AffineParser.cpp
25.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
//===- AffineParser.cpp - MLIR Affine Parser ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a parser for Affine structures.
//
//===----------------------------------------------------------------------===//
#include "Parser.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/IntegerSet.h"
using namespace mlir;
using namespace mlir::detail;
using llvm::SMLoc;
namespace {
/// Lower precedence ops (all at the same precedence level). LNoOp is false in
/// the boolean sense.
enum AffineLowPrecOp {
/// Null value.
LNoOp,
Add,
Sub
};
/// Higher precedence ops - all at the same precedence level. HNoOp is false
/// in the boolean sense.
enum AffineHighPrecOp {
/// Null value.
HNoOp,
Mul,
FloorDiv,
CeilDiv,
Mod
};
/// This is a specialized parser for affine structures (affine maps, affine
/// expressions, and integer sets), maintaining the state transient to their
/// bodies.
class AffineParser : public Parser {
public:
AffineParser(ParserState &state, bool allowParsingSSAIds = false,
function_ref<ParseResult(bool)> parseElement = nullptr)
: Parser(state), allowParsingSSAIds(allowParsingSSAIds),
parseElement(parseElement), numDimOperands(0), numSymbolOperands(0) {}
AffineMap parseAffineMapRange(unsigned numDims, unsigned numSymbols);
ParseResult parseAffineMapOrIntegerSetInline(AffineMap &map, IntegerSet &set);
IntegerSet parseIntegerSetConstraints(unsigned numDims, unsigned numSymbols);
ParseResult parseAffineMapOfSSAIds(AffineMap &map,
OpAsmParser::Delimiter delimiter);
void getDimsAndSymbolSSAIds(SmallVectorImpl<StringRef> &dimAndSymbolSSAIds,
unsigned &numDims);
private:
// Binary affine op parsing.
AffineLowPrecOp consumeIfLowPrecOp();
AffineHighPrecOp consumeIfHighPrecOp();
// Identifier lists for polyhedral structures.
ParseResult parseDimIdList(unsigned &numDims);
ParseResult parseSymbolIdList(unsigned &numSymbols);
ParseResult parseDimAndOptionalSymbolIdList(unsigned &numDims,
unsigned &numSymbols);
ParseResult parseIdentifierDefinition(AffineExpr idExpr);
AffineExpr parseAffineExpr();
AffineExpr parseParentheticalExpr();
AffineExpr parseNegateExpression(AffineExpr lhs);
AffineExpr parseIntegerExpr();
AffineExpr parseBareIdExpr();
AffineExpr parseSSAIdExpr(bool isSymbol);
AffineExpr parseSymbolSSAIdExpr();
AffineExpr getAffineBinaryOpExpr(AffineHighPrecOp op, AffineExpr lhs,
AffineExpr rhs, llvm::SMLoc opLoc);
AffineExpr getAffineBinaryOpExpr(AffineLowPrecOp op, AffineExpr lhs,
AffineExpr rhs);
AffineExpr parseAffineOperandExpr(AffineExpr lhs);
AffineExpr parseAffineLowPrecOpExpr(AffineExpr llhs, AffineLowPrecOp llhsOp);
AffineExpr parseAffineHighPrecOpExpr(AffineExpr llhs, AffineHighPrecOp llhsOp,
llvm::SMLoc llhsOpLoc);
AffineExpr parseAffineConstraint(bool *isEq);
private:
bool allowParsingSSAIds;
function_ref<ParseResult(bool)> parseElement;
unsigned numDimOperands;
unsigned numSymbolOperands;
SmallVector<std::pair<StringRef, AffineExpr>, 4> dimsAndSymbols;
};
} // end anonymous namespace
/// Create an affine binary high precedence op expression (mul's, div's, mod).
/// opLoc is the location of the op token to be used to report errors
/// for non-conforming expressions.
