RedundantExpressionCheck.cpp
50.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
//===--- RedundantExpressionCheck.cpp - clang-tidy-------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "RedundantExpressionCheck.h"
#include "../utils/Matchers.h"
#include "../utils/OptionsUtils.h"
#include "clang/AST/ASTContext.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Lex/Lexer.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/FormatVariadic.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <string>
#include <vector>
using namespace clang::ast_matchers;
using namespace clang::tidy::matchers;
namespace clang {
namespace tidy {
namespace misc {
namespace {
using llvm::APSInt;
static constexpr llvm::StringLiteral KnownBannedMacroNames[] = {
"EAGAIN",
"EWOULDBLOCK",
"SIGCLD",
"SIGCHLD",
};
static bool incrementWithoutOverflow(const APSInt &Value, APSInt &Result) {
Result = Value;
++Result;
return Value < Result;
}
static bool areEquivalentNameSpecifier(const NestedNameSpecifier *Left,
const NestedNameSpecifier *Right) {
llvm::FoldingSetNodeID LeftID, RightID;
Left->Profile(LeftID);
Right->Profile(RightID);
return LeftID == RightID;
}
static bool areEquivalentExpr(const Expr *Left, const Expr *Right) {
if (!Left || !Right)
return !Left && !Right;
Left = Left->IgnoreParens();
Right = Right->IgnoreParens();
// Compare classes.
if (Left->getStmtClass() != Right->getStmtClass())
return false;
// Compare children.
Expr::const_child_iterator LeftIter = Left->child_begin();
Expr::const_child_iterator RightIter = Right->child_begin();
while (LeftIter != Left->child_end() && RightIter != Right->child_end()) {
if (!areEquivalentExpr(dyn_cast_or_null<Expr>(*LeftIter),
dyn_cast_or_null<Expr>(*RightIter)))
return false;
++LeftIter;
++RightIter;
}
if (LeftIter != Left->child_end() || RightIter != Right->child_end())
return false;
// Perform extra checks.
switch (Left->getStmtClass()) {
default:
return false;
case Stmt::CharacterLiteralClass:
return cast<CharacterLiteral>(Left)->getValue() ==
cast<CharacterLiteral>(Right)->getValue();
case Stmt::IntegerLiteralClass: {
llvm::APInt LeftLit = cast<IntegerLiteral>(Left)->getValue();
llvm::APInt RightLit = cast<IntegerLiteral>(Right)->getValue();
return LeftLit.getBitWidth() == RightLit.getBitWidth() &&
LeftLit == RightLit;
}
case Stmt::FloatingLiteralClass:
return cast<FloatingLiteral>(Left)->getValue().bitwiseIsEqual(
cast<FloatingLiteral>(Right)->getValue());
case Stmt::StringLiteralClass:
return cast<StringLiteral>(Left)->getBytes() ==
cast<StringLiteral>(Right)->getBytes();
case Stmt::CXXOperatorCallExprClass:
return cast<CXXOperatorCallExpr>(Left)->getOperator() ==
cast<CXXOperatorCallExpr>(Right)->getOperator();
case Stmt::DependentScopeDeclRefExprClass:
if (cast<DependentScopeDeclRefExpr>(Left)->getDeclName() !=
cast<DependentScopeDeclRefExpr>(Right)->getDeclName())
return false;
return areEquivalentNameSpecifier(
cast<DependentScopeDeclRefExpr>(Left)->getQualifier(),
cast<DependentScopeDeclRefExpr>(Right)->getQualifier());
case Stmt::DeclRefExprClass:
return cast<DeclRefExpr>(Left)->getDecl() ==
cast<DeclRefExpr>(Right)->getDecl();
case Stmt::MemberExprClass:
return cast<MemberExpr>(Left)->getMemberDecl() ==
cast<MemberExpr>(Right)->getMemberDecl();
case Stmt::CXXFoldExprClass:
return cast<CXXFoldExpr>(Left)->getOperator() ==
cast<CXXFoldExpr>(Right)->getOperator();
case Stmt::CXXFunctionalCastExprClass:
case Stmt::CStyleCastExprClass:
return cast<ExplicitCastExpr>(Left)->getTypeAsWritten() ==
cast<ExplicitCastExpr>(Right)->getTypeAsWritten();
case Stmt::CallExprClass:
case Stmt::ImplicitCastExprClass:
case Stmt::ArraySubscriptExprClass:
return true;
case Stmt::UnaryOperatorClass:
if (cast<UnaryOperator>(Left)->isIncrementDecrementOp())
return false;
return cast<UnaryOperator>(Left)->getOpcode() ==
cast<UnaryOperator>(Right)->getOpcode();
case Stmt::BinaryOperatorClass:
return cast<BinaryOperator>(Left)->getOpcode() ==
cast<BinaryOperator>(Right)->getOpcode();
case Stmt::UnaryExprOrTypeTraitExprClass:
const auto *LeftUnaryExpr =
cast<UnaryExprOrTypeTraitExpr>(Left);
const auto *RightUnaryExpr =
cast<UnaryExprOrTypeTraitExpr>(Right);
if (LeftUnaryExpr->isArgumentType() && RightUnaryExpr->isArgumentType())
return LeftUnaryExpr->getArgumentType() ==
RightUnaryExpr->getArgumentType();
else if (!LeftUnaryExpr->isArgumentType() &&
!RightUnaryExpr->isArgumentType())
return areEquivalentExpr(LeftUnaryExpr->getArgumentExpr(),
RightUnaryExpr->getArgumentExpr());
return false;
}
}
// For a given expression 'x', returns whether the ranges covered by the
// relational operators are equivalent (i.e. x <= 4 is equivalent to x < 5).
static bool areEquivalentRanges(BinaryOperatorKind OpcodeLHS,
const APSInt &ValueLHS,
BinaryOperatorKind OpcodeRHS,
const APSInt &ValueRHS) {
assert(APSInt::compareValues(ValueLHS, ValueRHS) <= 0 &&
"Values must be ordered");
// Handle the case where constants are the same: x <= 4 <==> x <= 4.
if (APSInt::compareValues(ValueLHS, ValueRHS) == 0)
return OpcodeLHS == OpcodeRHS;
// Handle the case where constants are off by one: x <= 4 <==> x < 5.
