AttributeDetail.h
25.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
//===- AttributeDetail.h - MLIR Affine Map details Class --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This holds implementation details of Attribute.
//
//===----------------------------------------------------------------------===//
#ifndef ATTRIBUTEDETAIL_H_
#define ATTRIBUTEDETAIL_H_
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Identifier.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Support/StorageUniquer.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/Support/TrailingObjects.h"
namespace mlir {
namespace detail {
// An attribute representing a reference to an affine map.
struct AffineMapAttributeStorage : public AttributeStorage {
using KeyTy = AffineMap;
AffineMapAttributeStorage(AffineMap value)
: AttributeStorage(IndexType::get(value.getContext())), value(value) {}
/// Key equality function.
bool operator==(const KeyTy &key) const { return key == value; }
/// Construct a new storage instance.
static AffineMapAttributeStorage *
construct(AttributeStorageAllocator &allocator, KeyTy key) {
return new (allocator.allocate<AffineMapAttributeStorage>())
AffineMapAttributeStorage(key);
}
AffineMap value;
};
/// An attribute representing an array of other attributes.
struct ArrayAttributeStorage : public AttributeStorage {
using KeyTy = ArrayRef<Attribute>;
ArrayAttributeStorage(ArrayRef<Attribute> value) : value(value) {}
/// Key equality function.
bool operator==(const KeyTy &key) const { return key == value; }
/// Construct a new storage instance.
static ArrayAttributeStorage *construct(AttributeStorageAllocator &allocator,
const KeyTy &key) {
return new (allocator.allocate<ArrayAttributeStorage>())
ArrayAttributeStorage(allocator.copyInto(key));
}
ArrayRef<Attribute> value;
};
/// An attribute representing a dictionary of sorted named attributes.
struct DictionaryAttributeStorage final
: public AttributeStorage,
private llvm::TrailingObjects<DictionaryAttributeStorage,
NamedAttribute> {
using KeyTy = ArrayRef<NamedAttribute>;
/// Given a list of NamedAttribute's, canonicalize the list (sorting
/// by name) and return the unique'd result.
static DictionaryAttributeStorage *get(ArrayRef<NamedAttribute> attrs);
/// Key equality function.
bool operator==(const KeyTy &key) const { return key == getElements(); }
/// Construct a new storage instance.
static DictionaryAttributeStorage *
construct(AttributeStorageAllocator &allocator, const KeyTy &key) {
auto size = DictionaryAttributeStorage::totalSizeToAlloc<NamedAttribute>(
key.size());
auto rawMem = allocator.allocate(size, alignof(NamedAttribute));
// Initialize the storage and trailing attribute list.
auto result = ::new (rawMem) DictionaryAttributeStorage(key.size());
std::uninitialized_copy(key.begin(), key.end(),
result->getTrailingObjects<NamedAttribute>());
return result;
}
/// Return the elements of this dictionary attribute.
ArrayRef<NamedAttribute> getElements() const {
return {getTrailingObjects<NamedAttribute>(), numElements};
}
private:
friend class llvm::TrailingObjects<DictionaryAttributeStorage,
NamedAttribute>;
// This is used by the llvm::TrailingObjects base class.
size_t numTrailingObjects(OverloadToken<NamedAttribute>) const {
return numElements;
}
DictionaryAttributeStorage(unsigned numElements) : numElements(numElements) {}
/// This is the number of attributes.
const unsigned numElements;
};
/// An attribute representing a floating point value.
struct FloatAttributeStorage final
: public AttributeStorage,
public llvm::TrailingObjects<FloatAttributeStorage, uint64_t> {
using KeyTy = std::pair<Type, APFloat>;
FloatAttributeStorage(const llvm::fltSemantics &semantics, Type type,
size_t numObjects)
: AttributeStorage(type), semantics(semantics), numObjects(numObjects) {}
/// Key equality and hash functions.
bool operator==(const KeyTy &key) const {
return key.first == getType() && key.second.bitwiseIsEqual(getValue());
}
static unsigned hashKey(const KeyTy &key) {
return llvm::hash_combine(key.first, llvm::hash_value(key.second));
}
/// Construct a key with a type and double.
static KeyTy getKey(Type type, double value) {
if (type.isF64())
return KeyTy(type, APFloat(value));
// This handles, e.g., F16 because there is no APFloat constructor for it.
bool unused;
APFloat val(value);
val.convert(type.cast<FloatType>().getFloatSemantics(),
APFloat::rmNearestTiesToEven, &unused);
return KeyTy(type, val);
}
/// Construct a new storage instance.
static FloatAttributeStorage *construct(AttributeStorageAllocator &allocator,
const KeyTy &key) {
const auto &apint = key.second.bitcastToAPInt();
// Here one word's bitwidth equals to that of uint64_t.
auto elements = ArrayRef<uint64_t>(apint.getRawData(), apint.getNumWords());
auto byteSize =
FloatAttributeStorage::totalSizeToAlloc<uint64_t>(elements.size());
auto rawMem = allocator.allocate(byteSize, alignof(FloatAttributeStorage));
auto result = ::new (rawMem) FloatAttributeStorage(
key.second.getSemantics(), key.first, elements.size());
std::uninitialized_copy(elements.begin(), elements.end(),
result->getTrailingObjects<uint64_t>());
return result;
}
/// Returns an APFloat representing the stored value.