AffineExpr AffineParser::getAffineBinaryOpExpr(AffineHighPrecOp op,
AffineExpr lhs, AffineExpr rhs,
SMLoc opLoc) {
// TODO: make the error location info accurate.
switch (op) {
case Mul:
if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant()) {
emitError(opLoc, "non-affine expression: at least one of the multiply "
"operands has to be either a constant or symbolic");
return nullptr;
}
return lhs * rhs;
case FloorDiv:
if (!rhs.isSymbolicOrConstant()) {
emitError(opLoc, "non-affine expression: right operand of floordiv "
"has to be either a constant or symbolic");
return nullptr;
}
return lhs.floorDiv(rhs);
case CeilDiv:
if (!rhs.isSymbolicOrConstant()) {
emitError(opLoc, "non-affine expression: right operand of ceildiv "
"has to be either a constant or symbolic");
return nullptr;
}
return lhs.ceilDiv(rhs);
case Mod:
if (!rhs.isSymbolicOrConstant()) {
emitError(opLoc, "non-affine expression: right operand of mod "
"has to be either a constant or symbolic");
return nullptr;
}
return lhs % rhs;
case HNoOp:
llvm_unreachable("can't create affine expression for null high prec op");
return nullptr;
}
llvm_unreachable("Unknown AffineHighPrecOp");
}
/// Create an affine binary low precedence op expression (add, sub).
AffineExpr AffineParser::getAffineBinaryOpExpr(AffineLowPrecOp op,
AffineExpr lhs, AffineExpr rhs) {
switch (op) {
case AffineLowPrecOp::Add:
return lhs + rhs;
case AffineLowPrecOp::Sub:
return lhs - rhs;
case AffineLowPrecOp::LNoOp:
llvm_unreachable("can't create affine expression for null low prec op");
return nullptr;
}
llvm_unreachable("Unknown AffineLowPrecOp");
}
/// Consume this token if it is a lower precedence affine op (there are only
/// two precedence levels).
AffineLowPrecOp AffineParser::consumeIfLowPrecOp() {
switch (getToken().getKind()) {
case Token::plus:
consumeToken(Token::plus);
return AffineLowPrecOp::Add;
case Token::minus:
consumeToken(Token::minus);
return AffineLowPrecOp::Sub;
default:
return AffineLowPrecOp::LNoOp;
}
}
/// Consume this token if it is a higher precedence affine op (there are only
/// two precedence levels)
AffineHighPrecOp AffineParser::consumeIfHighPrecOp() {
switch (getToken().getKind()) {
case Token::star:
consumeToken(Token::star);
return Mul;
case Token::kw_floordiv:
consumeToken(Token::kw_floordiv);
return FloorDiv;
case Token::kw_ceildiv:
consumeToken(Token::kw_ceildiv);
return CeilDiv;
case Token::kw_mod:
consumeToken(Token::kw_mod);
return Mod;
default:
return HNoOp;
}
}
/// Parse a high precedence op expression list: mul, div, and mod are high
/// precedence binary ops, i.e., parse a
/// expr_1 op_1 expr_2 op_2 ... expr_n
/// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod).
/// All affine binary ops are left associative.
/// Given llhs, returns (llhs llhsOp lhs) op rhs, or (lhs op rhs) if llhs is
/// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is
/// null. llhsOpLoc is the location of the llhsOp token that will be used to
/// report an error for non-conforming expressions.
AffineExpr AffineParser::parseAffineHighPrecOpExpr(AffineExpr llhs,
AffineHighPrecOp llhsOp,
SMLoc llhsOpLoc) {
AffineExpr lhs = parseAffineOperandExpr(llhs);
if (!lhs)
return nullptr;
// Found an LHS. Parse the remaining expression.
auto opLoc = getToken().getLoc();
if (AffineHighPrecOp op = consumeIfHighPrecOp()) {
if (llhs) {
AffineExpr expr = getAffineBinaryOpExpr(llhsOp, llhs, lhs, opLoc);
if (!expr)
return nullptr;
return parseAffineHighPrecOpExpr(expr, op, opLoc);
}
// No LLHS, get RHS
return parseAffineHighPrecOpExpr(lhs, op, opLoc);
}
// This is the last operand in this expression.
if (llhs)
return getAffineBinaryOpExpr(llhsOp, llhs, lhs, llhsOpLoc);
// No llhs, 'lhs' itself is the expression.
return lhs;
}
/// Parse an affine expression inside parentheses.
///
/// affine-expr ::= `(` affine-expr `)`
AffineExpr AffineParser::parseParentheticalExpr() {
if (parseToken(Token::l_paren, "expected '('"))
return nullptr;
if (getToken().is(Token::r_paren))
return (emitError("no expression inside parentheses"), nullptr);
auto expr = parseAffineExpr();
if (!expr)
return nullptr;
if (parseToken(Token::r_paren, "expected ')'"))
return nullptr;
return expr;
}
/// Parse the negation expression.