APSInt ValueLHS_plus1;
return ((OpcodeLHS == BO_LE && OpcodeRHS == BO_LT) ||
(OpcodeLHS == BO_GT && OpcodeRHS == BO_GE)) &&
incrementWithoutOverflow(ValueLHS, ValueLHS_plus1) &&
APSInt::compareValues(ValueLHS_plus1, ValueRHS) == 0;
}
// For a given expression 'x', returns whether the ranges covered by the
// relational operators are fully disjoint (i.e. x < 4 and x > 7).
static bool areExclusiveRanges(BinaryOperatorKind OpcodeLHS,
const APSInt &ValueLHS,
BinaryOperatorKind OpcodeRHS,
const APSInt &ValueRHS) {
assert(APSInt::compareValues(ValueLHS, ValueRHS) <= 0 &&
"Values must be ordered");
// Handle cases where the constants are the same.
if (APSInt::compareValues(ValueLHS, ValueRHS) == 0) {
switch (OpcodeLHS) {
case BO_EQ:
return OpcodeRHS == BO_NE || OpcodeRHS == BO_GT || OpcodeRHS == BO_LT;
case BO_NE:
return OpcodeRHS == BO_EQ;
case BO_LE:
return OpcodeRHS == BO_GT;
case BO_GE:
return OpcodeRHS == BO_LT;
case BO_LT:
return OpcodeRHS == BO_EQ || OpcodeRHS == BO_GT || OpcodeRHS == BO_GE;
case BO_GT:
return OpcodeRHS == BO_EQ || OpcodeRHS == BO_LT || OpcodeRHS == BO_LE;
default:
return false;
}
}
// Handle cases where the constants are different.
if ((OpcodeLHS == BO_EQ || OpcodeLHS == BO_LT || OpcodeLHS == BO_LE) &&
(OpcodeRHS == BO_EQ || OpcodeRHS == BO_GT || OpcodeRHS == BO_GE))
return true;
// Handle the case where constants are off by one: x > 5 && x < 6.
APSInt ValueLHS_plus1;
if (OpcodeLHS == BO_GT && OpcodeRHS == BO_LT &&
incrementWithoutOverflow(ValueLHS, ValueLHS_plus1) &&
APSInt::compareValues(ValueLHS_plus1, ValueRHS) == 0)
return true;
return false;
}
// Returns whether the ranges covered by the union of both relational
// expressions cover the whole domain (i.e. x < 10 and x > 0).
static bool rangesFullyCoverDomain(BinaryOperatorKind OpcodeLHS,
const APSInt &ValueLHS,
BinaryOperatorKind OpcodeRHS,
const APSInt &ValueRHS) {
assert(APSInt::compareValues(ValueLHS, ValueRHS) <= 0 &&
"Values must be ordered");
// Handle cases where the constants are the same: x < 5 || x >= 5.
if (APSInt::compareValues(ValueLHS, ValueRHS) == 0) {
switch (OpcodeLHS) {
case BO_EQ:
return OpcodeRHS == BO_NE;
case BO_NE:
return OpcodeRHS == BO_EQ;
case BO_LE:
return OpcodeRHS == BO_GT || OpcodeRHS == BO_GE;
case BO_LT:
return OpcodeRHS == BO_GE;
case BO_GE:
return OpcodeRHS == BO_LT || OpcodeRHS == BO_LE;
case BO_GT:
return OpcodeRHS == BO_LE;
default:
return false;
}
}
// Handle the case where constants are off by one: x <= 4 || x >= 5.
APSInt ValueLHS_plus1;
if (OpcodeLHS == BO_LE && OpcodeRHS == BO_GE &&
incrementWithoutOverflow(ValueLHS, ValueLHS_plus1) &&
APSInt::compareValues(ValueLHS_plus1, ValueRHS) == 0)
return true;
// Handle cases where the constants are different: x > 4 || x <= 7.
if ((OpcodeLHS == BO_GT || OpcodeLHS == BO_GE) &&
(OpcodeRHS == BO_LT || OpcodeRHS == BO_LE))
return true;
// Handle cases where constants are different but both ops are !=, like:
// x != 5 || x != 10
if (OpcodeLHS == BO_NE && OpcodeRHS == BO_NE)
return true;
return false;
}
static bool rangeSubsumesRange(BinaryOperatorKind OpcodeLHS,
const APSInt &ValueLHS,
BinaryOperatorKind OpcodeRHS,
const APSInt &ValueRHS) {
int Comparison = APSInt::compareValues(ValueLHS, ValueRHS);
switch (OpcodeLHS) {
case BO_EQ:
return OpcodeRHS == BO_EQ && Comparison == 0;
case BO_NE:
return (OpcodeRHS == BO_NE && Comparison == 0) ||
(OpcodeRHS == BO_EQ && Comparison != 0) ||
(OpcodeRHS == BO_LT && Comparison >= 0) ||
(OpcodeRHS == BO_LE && Comparison > 0) ||
(OpcodeRHS == BO_GT && Comparison <= 0) ||
(OpcodeRHS == BO_GE && Comparison < 0);
case BO_LT:
return ((OpcodeRHS == BO_LT && Comparison >= 0) ||
(OpcodeRHS == BO_LE && Comparison > 0) ||
(OpcodeRHS == BO_EQ && Comparison > 0));
case BO_GT:
return ((OpcodeRHS == BO_GT && Comparison <= 0) ||
(OpcodeRHS == BO_GE && Comparison < 0) ||
(OpcodeRHS == BO_EQ && Comparison < 0));
case BO_LE:
return (OpcodeRHS == BO_LT || OpcodeRHS == BO_LE || OpcodeRHS == BO_EQ) &&
Comparison >= 0;
case BO_GE:
return (OpcodeRHS == BO_GT || OpcodeRHS == BO_GE || OpcodeRHS == BO_EQ) &&
Comparison <= 0;
default:
return false;
}
}
static void transformSubToCanonicalAddExpr(BinaryOperatorKind &Opcode,
APSInt &Value) {
if (Opcode == BO_Sub) {
Opcode = BO_Add;
Value = -Value;
}
}
// to use in the template below
static OverloadedOperatorKind getOp(const BinaryOperator *Op) {
return BinaryOperator::getOverloadedOperator(Op->getOpcode());
}
static OverloadedOperatorKind getOp(const CXXOperatorCallExpr *Op) {
if (Op->getNumArgs() != 2)
return OO_None;
return Op->getOperator();
}
static std::pair<const Expr *, const Expr *>
getOperands(const BinaryOperator *Op) {
return {Op->getLHS()->IgnoreParenImpCasts(),
Op->getRHS()->IgnoreParenImpCasts()};
}
static std::pair<const Expr *, const Expr *>
getOperands(const CXXOperatorCallExpr *Op) {
return {Op->getArg(0)->IgnoreParenImpCasts(),
Op->getArg(1)->IgnoreParenImpCasts()};
}
template <typename TExpr>
static const TExpr *checkOpKind(const Expr *TheExpr,
OverloadedOperatorKind OpKind) {
const auto *AsTExpr = dyn_cast_or_null<TExpr>(TheExpr);
if (AsTExpr && getOp(AsTExpr) == OpKind)
return AsTExpr;
return nullptr;
}
// returns true if a subexpression has two directly equivalent operands and
// is already handled by operands/parametersAreEquivalent
template <typename TExpr, unsigned N>
static bool collectOperands(const Expr *Part,
SmallVector<const Expr *, N> &AllOperands,
OverloadedOperatorKind OpKind) {
if (const auto *BinOp = checkOpKind<TExpr>(Part, OpKind)) {
const std::pair<const Expr *, const Expr *> Operands = getOperands(BinOp);
if (areEquivalentExpr(Operands.first, Operands.second))