APFloat getValue() const {
auto val = APInt(APFloat::getSizeInBits(semantics),
{getTrailingObjects<uint64_t>(), numObjects});
return APFloat(semantics, val);
}
const llvm::fltSemantics &semantics;
size_t numObjects;
};
/// An attribute representing an integral value.
struct IntegerAttributeStorage final
: public AttributeStorage,
public llvm::TrailingObjects<IntegerAttributeStorage, uint64_t> {
using KeyTy = std::pair<Type, APInt>;
IntegerAttributeStorage(Type type, size_t numObjects)
: AttributeStorage(type), numObjects(numObjects) {
assert((type.isIndex() || type.isa<IntegerType>()) && "invalid type");
}
/// Key equality and hash functions.
bool operator==(const KeyTy &key) const {
return key == KeyTy(getType(), getValue());
}
static unsigned hashKey(const KeyTy &key) {
return llvm::hash_combine(key.first, llvm::hash_value(key.second));
}
/// Construct a new storage instance.
static IntegerAttributeStorage *
construct(AttributeStorageAllocator &allocator, const KeyTy &key) {
Type type;
APInt value;
std::tie(type, value) = key;
auto elements = ArrayRef<uint64_t>(value.getRawData(), value.getNumWords());
auto size =
IntegerAttributeStorage::totalSizeToAlloc<uint64_t>(elements.size());
auto rawMem = allocator.allocate(size, alignof(IntegerAttributeStorage));
auto result = ::new (rawMem) IntegerAttributeStorage(type, elements.size());
std::uninitialized_copy(elements.begin(), elements.end(),
result->getTrailingObjects<uint64_t>());
return result;
}
/// Returns an APInt representing the stored value.
APInt getValue() const {
if (getType().isIndex())
return APInt(64, {getTrailingObjects<uint64_t>(), numObjects});
return APInt(getType().getIntOrFloatBitWidth(),
{getTrailingObjects<uint64_t>(), numObjects});
}
size_t numObjects;
};
// An attribute representing a reference to an integer set.
struct IntegerSetAttributeStorage : public AttributeStorage {
using KeyTy = IntegerSet;
IntegerSetAttributeStorage(IntegerSet value) : value(value) {}
/// Key equality function.
bool operator==(const KeyTy &key) const { return key == value; }
/// Construct a new storage instance.
static IntegerSetAttributeStorage *
construct(AttributeStorageAllocator &allocator, KeyTy key) {
return new (allocator.allocate<IntegerSetAttributeStorage>())
IntegerSetAttributeStorage(key);
}
IntegerSet value;
};
/// Opaque Attribute Storage and Uniquing.
struct OpaqueAttributeStorage : public AttributeStorage {
OpaqueAttributeStorage(Identifier dialectNamespace, StringRef attrData,
Type type)
: AttributeStorage(type), dialectNamespace(dialectNamespace),
attrData(attrData) {}
/// The hash key used for uniquing.
using KeyTy = std::tuple<Identifier, StringRef, Type>;
bool operator==(const KeyTy &key) const {
return key == KeyTy(dialectNamespace, attrData, getType());
}
static OpaqueAttributeStorage *construct(AttributeStorageAllocator &allocator,
const KeyTy &key) {
return new (allocator.allocate<OpaqueAttributeStorage>())
OpaqueAttributeStorage(std::get<0>(key),
allocator.copyInto(std::get<1>(key)),
std::get<2>(key));
}
// The dialect namespace.
Identifier dialectNamespace;
// The parser attribute data for this opaque attribute.
