical expression is always true");
    }
  } else if (const auto *IneffectiveOperator =
                 Result.Nodes.getNodeAs<BinaryOperator>(
                     "ineffective-bitwise")) {
    APSInt Value;
    const Expr *Sym = nullptr, *ConstExpr = nullptr;

    if (!retrieveSymbolicExpr(Result, "ineffective-bitwise", Sym) ||
        !retrieveIntegerConstantExpr(Result, "ineffective-bitwise", Value,
                                     ConstExpr))
      return;

    if((Value != 0 && ~Value != 0) || Sym->getExprLoc().isMacroID())
        return;

    SourceLocation Loc = IneffectiveOperator->getOperatorLoc();

    BinaryOperatorKind Opcode = IneffectiveOperator->getOpcode();
    if (exprEvaluatesToZero(Opcode, Value)) {
      diag(Loc, "expression always evaluates to 0");
    } else if (exprEvaluatesToBitwiseNegatedZero(Opcode, Value)) {
      SourceRange ConstExprRange(ConstExpr->getBeginLoc(),
                                 ConstExpr->getEndLoc());
      StringRef ConstExprText = Lexer::getSourceText(
          CharSourceRange::getTokenRange(ConstExprRange), *Result.SourceManager,
          Result.Context->getLangOpts());

      diag(Loc, "expression always evaluates to '%0'") << ConstExprText;

    } else if (exprEvaluatesToSymbolic(Opcode, Value)) {
      SourceRange SymExprRange(Sym->getBeginLoc(), Sym->getEndLoc());

      StringRef ExprText = Lexer::getSourceText(
          CharSourceRange::getTokenRange(SymExprRange), *Result.SourceManager,
          Result.Context->getLangOpts());

      diag(Loc, "expression always evaluates to '%0'") << ExprText;
    }
  }
}

void RedundantExpressionCheck::checkRelationalExpr(
    const MatchFinder::MatchResult &Result) {
  if (const auto *ComparisonOperator = Result.Nodes.getNodeAs<BinaryOperator>(
          "comparisons-of-symbol-and-const")) {
    // Matched expressions are: (x <op> k1) <REL> (x <op> k2).
    // E.g.: (X < 2) && (X > 4)
    BinaryOperatorKind Opcode = ComparisonOperator->getOpcode();

    const Expr *LhsExpr = nullptr, *RhsExpr = nullptr;
    const Expr *LhsSymbol = nullptr, *RhsSymbol = nullptr;
    const Expr *LhsConst = nullptr, *RhsConst = nullptr;
    BinaryOperatorKind LhsOpcode, RhsOpcode;
    APSInt LhsValue, RhsValue;

    if (!retrieveRelationalIntegerConstantExpr(
            Result, "lhs", LhsExpr, LhsOpcode, LhsSymbol, LhsValue, LhsConst) ||
        !retrieveRelationalIntegerConstantExpr(
            Result, "rhs", RhsExpr, RhsOpcode, RhsSymbol, RhsValue, RhsConst) ||
        !areEquivalentExpr(LhsSymbol, RhsSymbol))
      return;

    // Bring expr to a canonical form: smallest constant must be on the left.
    if (APSInt::compareValues(LhsValue, RhsValue) > 0) {
      std::swap(LhsExpr, RhsExpr);
      std::swap(LhsValue, RhsValue);
      std::swap(LhsSymbol, RhsSymbol);
      std::swap(LhsOpcode, RhsOpcode);
    }

    // Constants come from two different macros, or one of them is a macro.
    if (areExprsFromDifferentMacros(LhsConst, RhsConst, Result.Context) ||
        areExprsMacroAndNonMacro(LhsConst, RhsConst))
      return;

    if ((Opcode == BO_LAnd || Opcode == BO_LOr) &&
        areEquivalentRanges(LhsOpcode, LhsValue, RhsOpcode, RhsValue)) {
      diag(ComparisonOperator->getOperatorLoc(),
           "equivalent expression on both sides of logical operator");
      return;
    }

    if (Opcode == BO_LAnd) {
      if (areExclusiveRanges(LhsOpcode, LhsValue, RhsOpcode, RhsValue)) {
        diag(ComparisonOperator->getOperatorLoc(),
             "logical expression is always false");
      } else if (rangeSubsumesRange(LhsOpcode, LhsValue, RhsOpcode, RhsValue)) {
        diag(LhsExpr->getExprLoc(), "expression is redundant");
      } else if (rangeSubsumesRange(RhsOpcode, RhsValue, LhsOpcode, LhsValue)) {
        diag(RhsExpr->getExprLoc(), "expression is redundant");
      }
    }

    if (Opcode == BO_LOr) {
      if (rangesFullyCoverDomain(LhsOpcode, LhsValue, RhsOpcode, RhsValue)) {
        diag(ComparisonOperator->getOperatorLoc(),
             "logical expression is always true");
      } else if (rangeSubsumesRange(LhsOpcode, LhsValue, RhsOpcode, RhsValue)) {
        diag(RhsExpr->getExprLoc(), "expression is redundant");
      } else if (rangeSubsumesRange(RhsOpcode, RhsValue, LhsOpcode, LhsValue)) {
        diag(LhsExpr->getExprLoc(), "expression is redundant");
      }
    }
  }
}