return true;
return collectOperands<TExpr>(Operands.first, AllOperands, OpKind) ||
collectOperands<TExpr>(Operands.second, AllOperands, OpKind);
}
AllOperands.push_back(Part);
return false;
}
template <typename TExpr>
static bool hasSameOperatorParent(const Expr *TheExpr,
OverloadedOperatorKind OpKind,
ASTContext &Context) {
// IgnoreParenImpCasts logic in reverse: skip surrounding uninteresting nodes
const DynTypedNodeList Parents = Context.getParents(*TheExpr);
for (ast_type_traits::DynTypedNode DynParent : Parents) {
if (const auto *Parent = DynParent.get<Expr>()) {
bool Skip = isa<ParenExpr>(Parent) || isa<ImplicitCastExpr>(Parent) ||
isa<FullExpr>(Parent) ||
isa<MaterializeTemporaryExpr>(Parent);
if (Skip && hasSameOperatorParent<TExpr>(Parent, OpKind, Context))
return true;
if (checkOpKind<TExpr>(Parent, OpKind))
return true;
}
}
return false;
}
template <typename TExpr>
static bool
markDuplicateOperands(const TExpr *TheExpr,
ast_matchers::internal::BoundNodesTreeBuilder *Builder,
ASTContext &Context) {
const OverloadedOperatorKind OpKind = getOp(TheExpr);
if (OpKind == OO_None)
return false;
// if there are no nested operators of the same kind, it's handled by
// operands/parametersAreEquivalent
const std::pair<const Expr *, const Expr *> Operands = getOperands(TheExpr);
if (!(checkOpKind<TExpr>(Operands.first, OpKind) ||
checkOpKind<TExpr>(Operands.second, OpKind)))
return false;
// if parent is the same kind of operator, it's handled by a previous call to
// markDuplicateOperands
if (hasSameOperatorParent<TExpr>(TheExpr, OpKind, Context))
return false;
SmallVector<const Expr *, 4> AllOperands;
if (collectOperands<TExpr>(Operands.first, AllOperands, OpKind))
return false;
if (collectOperands<TExpr>(Operands.second, AllOperands, OpKind))
return false;
size_t NumOperands = AllOperands.size();
llvm::SmallBitVector Duplicates(NumOperands);
for (size_t I = 0; I < NumOperands; I++) {
if (Duplicates[I])
continue;
bool FoundDuplicates = false;
for (size_t J = I + 1; J < NumOperands; J++) {
if (AllOperands[J]->HasSideEffects(Context))
break;
if (areEquivalentExpr(AllOperands[I], AllOperands[J])) {
FoundDuplicates = true;
Duplicates.set(J);
Builder->setBinding(
SmallString<11>(llvm::formatv("duplicate{0}", J)),
ast_type_traits::DynTypedNode::create(*AllOperands[J]));
}
}
if (FoundDuplicates)
Builder->setBinding(
SmallString<11>(llvm::formatv("duplicate{0}", I)),
ast_type_traits::DynTypedNode::create(*AllOperands[I]));
}
return Duplicates.any();
}
AST_MATCHER(Expr, isIntegerConstantExpr) {
if (Node.isInstantiationDependent())
return false;
return Node.isIntegerConstantExpr(Finder->getASTContext());
}
AST_MATCHER(BinaryOperator, operandsAreEquivalent) {
return areEquivalentExpr(Node.getLHS(), Node.getRHS());
}
AST_MATCHER(BinaryOperator, nestedOperandsAreEquivalent) {
return markDuplicateOperands(&Node, Builder, Finder->getASTContext());
}
AST_MATCHER(ConditionalOperator, expressionsAreEquivalent) {
return areEquivalentExpr(Node.getTrueExpr(), Node.getFalseExpr());
}
AST_MATCHER(CallExpr, parametersAreEquivalent) {
return Node.getNumArgs() == 2 &&
areEquivalentExpr(Node.getArg(0), Node.getArg(1));
}
AST_MATCHER(CXXOperatorCallExpr, nestedParametersAreEquivalent) {
return markDuplicateOperands(&Node, Builder, Finder->getASTContext());
}
AST_MATCHER(BinaryOperator, binaryOperatorIsInMacro) {
return Node.getOperatorLoc().isMacroID();
}
AST_MATCHER(ConditionalOperator, conditionalOperatorIsInMacro) {
return Node.getQuestionLoc().isMacroID() || Node.getColonLoc().isMacroID();
}
AST_MATCHER(Expr, isMacro) { return Node.getExprLoc().isMacroID(); }
AST_MATCHER_P(Expr, expandedByMacro, ArrayRef<llvm::StringLiteral>, Names) {
const SourceManager &SM = Finder->getASTContext().getSourceManager();
const LangOptions &LO = Finder->getASTContext().getLangOpts();
SourceLocation Loc = Node.getExprLoc();
while (Loc.isMacroID()) {
StringRef MacroName = Lexer::getImmediateMacroName(Loc, SM, LO);
if (llvm::is_contained(Names, MacroName))
return true;
Loc = SM.getImmediateMacroCallerLoc(Loc);
}
return false;
}
// Returns a matcher for integer constant expressions.
static ast_matchers::internal::Matcher<Expr>
matchIntegerConstantExpr(StringRef Id) {
std::string CstId = (Id + "-const").str();
return expr(isIntegerConstantExpr()).bind(CstId);
}
// Retrieves the integer expression matched by 'matchIntegerConstantExpr' with
// name 'Id' and stores it into 'ConstExpr', the value of the expression is
// stored into `Value`.
static bool retrieveIntegerConstantExpr(const MatchFinder::MatchResult &Result,
StringRef Id, APSInt &Value,
const Expr *&ConstExpr) {
std::string CstId = (Id + "-const").str();
ConstExpr = Result.Nodes.getNodeAs<Expr>(CstId);
if (!ConstExpr)
return false;
Optional<llvm::APSInt> R = ConstExpr->getIntegerConstantExpr(*Result.Context);
if (!R)
return false;
Value = *R;
return true;
}
// Overloaded `retrieveIntegerConstantExpr` for compatibility.
static bool retrieveIntegerConstantExpr(const MatchFinder::MatchResult &Result,
StringRef Id, APSInt &Value) {
const Expr *ConstExpr = nullptr;
return retrieveIntegerConstantExpr(Result, Id, Value, ConstExpr);
}
// Returns a matcher for symbolic expressions (matches every expression except
// ingeter constant expressions).
static ast_matchers::internal::Matcher<Expr> matchSymbolicExpr(StringRef Id) {
std::string SymId = (Id + "-sym").str();
return ignoringParenImpCasts(
expr(unless(isIntegerConstantExpr())).bind(SymId));
}
// Retrieves the expression matched by 'matchSymbolicExpr' with name 'Id' and
// stores it into 'SymExpr'.