///
/// affine-expr ::= `-` affine-expr
AffineExpr AffineParser::parseNegateExpression(AffineExpr lhs) {
if (parseToken(Token::minus, "expected '-'"))
return nullptr;
AffineExpr operand = parseAffineOperandExpr(lhs);
// Since negation has the highest precedence of all ops (including high
// precedence ops) but lower than parentheses, we are only going to use
// parseAffineOperandExpr instead of parseAffineExpr here.
if (!operand)
// Extra error message although parseAffineOperandExpr would have
// complained. Leads to a better diagnostic.
return (emitError("missing operand of negation"), nullptr);
return (-1) * operand;
}
/// Parse a bare id that may appear in an affine expression.
///
/// affine-expr ::= bare-id
AffineExpr AffineParser::parseBareIdExpr() {
if (getToken().isNot(Token::bare_identifier))
return (emitError("expected bare identifier"), nullptr);
StringRef sRef = getTokenSpelling();
for (auto entry : dimsAndSymbols) {
if (entry.first == sRef) {
consumeToken(Token::bare_identifier);
return entry.second;
}
}
return (emitError("use of undeclared identifier"), nullptr);
}
/// Parse an SSA id which may appear in an affine expression.
AffineExpr AffineParser::parseSSAIdExpr(bool isSymbol) {
if (!allowParsingSSAIds)
return (emitError("unexpected ssa identifier"), nullptr);
if (getToken().isNot(Token::percent_identifier))
return (emitError("expected ssa identifier"), nullptr);
auto name = getTokenSpelling();
// Check if we already parsed this SSA id.
for (auto entry : dimsAndSymbols) {
if (entry.first == name) {
consumeToken(Token::percent_identifier);
return entry.second;
}
}
// Parse the SSA id and add an AffineDim/SymbolExpr to represent it.
if (parseElement(isSymbol))
return (emitError("failed to parse ssa identifier"), nullptr);
auto idExpr = isSymbol
? getAffineSymbolExpr(numSymbolOperands++, getContext())
: getAffineDimExpr(numDimOperands++, getContext());
dimsAndSymbols.push_back({name, idExpr});
return idExpr;
}
AffineExpr AffineParser::parseSymbolSSAIdExpr() {
if (parseToken(Token::kw_symbol, "expected symbol keyword") ||
parseToken(Token::l_paren, "expected '(' at start of SSA symbol"))
return nullptr;
AffineExpr symbolExpr = parseSSAIdExpr(/*isSymbol=*/true);
if (!symbolExpr)
return nullptr;
if (parseToken(Token::r_paren, "expected ')' at end of SSA symbol"))
return nullptr;
return symbolExpr;
}
/// Parse a positive integral constant appearing in an affine expression.
///
/// affine-expr ::= integer-literal
AffineExpr AffineParser::parseIntegerExpr() {
auto val = getToken().getUInt64IntegerValue();
if (!val.hasValue() || (int64_t)val.getValue() < 0)
return (emitError("constant too large for index"), nullptr);
consumeToken(Token::integer);
return builder.getAffineConstantExpr((int64_t)val.getValue());
}
/// Parses an expression that can be a valid operand of an affine expression.
/// lhs: if non-null, lhs is an affine expression that is the lhs of a binary
/// operator, the rhs of which is being parsed. This is used to determine
/// whether an error should be emitted for a missing right operand.
// Eg: for an expression without parentheses (like i + j + k + l), each
// of the four identifiers is an operand. For i + j*k + l, j*k is not an
// operand expression, it's an op expression and will be parsed via
// parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and
// -l are valid operands that will be parsed by this function.