void RedundantExpressionCheck::check(const MatchFinder::MatchResult &Result) {
  if (const auto *BinOp = Result.Nodes.getNodeAs<BinaryOperator>("binary")) {
    // If the expression's constants are macros, check whether they are
    // intentional.
    if (areSidesBinaryConstExpressions(BinOp, Result.Context)) {
      const Expr *LhsConst = nullptr, *RhsConst = nullptr;
      BinaryOperatorKind MainOpcode, SideOpcode;

      if (!retrieveConstExprFromBothSides(BinOp, MainOpcode, SideOpcode,
                                          LhsConst, RhsConst, Result.Context))
        return;

      if (areExprsFromDifferentMacros(LhsConst, RhsConst, Result.Context) ||
          areExprsMacroAndNonMacro(LhsConst, RhsConst))
        return;
    }

    diag(BinOp->getOperatorLoc(), "both sides of operator are equivalent");
  }

  if (const auto *CondOp =
          Result.Nodes.getNodeAs<ConditionalOperator>("cond")) {
    const Expr *TrueExpr = CondOp->getTrueExpr();
    const Expr *FalseExpr = CondOp->getFalseExpr();

    if (areExprsFromDifferentMacros(TrueExpr, FalseExpr, Result.Context) ||
        areExprsMacroAndNonMacro(TrueExpr, FalseExpr))
      return;
    diag(CondOp->getColonLoc(),
         "'true' and 'false' expressions are equivalent");
  }

  if (const auto *Call = Result.Nodes.getNodeAs<CXXOperatorCallExpr>("call")) {
    if (canOverloadedOperatorArgsBeModified(Call, true))
      return;

    diag(Call->getOperatorLoc(),
         "both sides of overloaded operator are equivalent");
  }

  if (const auto *Op = Result.Nodes.getNodeAs<Expr>("nested-duplicates")) {
    const auto *Call = dyn_cast<CXXOperatorCallExpr>(Op);
    if (Call && canOverloadedOperatorArgsBeModified(Call, true))
      return;

    StringRef Message =
        Call ? "overloaded operator has equivalent nested operands"
             : "operator has equivalent nested operands";

    const auto Diag = diag(Op->getExprLoc(), Message);
    for (const auto &KeyValue : Result.Nodes.getMap()) {
      if (StringRef(KeyValue.first).startswith("duplicate"))
        Diag << KeyValue.second.getSourceRange();
    }
  }

  if (const auto *NegateOperator =
          Result.Nodes.getNodeAs<UnaryOperator>("logical-bitwise-confusion")) {
    SourceLocation OperatorLoc = NegateOperator->getOperatorLoc();

    auto Diag =
        diag(OperatorLoc,
             "ineffective logical negation operator used; did you mean '~'?");
    SourceLocation LogicalNotLocation = OperatorLoc.getLocWithOffset(1);

    if (!LogicalNotLocation.isMacroID())
      Diag << FixItHint::CreateReplacement(
          CharSourceRange::getCharRange(OperatorLoc, LogicalNotLocation), "~");
  }

  if (const auto *BinaryAndExpr = Result.Nodes.getNodeAs<BinaryOperator>(
          "left-right-shift-confusion")) {
    const auto *ShiftingConst = Result.Nodes.getNodeAs<Expr>("shift-const");
    assert(ShiftingConst && "Expr* 'ShiftingConst' is nullptr!");
    Optional<llvm::APSInt> ShiftingValue =
        ShiftingConst->getIntegerConstantExpr(*Result.Context);

    if (!ShiftingValue)
      return;

    const auto *AndConst = Result.Nodes.getNodeAs<Expr>("and-const");
    assert(AndConst && "Expr* 'AndCont' is nullptr!");
    Optional<llvm::APSInt> AndValue =
        AndConst->getIntegerConstantExpr(*Result.Context);
    if (!AndValue)
      return;

    // If ShiftingConst is shifted left with more bits than the position of the
    // leftmost 1 in the bit representation of AndValue, AndConstant is
    // ineffective.
    if (AndValue->getActiveBits() > *ShiftingValue)
      return;

    auto Diag = diag(BinaryAndExpr->getOperatorLoc(),
                     "ineffective bitwise and operation");
  }

  // Check for the following bound expressions:
  // - "binop-const-compare-to-sym",
  // - "binop-const-compare-to-binop-const",
  // Produced message:
  // -> "logical expression is always false/true"
  checkArithmeticExpr(Result);

  // Check for the following bound expression:
  // - "binop-const-compare-to-const",
  // - "ineffective-bitwise"
  // Produced message:
  // -> "logical expression is always false/true"
  // -> "expression always evaluates to ..."
  checkBitwiseExpr(Result);

  // Check for te following bound expression:
  // - "comparisons-of-symbol-and-const",
  // Produced messages:
  // -> "equivalent expression on both sides of logical operator",
  // -> "logical expression is always false/true"
  // -> "expression is redundant"
  checkRelationalExpr(Result);
}

} // namespace misc
} // namespace tidy
} // namespace clang