static bool retrieveSymbolicExpr(const MatchFinder::MatchResult &Result,
StringRef Id, const Expr *&SymExpr) {
std::string SymId = (Id + "-sym").str();
if (const auto *Node = Result.Nodes.getNodeAs<Expr>(SymId)) {
SymExpr = Node;
return true;
}
return false;
}
// Match a binary operator between a symbolic expression and an integer constant
// expression.
static ast_matchers::internal::Matcher<Expr>
matchBinOpIntegerConstantExpr(StringRef Id) {
const auto BinOpCstExpr =
expr(anyOf(binaryOperator(hasAnyOperatorName("+", "|", "&"),
hasOperands(matchSymbolicExpr(Id),
matchIntegerConstantExpr(Id))),
binaryOperator(hasOperatorName("-"),
hasLHS(matchSymbolicExpr(Id)),
hasRHS(matchIntegerConstantExpr(Id)))))
.bind(Id);
return ignoringParenImpCasts(BinOpCstExpr);
}
// Retrieves sub-expressions matched by 'matchBinOpIntegerConstantExpr' with
// name 'Id'.
static bool
retrieveBinOpIntegerConstantExpr(const MatchFinder::MatchResult &Result,
StringRef Id, BinaryOperatorKind &Opcode,
const Expr *&Symbol, APSInt &Value) {
if (const auto *BinExpr = Result.Nodes.getNodeAs<BinaryOperator>(Id)) {
Opcode = BinExpr->getOpcode();
return retrieveSymbolicExpr(Result, Id, Symbol) &&
retrieveIntegerConstantExpr(Result, Id, Value);
}
return false;
}
// Matches relational expressions: 'Expr <op> k' (i.e. x < 2, x != 3, 12 <= x).
static ast_matchers::internal::Matcher<Expr>
matchRelationalIntegerConstantExpr(StringRef Id) {
std::string CastId = (Id + "-cast").str();
std::string SwapId = (Id + "-swap").str();
std::string NegateId = (Id + "-negate").str();
std::string OverloadId = (Id + "-overload").str();
const auto RelationalExpr = ignoringParenImpCasts(binaryOperator(
isComparisonOperator(), expr().bind(Id),
anyOf(allOf(hasLHS(matchSymbolicExpr(Id)),
hasRHS(matchIntegerConstantExpr(Id))),
allOf(hasLHS(matchIntegerConstantExpr(Id)),
hasRHS(matchSymbolicExpr(Id)), expr().bind(SwapId)))));
// A cast can be matched as a comparator to zero. (i.e. if (x) is equivalent
// to if (x != 0)).
const auto CastExpr =
implicitCastExpr(hasCastKind(CK_IntegralToBoolean),
hasSourceExpression(matchSymbolicExpr(Id)))
.bind(CastId);
const auto NegateRelationalExpr =
unaryOperator(hasOperatorName("!"),
hasUnaryOperand(anyOf(CastExpr, RelationalExpr)))
.bind(NegateId);
// Do not bind to double negation.
const auto NegateNegateRelationalExpr =
unaryOperator(hasOperatorName("!"),
hasUnaryOperand(unaryOperator(
hasOperatorName("!"),
hasUnaryOperand(anyOf(CastExpr, RelationalExpr)))));
const auto OverloadedOperatorExpr =
cxxOperatorCallExpr(
hasAnyOverloadedOperatorName("==", "!=", "<", "<=", ">", ">="),
// Filter noisy false positives.
unless(isMacro()), unless(isInTemplateInstantiation()))
.bind(OverloadId);
return anyOf(RelationalExpr, CastExpr, NegateRelationalExpr,
NegateNegateRelationalExpr, OverloadedOperatorExpr);
}
// Checks whether a function param is non constant reference type, and may
// be modified in the function.
static bool isNonConstReferenceType(QualType ParamType) {
return ParamType->isReferenceType() &&
!ParamType.getNonReferenceType().isConstQualified();
}
// Checks whether the arguments of an overloaded operator can be modified in the
// function.
// For operators that take an instance and a constant as arguments, only the
// first argument (the instance) needs to be checked, since the constant itself
// is a temporary expression. Whether the second parameter is checked is
// controlled by the parameter `ParamsToCheckCount`.
static bool
canOverloadedOperatorArgsBeModified(const CXXOperatorCallExpr *OperatorCall,
bool checkSecondParam) {
const auto *OperatorDecl =
dyn_cast_or_null<FunctionDecl>(OperatorCall->getCalleeDecl());
// if we can't find the declaration, conservatively assume it can modify
// arguments
if (!OperatorDecl)
return true;
unsigned ParamCount = OperatorDecl->getNumParams();
// Overloaded operators declared inside a class have only one param.
// These functions must be declared const in order to not be able to modify
// the instance of the class they are called through.
if (ParamCount == 1 &&
!OperatorDecl->getType()->castAs<FunctionType>()->isConst())
return true;
if (isNonConstReferenceType(OperatorDecl->getParamDecl(0)->getType()))
return true;
return checkSecondParam && ParamCount == 2 &&
isNonConstReferenceType(OperatorDecl->getParamDecl(1)->getType());
}
// Retrieves sub-expressions matched by 'matchRelationalIntegerConstantExpr'
// with name 'Id'.
static bool retrieveRelationalIntegerConstantExpr(
const MatchFinder::MatchResult &Result, StringRef Id,
const Expr *&OperandExpr, BinaryOperatorKind &Opcode, const Expr *&Symbol,
APSInt &Value, const Expr *&ConstExpr) {
std::string CastId = (Id + "-cast").str();
std::string SwapId = (Id + "-swap").str();
std::string NegateId = (Id + "-negate").str();
std::string OverloadId = (Id + "-overload").str();
if (const auto *Bin = Result.Nodes.getNodeAs<BinaryOperator>(Id)) {
// Operand received with explicit comparator.
Opcode = Bin->getOpcode();
OperandExpr = Bin;
if (!retrieveIntegerConstantExpr(Result, Id, Value, ConstExpr))
return false;
} else if (const auto *Cast = Result.Nodes.getNodeAs<CastExpr>(CastId)) {
// Operand received with implicit comparator (cast).