AffineExpr AffineParser::parseAffineOperandExpr(AffineExpr lhs) {
switch (getToken().getKind()) {
case Token::bare_identifier:
return parseBareIdExpr();
case Token::kw_symbol:
return parseSymbolSSAIdExpr();
case Token::percent_identifier:
return parseSSAIdExpr(/*isSymbol=*/false);
case Token::integer:
return parseIntegerExpr();
case Token::l_paren:
return parseParentheticalExpr();
case Token::minus:
return parseNegateExpression(lhs);
case Token::kw_ceildiv:
case Token::kw_floordiv:
case Token::kw_mod:
case Token::plus:
case Token::star:
if (lhs)
emitError("missing right operand of binary operator");
else
emitError("missing left operand of binary operator");
return nullptr;
default:
if (lhs)
emitError("missing right operand of binary operator");
else
emitError("expected affine expression");
return nullptr;
}
}
/// Parse affine expressions that are bare-id's, integer constants,
/// parenthetical affine expressions, and affine op expressions that are a
/// composition of those.
///
/// All binary op's associate from left to right.
///
/// {add, sub} have lower precedence than {mul, div, and mod}.
///
/// Add, sub'are themselves at the same precedence level. Mul, floordiv,
/// ceildiv, and mod are at the same higher precedence level. Negation has
/// higher precedence than any binary op.
///
/// llhs: the affine expression appearing on the left of the one being parsed.
/// This function will return ((llhs llhsOp lhs) op rhs) if llhs is non null,
/// and lhs op rhs otherwise; if there is no rhs, llhs llhsOp lhs is returned
/// if llhs is non-null; otherwise lhs is returned. This is to deal with left
/// associativity.
///
/// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function
/// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where
/// (e2*e3) will be parsed using parseAffineHighPrecOpExpr().
AffineExpr AffineParser::parseAffineLowPrecOpExpr(AffineExpr llhs,
AffineLowPrecOp llhsOp) {
AffineExpr lhs;
if (!(lhs = parseAffineOperandExpr(llhs)))
return nullptr;
// Found an LHS. Deal with the ops.
if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) {
if (llhs) {
AffineExpr sum = getAffineBinaryOpExpr(llhsOp, llhs, lhs);
return parseAffineLowPrecOpExpr(sum, lOp);
}
// No LLHS, get RHS and form the expression.
return parseAffineLowPrecOpExpr(lhs, lOp);
}
auto opLoc = getToken().getLoc();
if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) {
// We have a higher precedence op here. Get the rhs operand for the llhs
// through parseAffineHighPrecOpExpr.
AffineExpr highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc);
if (!highRes)
return nullptr;
// If llhs is null, the product forms the first operand of the yet to be
// found expression. If non-null, the op to associate with llhs is llhsOp.
AffineExpr expr =
llhs ? getAffineBinaryOpExpr(llhsOp, llhs, highRes) : highRes;
// Recurse for subsequent low prec op's after the affine high prec op
// expression.
if (AffineLowPrecOp nextOp = consumeIfLowPrecOp())
return parseAffineLowPrecOpExpr(expr, nextOp);
return expr;
}
// Last operand in the expression list.
if (llhs)
return getAffineBinaryOpExpr(llhsOp, llhs, lhs);
// No llhs, 'lhs' itself is the expression.
return lhs;
}
/// Parse an affine expression.
/// affine-expr ::= `(` affine-expr `)`
/// | `-` affine-expr
/// | affine-expr `+` affine-expr
/// | affine-expr `-` affine-expr
/// | affine-expr `*` affine-expr
/// | affine-expr `floordiv` affine-expr
/// | affine-expr `ceildiv` affine-expr
/// | affine-expr `mod` affine-expr
/// | bare-id
/// | integer-literal
///
/// Additional conditions are checked depending on the production. For eg.,
/// one of the operands for `*` has to be either constant/symbolic; the second
/// operand for floordiv, ceildiv, and mod has to be a positive integer.
AffineExpr AffineParser::parseAffineExpr() {
return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp);
}
/// Parse a dim or symbol from the lists appearing before the actual
/// expressions of the affine map. Update our state to store the
/// dimensional/symbolic identifier.
ParseResult AffineParser::parseIdentifierDefinition(AffineExpr idExpr) {
if (getToken().isNot(Token::bare_identifier))
return emitError("expected bare identifier");
auto name = getTokenSpelling();
for (auto entry : dimsAndSymbols) {
if (entry.first == name)
return emitError("redefinition of identifier '" + name + "'");
}
consumeToken(Token::bare_identifier);
dimsAndSymbols.push_back({name, idExpr});
return success();
}
/// Parse the list of dimensional identifiers to an affine map.