StringRef attrData;
};
/// An attribute representing a string value.
struct StringAttributeStorage : public AttributeStorage {
using KeyTy = std::pair<StringRef, Type>;
StringAttributeStorage(StringRef value, Type type)
: AttributeStorage(type), value(value) {}
/// Key equality function.
bool operator==(const KeyTy &key) const {
return key == KeyTy(value, getType());
}
/// Construct a new storage instance.
static StringAttributeStorage *construct(AttributeStorageAllocator &allocator,
const KeyTy &key) {
return new (allocator.allocate<StringAttributeStorage>())
StringAttributeStorage(allocator.copyInto(key.first), key.second);
}
StringRef value;
};
/// An attribute representing a symbol reference.
struct SymbolRefAttributeStorage final
: public AttributeStorage,
public llvm::TrailingObjects<SymbolRefAttributeStorage,
FlatSymbolRefAttr> {
using KeyTy = std::pair<StringRef, ArrayRef<FlatSymbolRefAttr>>;
SymbolRefAttributeStorage(StringRef value, size_t numNestedRefs)
: value(value), numNestedRefs(numNestedRefs) {}
/// Key equality function.
bool operator==(const KeyTy &key) const {
return key == KeyTy(value, getNestedRefs());
}
/// Construct a new storage instance.
static SymbolRefAttributeStorage *
construct(AttributeStorageAllocator &allocator, const KeyTy &key) {
auto size = SymbolRefAttributeStorage::totalSizeToAlloc<FlatSymbolRefAttr>(
key.second.size());
auto rawMem = allocator.allocate(size, alignof(SymbolRefAttributeStorage));
auto result = ::new (rawMem) SymbolRefAttributeStorage(
allocator.copyInto(key.first), key.second.size());
std::uninitialized_copy(key.second.begin(), key.second.end(),
result->getTrailingObjects<FlatSymbolRefAttr>());
return result;
}
/// Returns the set of nested references.
ArrayRef<FlatSymbolRefAttr> getNestedRefs() const {
return {getTrailingObjects<FlatSymbolRefAttr>(), numNestedRefs};
}
StringRef value;
size_t numNestedRefs;
};
/// An attribute representing a reference to a type.
struct TypeAttributeStorage : public AttributeStorage {
using KeyTy = Type;
TypeAttributeStorage(Type value) : value(value) {}
/// Key equality function.
bool operator==(const KeyTy &key) const { return key == value; }
/// Construct a new storage instance.
static TypeAttributeStorage *construct(AttributeStorageAllocator &allocator,
KeyTy key) {
return new (allocator.allocate<TypeAttributeStorage>())
TypeAttributeStorage(key);
}
Type value;
};
//===----------------------------------------------------------------------===//
// Elements Attributes
//===----------------------------------------------------------------------===//
/// Return the bit width which DenseElementsAttr should use for this type.
inline size_t getDenseElementBitWidth(Type eltType) {
// Align the width for complex to 8 to make storage and interpretation easier.
if (ComplexType comp = eltType.dyn_cast<ComplexType>())
return llvm::alignTo<8>(getDenseElementBitWidth(comp.getElementType())) * 2;
if (eltType.isIndex())
return IndexType::kInternalStorageBitWidth;
return eltType.getIntOrFloatBitWidth();
}
/// An attribute representing a reference to a dense vector or tensor object.
struct DenseElementsAttributeStorage : public AttributeStorage {
public:
DenseElementsAttributeStorage(ShapedType ty, bool isSplat)
: AttributeStorage(ty), isSplat(isSplat) {}
bool isSplat;
};
/// An attribute representing a reference to a dense vector or tensor object.
struct DenseIntOrFPElementsAttributeStorage
: public DenseElementsAttributeStorage {
DenseIntOrFPElementsAttributeStorage(ShapedType ty, ArrayRef<char> data,
bool isSplat = false)
: DenseElementsAttributeStorage(ty, isSplat), data(data) {}
struct KeyTy {
KeyTy(ShapedType type, ArrayRef<char> data, llvm::hash_code hashCode,
bool isSplat = false)
: type(type), data(data), hashCode(hashCode), isSplat(isSplat) {}
/// The type of the dense elements.
ShapedType type;
/// The raw buffer for the data storage.
ArrayRef<char> data;
/// The computed hash code for the storage data.
llvm::hash_code hashCode;
/// A boolean that indicates if this data is a splat or not.
bool isSplat;
};
/// Compare this storage instance with the provided key.
bool operator==(const KeyTy &key) const {
if (key.type != getType())
return false;
// For boolean splats we need to explicitly check that the first bit is the
// same. Boolean values are packed at the bit level, and even though a splat
// is detected the rest of the bits in the first byte may differ from the
// splat value.
if (key.type.getElementType().isInteger(1)) {
if (key.isSplat != isSplat)
return false;
if (isSplat)
return (key.data.front() & 1) == data.front();
}
// Otherwise, we can default to just checking the data.
return key.data == data;
}
/// Construct a key from a shaped type, raw data buffer, and a flag that
/// signals if the data is already known to be a splat. Callers to this
/// function are expected to tag preknown splat values when possible, e.g. one
/// element shapes.
static KeyTy getKey(ShapedType ty, ArrayRef<char> data, bool isKnownSplat) {
// Handle an empty storage instance.
if (data.empty())
return KeyTy(ty, data, 0);
// If the data is already known to be a splat, the key hash value is
// directly the data buffer.
if (isKnownSplat)
return KeyTy(ty, data, llvm::hash_value(data), isKnownSplat);
// Otherwise, we need to check if the data corresponds to a splat or not.