Opcode = BO_NE;
OperandExpr = Cast;
Value = APSInt(32, false);
} else if (const auto *OverloadedOperatorExpr =
Result.Nodes.getNodeAs<CXXOperatorCallExpr>(OverloadId)) {
if (canOverloadedOperatorArgsBeModified(OverloadedOperatorExpr, false))
return false;
if (const auto *Arg = OverloadedOperatorExpr->getArg(1)) {
if (!Arg->isValueDependent() &&
!Arg->isIntegerConstantExpr(*Result.Context))
return false;
}
Symbol = OverloadedOperatorExpr->getArg(0);
OperandExpr = OverloadedOperatorExpr;
Opcode = BinaryOperator::getOverloadedOpcode(OverloadedOperatorExpr->getOperator());
return BinaryOperator::isComparisonOp(Opcode);
} else {
return false;
}
if (!retrieveSymbolicExpr(Result, Id, Symbol))
return false;
if (Result.Nodes.getNodeAs<Expr>(SwapId))
Opcode = BinaryOperator::reverseComparisonOp(Opcode);
if (Result.Nodes.getNodeAs<Expr>(NegateId))
Opcode = BinaryOperator::negateComparisonOp(Opcode);
return true;
}
// Checks for expressions like (X == 4) && (Y != 9)
static bool areSidesBinaryConstExpressions(const BinaryOperator *&BinOp, const ASTContext *AstCtx) {
const auto *LhsBinOp = dyn_cast<BinaryOperator>(BinOp->getLHS());
const auto *RhsBinOp = dyn_cast<BinaryOperator>(BinOp->getRHS());
if (!LhsBinOp || !RhsBinOp)
return false;
auto IsIntegerConstantExpr = [AstCtx](const Expr *E) {
return !E->isValueDependent() && E->isIntegerConstantExpr(*AstCtx);
};
if ((IsIntegerConstantExpr(LhsBinOp->getLHS()) ||
IsIntegerConstantExpr(LhsBinOp->getRHS())) &&
(IsIntegerConstantExpr(RhsBinOp->getLHS()) ||
IsIntegerConstantExpr(RhsBinOp->getRHS())))
return true;
return false;
}
// Retrieves integer constant subexpressions from binary operator expressions
// that have two equivalent sides.
// E.g.: from (X == 5) && (X == 5) retrieves 5 and 5.
static bool retrieveConstExprFromBothSides(const BinaryOperator *&BinOp,
BinaryOperatorKind &MainOpcode,
BinaryOperatorKind &SideOpcode,
const Expr *&LhsConst,
const Expr *&RhsConst,
const ASTContext *AstCtx) {
assert(areSidesBinaryConstExpressions(BinOp, AstCtx) &&
"Both sides of binary operator must be constant expressions!");
MainOpcode = BinOp->getOpcode();
const auto *BinOpLhs = cast<BinaryOperator>(BinOp->getLHS());
const auto *BinOpRhs = cast<BinaryOperator>(BinOp->getRHS());
auto IsIntegerConstantExpr = [AstCtx](const Expr *E) {
return !E->isValueDependent() && E->isIntegerConstantExpr(*AstCtx);
};
LhsConst = IsIntegerConstantExpr(BinOpLhs->getLHS()) ? BinOpLhs->getLHS()
: BinOpLhs->getRHS();
RhsConst = IsIntegerConstantExpr(BinOpRhs->getLHS()) ? BinOpRhs->getLHS()
: BinOpRhs->getRHS();
if (!LhsConst || !RhsConst)
return false;
assert(BinOpLhs->getOpcode() == BinOpRhs->getOpcode() &&
"Sides of the binary operator must be equivalent expressions!");
SideOpcode = BinOpLhs->getOpcode();
return true;
}
static bool isSameRawIdentifierToken(const Token &T1, const Token &T2,
const SourceManager &SM) {
if (T1.getKind() != T2.getKind())
return false;
if (T1.isNot(tok::raw_identifier))
return true;
if (T1.getLength() != T2.getLength())
return false;
return StringRef(SM.getCharacterData(T1.getLocation()), T1.getLength()) ==
StringRef(SM.getCharacterData(T2.getLocation()), T2.getLength());
}
bool isTokAtEndOfExpr(SourceRange ExprSR, Token T, const SourceManager &SM) {
return SM.getExpansionLoc(ExprSR.getEnd()) == T.getLocation();
}
/// Returns true if both LhsEpxr and RhsExpr are
/// macro expressions and they are expanded
/// from different macros.
static bool areExprsFromDifferentMacros(const Expr *LhsExpr,
const Expr *RhsExpr,
const ASTContext *AstCtx) {
if (!LhsExpr || !RhsExpr)
return false;
SourceRange Lsr = LhsExpr->getSourceRange();
SourceRange Rsr = RhsExpr->getSourceRange();
if (!Lsr.getBegin().isMacroID() || !Rsr.getBegin().isMacroID())
return false;
const SourceManager &SM = AstCtx->getSourceManager();
const LangOptions &LO = AstCtx->getLangOpts();
std::pair<FileID, unsigned> LsrLocInfo =
SM.getDecomposedLoc(SM.getExpansionLoc(Lsr.getBegin()));
std::pair<FileID, unsigned> RsrLocInfo =
SM.getDecomposedLoc(SM.getExpansionLoc(Rsr.getBegin()));
const llvm::MemoryBuffer *MB = SM.getBuffer(LsrLocInfo.first);
const char *LTokenPos = MB->getBufferStart() + LsrLocInfo.second;
const char *RTokenPos = MB->getBufferStart() + RsrLocInfo.second;
Lexer LRawLex(SM.getLocForStartOfFile(LsrLocInfo.first), LO,
MB->getBufferStart(), LTokenPos, MB->getBufferEnd());
Lexer RRawLex(SM.getLocForStartOfFile(RsrLocInfo.first), LO,
MB->getBufferStart(), RTokenPos, MB->getBufferEnd());
Token LTok, RTok;
do { // Compare the expressions token-by-token.
LRawLex.LexFromRawLexer(LTok);
RRawLex.LexFromRawLexer(RTok);
} while (!LTok.is(tok::eof) && !RTok.is(tok::eof) &&
isSameRawIdentifierToken(LTok, RTok, SM) &&
!isTokAtEndOfExpr(Lsr, LTok, SM) &&
!isTokAtEndOfExpr(Rsr, RTok, SM));
return (!isTokAtEndOfExpr(Lsr, LTok, SM) ||
!isTokAtEndOfExpr(Rsr, RTok, SM)) ||
!isSameRawIdentifierToken(LTok, RTok, SM);
}
static bool areExprsMacroAndNonMacro(const Expr *&LhsExpr,
const Expr *&RhsExpr) {
if (!LhsExpr || !RhsExpr)
return false;
SourceLocation LhsLoc = LhsExpr->getExprLoc();
SourceLocation RhsLoc = RhsExpr->getExprLoc();
return LhsLoc.isMacroID() != RhsLoc.isMacroID();
}
} // namespace
void RedundantExpressionCheck::registerMatchers(MatchFinder *Finder) {
const auto AnyLiteralExpr = ignoringParenImpCasts(
anyOf(cxxBoolLiteral(), characterLiteral(), integerLiteral()));
const auto BannedIntegerLiteral =
integerLiteral(expandedByMacro(KnownBannedMacroNames));
// Binary with equivalent operands, like (X != 2 && X != 2).