ParseResult AffineParser::parseDimIdList(unsigned &numDims) {
if (parseToken(Token::l_paren,
"expected '(' at start of dimensional identifiers list")) {
return failure();
}
auto parseElt = [&]() -> ParseResult {
auto dimension = getAffineDimExpr(numDims++, getContext());
return parseIdentifierDefinition(dimension);
};
return parseCommaSeparatedListUntil(Token::r_paren, parseElt);
}
/// Parse the list of symbolic identifiers to an affine map.
ParseResult AffineParser::parseSymbolIdList(unsigned &numSymbols) {
consumeToken(Token::l_square);
auto parseElt = [&]() -> ParseResult {
auto symbol = getAffineSymbolExpr(numSymbols++, getContext());
return parseIdentifierDefinition(symbol);
};
return parseCommaSeparatedListUntil(Token::r_square, parseElt);
}
/// Parse the list of symbolic identifiers to an affine map.
ParseResult
AffineParser::parseDimAndOptionalSymbolIdList(unsigned &numDims,
unsigned &numSymbols) {
if (parseDimIdList(numDims)) {
return failure();
}
if (!getToken().is(Token::l_square)) {
numSymbols = 0;
return success();
}
return parseSymbolIdList(numSymbols);
}
/// Parses an ambiguous affine map or integer set definition inline.
ParseResult AffineParser::parseAffineMapOrIntegerSetInline(AffineMap &map,
IntegerSet &set) {
unsigned numDims = 0, numSymbols = 0;
// List of dimensional and optional symbol identifiers.
if (parseDimAndOptionalSymbolIdList(numDims, numSymbols)) {
return failure();
}
// This is needed for parsing attributes as we wouldn't know whether we would
// be parsing an integer set attribute or an affine map attribute.
bool isArrow = getToken().is(Token::arrow);
bool isColon = getToken().is(Token::colon);
if (!isArrow && !isColon) {
return emitError("expected '->' or ':'");
} else if (isArrow) {
parseToken(Token::arrow, "expected '->' or '['");
map = parseAffineMapRange(numDims, numSymbols);
return map ? success() : failure();
} else if (parseToken(Token::colon, "expected ':' or '['")) {
return failure();
}
if ((set = parseIntegerSetConstraints(numDims, numSymbols)))
return success();
return failure();
}
/// Parse an AffineMap where the dim and symbol identifiers are SSA ids.
ParseResult
AffineParser::parseAffineMapOfSSAIds(AffineMap &map,
OpAsmParser::Delimiter delimiter) {
Token::Kind rightToken;
switch (delimiter) {
case OpAsmParser::Delimiter::Square:
if (parseToken(Token::l_square, "expected '['"))
return failure();
rightToken = Token::r_square;
break;
case OpAsmParser::Delimiter::Paren:
if (parseToken(Token::l_paren, "expected '('"))
return failure();
rightToken = Token::r_paren;
break;
default:
return emitError("unexpected delimiter");
}
SmallVector<AffineExpr, 4> exprs;
auto parseElt = [&]() -> ParseResult {
auto elt = parseAffineExpr();
exprs.push_back(elt);
return elt ? success() : failure();
};
// Parse a multi-dimensional affine expression (a comma-separated list of
// 1-d affine expressions); the list can be empty. Grammar:
// multi-dim-affine-expr ::= `(` `)`
// | `(` affine-expr (`,` affine-expr)* `)`
if (parseCommaSeparatedListUntil(rightToken, parseElt,
/*allowEmptyList=*/true))
return failure();
// Parsed a valid affine map.
map = AffineMap::get(numDimOperands, dimsAndSymbols.size() - numDimOperands,
exprs, getContext());
return success();
}
/// Parse the range and sizes affine map definition inline.
///
/// affine-map ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr
///
/// multi-dim-affine-expr ::= `(` `)`
/// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)`
AffineMap AffineParser::parseAffineMapRange(unsigned numDims,
unsigned numSymbols) {
parseToken(Token::l_paren, "expected '(' at start of affine map range");
SmallVector<AffineExpr, 4> exprs;
auto parseElt = [&]() -> ParseResult {
auto elt = parseAffineExpr();
ParseResult res = elt ? success() : failure();
exprs.push_back(elt);
return res;
};
// Parse a multi-dimensional affine expression (a comma-separated list of
// 1-d affine expressions). Grammar:
// multi-dim-affine-expr ::= `(` `)`
// | `(` affine-expr (`,` affine-expr)* `)`
if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true))
return AffineMap();
// Parsed a valid affine map.
return AffineMap::get(numDims, numSymbols, exprs, getContext());
}
/// Parse an affine constraint.