Finder->addMatcher(
traverse(ast_type_traits::TK_AsIs,
binaryOperator(
anyOf(isComparisonOperator(),
hasAnyOperatorName("-", "/", "%", "|", "&", "^", "&&",
"||", "=")),
operandsAreEquivalent(),
// Filter noisy false positives.
unless(isInTemplateInstantiation()),
unless(binaryOperatorIsInMacro()),
unless(hasType(realFloatingPointType())),
unless(hasEitherOperand(hasType(realFloatingPointType()))),
unless(hasLHS(AnyLiteralExpr)),
unless(hasDescendant(BannedIntegerLiteral)))
.bind("binary")),
this);
// Logical or bitwise operator with equivalent nested operands, like (X && Y
// && X) or (X && (Y && X))
Finder->addMatcher(
binaryOperator(hasAnyOperatorName("|", "&", "||", "&&", "^"),
nestedOperandsAreEquivalent(),
// Filter noisy false positives.
unless(isInTemplateInstantiation()),
unless(binaryOperatorIsInMacro()),
// TODO: if the banned macros are themselves duplicated
unless(hasDescendant(BannedIntegerLiteral)))
.bind("nested-duplicates"),
this);
// Conditional (trenary) operator with equivalent operands, like (Y ? X : X).
Finder->addMatcher(
traverse(ast_type_traits::TK_AsIs,
conditionalOperator(expressionsAreEquivalent(),
// Filter noisy false positives.
unless(conditionalOperatorIsInMacro()),
unless(isInTemplateInstantiation()))
.bind("cond")),
this);
// Overloaded operators with equivalent operands.
Finder->addMatcher(
traverse(ast_type_traits::TK_AsIs,
cxxOperatorCallExpr(
hasAnyOverloadedOperatorName("-", "/", "%", "|", "&", "^",
"==", "!=", "<", "<=", ">",
">=", "&&", "||", "="),
parametersAreEquivalent(),
// Filter noisy false positives.
unless(isMacro()), unless(isInTemplateInstantiation()))
.bind("call")),
this);
// Overloaded operators with equivalent operands.
Finder->addMatcher(
cxxOperatorCallExpr(
hasAnyOverloadedOperatorName("|", "&", "||", "&&", "^"),
nestedParametersAreEquivalent(), argumentCountIs(2),
// Filter noisy false positives.
unless(isMacro()), unless(isInTemplateInstantiation()))
.bind("nested-duplicates"),
this);
// Match expressions like: !(1 | 2 | 3)
Finder->addMatcher(
traverse(ast_type_traits::TK_AsIs,
implicitCastExpr(
hasImplicitDestinationType(isInteger()),
has(unaryOperator(
hasOperatorName("!"),
hasUnaryOperand(ignoringParenImpCasts(binaryOperator(
hasAnyOperatorName("|", "&"),
hasLHS(anyOf(
binaryOperator(hasAnyOperatorName("|", "&")),
integerLiteral())),
hasRHS(integerLiteral())))))
.bind("logical-bitwise-confusion")))),
this);
// Match expressions like: (X << 8) & 0xFF
Finder->addMatcher(
traverse(
ast_type_traits::TK_AsIs,
binaryOperator(
hasOperatorName("&"),
hasOperands(
ignoringParenImpCasts(
binaryOperator(hasOperatorName("<<"),
hasRHS(ignoringParenImpCasts(
integerLiteral().bind("shift-const"))))),
ignoringParenImpCasts(integerLiteral().bind("and-const"))))
.bind("left-right-shift-confusion")),
this);
// Match common expressions and apply more checks to find redundant
// sub-expressions.
// a) Expr <op> K1 == K2
// b) Expr <op> K1 == Expr
// c) Expr <op> K1 == Expr <op> K2
// see: 'checkArithmeticExpr' and 'checkBitwiseExpr'
const auto BinOpCstLeft = matchBinOpIntegerConstantExpr("lhs");
const auto BinOpCstRight = matchBinOpIntegerConstantExpr("rhs");
const auto CstRight = matchIntegerConstantExpr("rhs");
const auto SymRight = matchSymbolicExpr("rhs");
// Match expressions like: x <op> 0xFF == 0xF00.
Finder->addMatcher(traverse(ast_type_traits::TK_AsIs,
binaryOperator(isComparisonOperator(),
hasOperands(BinOpCstLeft,
CstRight))
.bind("binop-const-compare-to-const")),
this);
// Match expressions like: x <op> 0xFF == x.
Finder->addMatcher(
traverse(
ast_type_traits::TK_AsIs,
binaryOperator(isComparisonOperator(),
anyOf(allOf(hasLHS(BinOpCstLeft), hasRHS(SymRight)),
allOf(hasLHS(SymRight), hasRHS(BinOpCstLeft))))
.bind("binop-const-compare-to-sym")),
this);
// Match expressions like: x <op> 10 == x <op> 12.
Finder->addMatcher(
traverse(ast_type_traits::TK_AsIs,
binaryOperator(isComparisonOperator(), hasLHS(BinOpCstLeft),
hasRHS(BinOpCstRight),
// Already reported as redundant.
unless(operandsAreEquivalent()))
.bind("binop-const-compare-to-binop-const")),
this);
// Match relational expressions combined with logical operators and find
// redundant sub-expressions.
// see: 'checkRelationalExpr'
// Match expressions like: x < 2 && x > 2.
const auto ComparisonLeft = matchRelationalIntegerConstantExpr("lhs");
const auto ComparisonRight = matchRelationalIntegerConstantExpr("rhs");
Finder->addMatcher(
traverse(ast_type_traits::TK_AsIs,
binaryOperator(hasAnyOperatorName("||", "&&"),
hasLHS(ComparisonLeft), hasRHS(ComparisonRight),
// Already reported as redundant.
unless(operandsAreEquivalent()))
.bind("comparisons-of-symbol-and-const")),
this);
}
void RedundantExpressionCheck::checkArithmeticExpr(
const MatchFinder::MatchResult &Result) {
APSInt LhsValue, RhsValue;
const Expr *LhsSymbol = nullptr, *RhsSymbol = nullptr;
BinaryOperatorKind LhsOpcode, RhsOpcode;
if (const auto *ComparisonOperator = Result.Nodes.getNodeAs<BinaryOperator>(
"binop-const-compare-to-sym")) {
BinaryOperatorKind Opcode = ComparisonOperator->getOpcode();
if (!retrieveBinOpIntegerConstantExpr(Result, "lhs", LhsOpcode, LhsSymbol,
LhsValue) ||
!retrieveSymbolicExpr(Result, "rhs", RhsSymbol) ||
!areEquivalentExpr(LhsSymbol, RhsSymbol))
return;
// Check expressions: x + k == x or x - k == x.
if (LhsOpcode == BO_Add || LhsOpcode == BO_Sub) {
if ((LhsValue != 0 && Opcode == BO_EQ) ||
(LhsValue == 0 && Opcode == BO_NE))
diag(ComparisonOperator->getOperatorLoc(),
"logical expression is always false");
else if ((LhsValue == 0 && Opcode == BO_EQ) ||
(LhsValue != 0 && Opcode == BO_NE))
diag(ComparisonOperator->getOperatorLoc(),
"logical expression is always true");
}
} else if (const auto *ComparisonOperator =
Result.Nodes.getNodeAs<BinaryOperator>(
"binop-const-compare-to-binop-const")) {
BinaryOperatorKind Opcode = ComparisonOperator->getOpcode();
if (!retrieveBinOpIntegerConstantExpr(Result, "lhs", LhsOpcode, LhsSymbol,
LhsValue) ||
!retrieveBinOpIntegerConstantExpr(Result, "rhs", RhsOpcode, RhsSymbol,
RhsValue) ||
!areEquivalentExpr(LhsSymbol, RhsSymbol))
return;
transformSubToCanonicalAddExpr(LhsOpcode, LhsValue);
transformSubToCanonicalAddExpr(RhsOpcode, RhsValue);
// Check expressions: x + 1 == x + 2 or x + 1 != x + 2.
if (LhsOpcode == BO_Add && RhsOpcode == BO_Add) {
if ((Opcode == BO_EQ && APSInt::compareValues(LhsValue, RhsValue) == 0) ||
(Opcode == BO_NE && APSInt::compareValues(LhsValue, RhsValue) != 0)) {
diag(ComparisonOperator->getOperatorLoc(),
"logical expression is always true");
} else if ((Opcode == BO_EQ &&
APSInt::compareValues(LhsValue, RhsValue) != 0) ||
(Opcode == BO_NE &&
APSInt::compareValues(LhsValue, RhsValue) == 0)) {
diag(ComparisonOperator->getOperatorLoc(),
"logical expression is always false");
}
}
}
}
static bool exprEvaluatesToZero(BinaryOperatorKind Opcode, APSInt Value) {
return (Opcode == BO_And || Opcode == BO_AndAssign) && Value == 0;
}
static bool exprEvaluatesToBitwiseNegatedZero(BinaryOperatorKind Opcode,
APSInt Value) {
return (Opcode == BO_Or || Opcode == BO_OrAssign) && ~Value == 0;
}
static bool exprEvaluatesToSymbolic(BinaryOperatorKind Opcode, APSInt Value) {
return ((Opcode == BO_Or || Opcode == BO_OrAssign) && Value == 0) ||
((Opcode == BO_And || Opcode == BO_AndAssign) && ~Value == 0);
}
void RedundantExpressionCheck::checkBitwiseExpr(
const MatchFinder::MatchResult &Result) {
if (const auto *ComparisonOperator = Result.Nodes.getNodeAs<BinaryOperator>(
"binop-const-compare-to-const")) {
BinaryOperatorKind Opcode = ComparisonOperator->getOpcode();
APSInt LhsValue, RhsValue;
const Expr *LhsSymbol = nullptr;
BinaryOperatorKind LhsOpcode;
if (!retrieveBinOpIntegerConstantExpr(Result, "lhs", LhsOpcode, LhsSymbol,
LhsValue) ||
!retrieveIntegerConstantExpr(Result, "rhs", RhsValue))
return;
uint64_t LhsConstant = LhsValue.getZExtValue();
uint64_t RhsConstant = RhsValue.getZExtValue();
SourceLocation Loc = ComparisonOperator->getOperatorLoc();
// Check expression: x & k1 == k2 (i.e. x & 0xFF == 0xF00)
if (LhsOpcode == BO_And && (LhsConstant & RhsConstant) != RhsConstant) {
if (Opcode == BO_EQ)
diag(Loc, "logical expression is always false");
else if (Opcode == BO_NE)
diag(Loc, "logical expression is always true");
}
// Check expression: x | k1 == k2 (i.e. x | 0xFF == 0xF00)
if (LhsOpcode == BO_Or && (LhsConstant | RhsConstant) != RhsConstant) {
if (Opcode == BO_EQ)
diag(Loc, "logical expression is always false");
else if (Opcode == BO_NE)
diag(Loc, "logical expression is always true");
}
} else if (const auto *IneffectiveOperator =
Result.Nodes.getNodeAs<BinaryOperator>(
"ineffective-bitwise")) {
APSInt Value;
const Expr *Sym = nullptr, *ConstExpr = nullptr;
if (!retrieveSymbolicExpr(Result, "ineffective-bitwise", Sym) ||
!retrieveIntegerConstantExpr(Result, "ineffective-bitwise", Value,
ConstExpr))
return;
if((Value != 0 && ~Value != 0) || Sym->getExprLoc().isMacroID())
return;
SourceLocation Loc = IneffectiveOperator->getOperatorLoc();
BinaryOperatorKind Opcode = IneffectiveOperator->getOpcode();
if (exprEvaluatesToZero(Opcode, Value)) {
diag(Loc, "expression always evaluates to 0");
} else if (exprEvaluatesToBitwiseNegatedZero(Opcode, Value)) {
SourceRange ConstExprRange(ConstExpr->getBeginLoc(),
ConstExpr->getEndLoc());
StringRef ConstExprText = Lexer::getSourceText(
CharSourceRange::getTokenRange(ConstExprRange), *Result.SourceManager,
Result.Context->getLangOpts());
diag(Loc, "expression always evaluates to '%0'") << ConstExprText;
} else if (exprEvaluatesToSymbolic(Opcode, Value)) {
SourceRange SymExprRange(Sym->getBeginLoc(), Sym->getEndLoc());
StringRef ExprText = Lexer::getSourceText(
CharSourceRange::getTokenRange(SymExprRange), *Result.SourceManager,
Result.Context->getLangOpts());
diag(Loc, "expression always evaluates to '%0'") << ExprText;
}
}
}
void RedundantExpressionCheck::checkRelationalExpr(
const MatchFinder::MatchResult &Result) {
if (const auto *ComparisonOperator = Result.Nodes.getNodeAs<BinaryOperator>(
"comparisons-of-symbol-and-const")) {
// Matched expressions are: (x <op> k1) <REL> (x <op> k2).