/// affine-constraint ::= affine-expr `>=` `0`
/// | affine-expr `==` `0`
///
/// isEq is set to true if the parsed constraint is an equality, false if it
/// is an inequality (greater than or equal).
///
AffineExpr AffineParser::parseAffineConstraint(bool *isEq) {
AffineExpr expr = parseAffineExpr();
if (!expr)
return nullptr;
if (consumeIf(Token::greater) && consumeIf(Token::equal) &&
getToken().is(Token::integer)) {
auto dim = getToken().getUnsignedIntegerValue();
if (dim.hasValue() && dim.getValue() == 0) {
consumeToken(Token::integer);
*isEq = false;
return expr;
}
return (emitError("expected '0' after '>='"), nullptr);
}
if (consumeIf(Token::equal) && consumeIf(Token::equal) &&
getToken().is(Token::integer)) {
auto dim = getToken().getUnsignedIntegerValue();
if (dim.hasValue() && dim.getValue() == 0) {
consumeToken(Token::integer);
*isEq = true;
return expr;
}
return (emitError("expected '0' after '=='"), nullptr);
}
return (emitError("expected '== 0' or '>= 0' at end of affine constraint"),
nullptr);
}
/// Parse the constraints that are part of an integer set definition.
/// integer-set-inline
/// ::= dim-and-symbol-id-lists `:`
/// '(' affine-constraint-conjunction? ')'
/// affine-constraint-conjunction ::= affine-constraint (`,`
/// affine-constraint)*
///
IntegerSet AffineParser::parseIntegerSetConstraints(unsigned numDims,
unsigned numSymbols) {
if (parseToken(Token::l_paren,
"expected '(' at start of integer set constraint list"))
return IntegerSet();
SmallVector<AffineExpr, 4> constraints;
SmallVector<bool, 4> isEqs;
auto parseElt = [&]() -> ParseResult {
bool isEq;
auto elt = parseAffineConstraint(&isEq);
ParseResult res = elt ? success() : failure();
if (elt) {
constraints.push_back(elt);
isEqs.push_back(isEq);
}
return res;
};
// Parse a list of affine constraints (comma-separated).
if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true))
return IntegerSet();
// If no constraints were parsed, then treat this as a degenerate 'true' case.
if (constraints.empty()) {
/* 0 == 0 */
auto zero = getAffineConstantExpr(0, getContext());
return IntegerSet::get(numDims, numSymbols, zero, true);
}
// Parsed a valid integer set.
return IntegerSet::get(numDims, numSymbols, constraints, isEqs);
}
//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//
/// Parse an ambiguous reference to either and affine map or an integer set.
ParseResult Parser::parseAffineMapOrIntegerSetReference(AffineMap &map,
IntegerSet &set) {
return AffineParser(state).parseAffineMapOrIntegerSetInline(map, set);
}
ParseResult Parser::parseAffineMapReference(AffineMap &map) {
llvm::SMLoc curLoc = getToken().getLoc();
IntegerSet set;
if (parseAffineMapOrIntegerSetReference(map, set))
return failure();
if (set)
return emitError(curLoc, "expected AffineMap, but got IntegerSet");
return success();
}
ParseResult Parser::parseIntegerSetReference(IntegerSet &set) {
llvm::SMLoc curLoc = getToken().getLoc();
AffineMap map;
if (parseAffineMapOrIntegerSetReference(map, set))
return failure();
if (map)
return emitError(curLoc, "expected IntegerSet, but got AffineMap");
return success();
}
/// Parse an AffineMap of SSA ids. The callback 'parseElement' is used to
/// parse SSA value uses encountered while parsing affine expressions.
ParseResult
Parser::parseAffineMapOfSSAIds(AffineMap &map,
function_ref<ParseResult(bool)> parseElement,
OpAsmParser::Delimiter delimiter) {
return AffineParser(state, /*allowParsingSSAIds=*/true, parseElement)
.parseAffineMapOfSSAIds(map, delimiter);
}