// E.g.: (X < 2) && (X > 4)
BinaryOperatorKind Opcode = ComparisonOperator->getOpcode();
const Expr *LhsExpr = nullptr, *RhsExpr = nullptr;
const Expr *LhsSymbol = nullptr, *RhsSymbol = nullptr;
const Expr *LhsConst = nullptr, *RhsConst = nullptr;
BinaryOperatorKind LhsOpcode, RhsOpcode;
APSInt LhsValue, RhsValue;
if (!retrieveRelationalIntegerConstantExpr(
Result, "lhs", LhsExpr, LhsOpcode, LhsSymbol, LhsValue, LhsConst) ||
!retrieveRelationalIntegerConstantExpr(
Result, "rhs", RhsExpr, RhsOpcode, RhsSymbol, RhsValue, RhsConst) ||
!areEquivalentExpr(LhsSymbol, RhsSymbol))
return;
// Bring expr to a canonical form: smallest constant must be on the left.
if (APSInt::compareValues(LhsValue, RhsValue) > 0) {
std::swap(LhsExpr, RhsExpr);
std::swap(LhsValue, RhsValue);
std::swap(LhsSymbol, RhsSymbol);
std::swap(LhsOpcode, RhsOpcode);
}
// Constants come from two different macros, or one of them is a macro.
if (areExprsFromDifferentMacros(LhsConst, RhsConst, Result.Context) ||
areExprsMacroAndNonMacro(LhsConst, RhsConst))
return;
if ((Opcode == BO_LAnd || Opcode == BO_LOr) &&
areEquivalentRanges(LhsOpcode, LhsValue, RhsOpcode, RhsValue)) {
diag(ComparisonOperator->getOperatorLoc(),
"equivalent expression on both sides of logical operator");
return;
}
if (Opcode == BO_LAnd) {
if (areExclusiveRanges(LhsOpcode, LhsValue, RhsOpcode, RhsValue)) {
diag(ComparisonOperator->getOperatorLoc(),
"logical expression is always false");
} else if (rangeSubsumesRange(LhsOpcode, LhsValue, RhsOpcode, RhsValue)) {
diag(LhsExpr->getExprLoc(), "expression is redundant");
} else if (rangeSubsumesRange(RhsOpcode, RhsValue, LhsOpcode, LhsValue)) {
diag(RhsExpr->getExprLoc(), "expression is redundant");
}
}
if (Opcode == BO_LOr) {
if (rangesFullyCoverDomain(LhsOpcode, LhsValue, RhsOpcode, RhsValue)) {
diag(ComparisonOperator->getOperatorLoc(),
"logical expression is always true");
} else if (rangeSubsumesRange(LhsOpcode, LhsValue, RhsOpcode, RhsValue)) {
diag(RhsExpr->getExprLoc(), "expression is redundant");
} else if (rangeSubsumesRange(RhsOpcode, RhsValue, LhsOpcode, LhsValue)) {
diag(LhsExpr->getExprLoc(), "expression is redundant");
}
}
}
}
void RedundantExpressionCheck::check(const MatchFinder::MatchResult &Result) {
if (const auto *BinOp = Result.Nodes.getNodeAs<BinaryOperator>("binary")) {
// If the expression's constants are macros, check whether they are
// intentional.
if (areSidesBinaryConstExpressions(BinOp, Result.Context)) {
const Expr *LhsConst = nullptr, *RhsConst = nullptr;
BinaryOperatorKind MainOpcode, SideOpcode;
if (!retrieveConstExprFromBothSides(BinOp, MainOpcode, SideOpcode,
LhsConst, RhsConst, Result.Context))
return;
if (areExprsFromDifferentMacros(LhsConst, RhsConst, Result.Context) ||
areExprsMacroAndNonMacro(LhsConst, RhsConst))
return;
}
diag(BinOp->getOperatorLoc(), "both sides of operator are equivalent");
}
if (const auto *CondOp =
Result.Nodes.getNodeAs<ConditionalOperator>("cond")) {
const Expr *TrueExpr = CondOp->getTrueExpr();
const Expr *FalseExpr = CondOp->getFalseExpr();
if (areExprsFromDifferentMacros(TrueExpr, FalseExpr, Result.Context) ||
areExprsMacroAndNonMacro(TrueExpr, FalseExpr))
return;
diag(CondOp->getColonLoc(),
"'true' and 'false' expressions are equivalent");
}
if (const auto *Call = Result.Nodes.getNodeAs<CXXOperatorCallExpr>("call")) {
if (canOverloadedOperatorArgsBeModified(Call, true))
return;
diag(Call->getOperatorLoc(),
"both sides of overloaded operator are equivalent");
}
if (const auto *Op = Result.Nodes.getNodeAs<Expr>("nested-duplicates")) {
const auto *Call = dyn_cast<CXXOperatorCallExpr>(Op);
if (Call && canOverloadedOperatorArgsBeModified(Call, true))
return;
StringRef Message =
Call ? "overloaded operator has equivalent nested operands"
: "operator has equivalent nested operands";
const auto Diag = diag(Op->getExprLoc(), Message);
for (const auto &KeyValue : Result.Nodes.getMap()) {
if (StringRef(KeyValue.first).startswith("duplicate"))
Diag << KeyValue.second.getSourceRange();
}
}
if (const auto *NegateOperator =
Result.Nodes.getNodeAs<UnaryOperator>("logical-bitwise-confusion")) {
SourceLocation OperatorLoc = NegateOperator->getOperatorLoc();
auto Diag =
diag(OperatorLoc,
"ineffective logical negation operator used; did you mean '~'?");
SourceLocation LogicalNotLocation = OperatorLoc.getLocWithOffset(1);
if (!LogicalNotLocation.isMacroID())
Diag << FixItHint::CreateReplacement(
CharSourceRange::getCharRange(OperatorLoc, LogicalNotLocation), "~");
}
if (const auto *BinaryAndExpr = Result.Nodes.getNodeAs<BinaryOperator>(
"left-right-shift-confusion")) {
const auto *ShiftingConst = Result.Nodes.getNodeAs<Expr>("shift-const");
assert(ShiftingConst && "Expr* 'ShiftingConst' is nullptr!");
Optional<llvm::APSInt> ShiftingValue =
ShiftingConst->getIntegerConstantExpr(*Result.Context);
if (!ShiftingValue)
return;
const auto *AndConst = Result.Nodes.getNodeAs<Expr>("and-const");
assert(AndConst && "Expr* 'AndCont' is nullptr!");
Optional<llvm::APSInt> AndValue =
AndConst->getIntegerConstantExpr(*Result.Context);
if (!AndValue)
return;
// If ShiftingConst is shifted left with more bits than the position of the
// leftmost 1 in the bit representation of AndValue, AndConstant is
// ineffective.
if (AndValue->getActiveBits() > *ShiftingValue)
return;
auto Diag = diag(BinaryAndExpr->getOperatorLoc(),
"ineffective bitwise and operation");
}
// Check for the following bound expressions:
// - "binop-const-compare-to-sym",
// - "binop-const-compare-to-binop-const",
// Produced message:
// -> "logical expression is always false/true"
checkArithmeticExpr(Result);
// Check for the following bound expression:
// - "binop-const-compare-to-const",
// - "ineffective-bitwise"
// Produced message:
// -> "logical expression is always false/true"
// -> "expression always evaluates to ..."
checkBitwiseExpr(Result);
// Check for te following bound expression:
// - "comparisons-of-symbol-and-const",
// Produced messages:
// -> "equivalent expression on both sides of logical operator",
// -> "logical expression is always false/true"
// -> "expression is redundant"
checkRelationalExpr(Result);
}
} // namespace misc
} // namespace tidy
} // namespace clang