// Handle the simple case of only one element.
size_t numElements = ty.getNumElements();
assert(numElements != 1 && "splat of 1 element should already be detected");
// Handle boolean values directly as they are packed to 1-bit.
if (ty.getElementType().isInteger(1) == 1)
return getKeyForBoolData(ty, data, numElements);
size_t elementWidth = getDenseElementBitWidth(ty.getElementType());
// Non 1-bit dense elements are padded to 8-bits.
size_t storageSize = llvm::divideCeil(elementWidth, CHAR_BIT);
assert(((data.size() / storageSize) == numElements) &&
"data does not hold expected number of elements");
// Create the initial hash value with just the first element.
auto firstElt = data.take_front(storageSize);
auto hashVal = llvm::hash_value(firstElt);
// Check to see if this storage represents a splat. If it doesn't then
// combine the hash for the data starting with the first non splat element.
for (size_t i = storageSize, e = data.size(); i != e; i += storageSize)
if (memcmp(data.data(), &data[i], storageSize))
return KeyTy(ty, data, llvm::hash_combine(hashVal, data.drop_front(i)));
// Otherwise, this is a splat so just return the hash of the first element.
return KeyTy(ty, firstElt, hashVal, /*isSplat=*/true);
}
/// Construct a key with a set of boolean data.
static KeyTy getKeyForBoolData(ShapedType ty, ArrayRef<char> data,
size_t numElements) {
ArrayRef<char> splatData = data;
bool splatValue = splatData.front() & 1;
// Helper functor to generate a KeyTy for a boolean splat value.
auto generateSplatKey = [=] {
return KeyTy(ty, data.take_front(1),
llvm::hash_value(ArrayRef<char>(splatValue ? 1 : 0)),
/*isSplat=*/true);
};
// Handle the case where the potential splat value is 1 and the number of
// elements is non 8-bit aligned.
size_t numOddElements = numElements % CHAR_BIT;
if (splatValue && numOddElements != 0) {
// Check that all bits are set in the last value.
char lastElt = splatData.back();
if (lastElt != llvm::maskTrailingOnes<unsigned char>(numOddElements))
return KeyTy(ty, data, llvm::hash_value(data));
// If this is the only element, the data is known to be a splat.
if (splatData.size() == 1)
return generateSplatKey();
splatData = splatData.drop_back();
}
// Check that the data buffer corresponds to a splat of the proper mask.
char mask = splatValue ? ~0 : 0;
return llvm::all_of(splatData, [mask](char c) { return c == mask; })
? generateSplatKey()
: KeyTy(ty, data, llvm::hash_value(data));
}
/// Hash the key for the storage.
static llvm::hash_code hashKey(const KeyTy &key) {
return llvm::hash_combine(key.type, key.hashCode);
}
/// Construct a new storage instance.
static DenseIntOrFPElementsAttributeStorage *
construct(AttributeStorageAllocator &allocator, KeyTy key) {
// If the data buffer is non-empty, we copy it into the allocator with a
// 64-bit alignment.
ArrayRef<char> copy, data = key.data;
if (!data.empty()) {
char *rawData = reinterpret_cast<char *>(
allocator.allocate(data.size(), alignof(uint64_t)));
std::memcpy(rawData, data.data(), data.size());
// If this is a boolean splat, make sure only the first bit is used.
if (key.isSplat && key.type.getElementType().isInteger(1))
rawData[0] &= 1;
copy = ArrayRef<char>(rawData, data.size());
}
return new (allocator.allocate<DenseIntOrFPElementsAttributeStorage>())
DenseIntOrFPElementsAttributeStorage(key.type, copy, key.isSplat);
}
ArrayRef<char> data;
};
/// An attribute representing a reference to a dense vector or tensor object
/// containing strings.
struct DenseStringElementsAttributeStorage
: public DenseElementsAttributeStorage {
DenseStringElementsAttributeStorage(ShapedType ty, ArrayRef<StringRef> data,
bool isSplat = false)
: DenseElementsAttributeStorage(ty, isSplat), data(data) {}
struct KeyTy {
KeyTy(ShapedType type, ArrayRef<StringRef> data, llvm::hash_code hashCode,
bool isSplat = false)
: type(type), data(data), hashCode(hashCode), isSplat(isSplat) {}
/// The type of the dense elements.
ShapedType type;
/// The raw buffer for the data storage.
ArrayRef<StringRef> data;
/// The computed hash code for the storage data.
llvm::hash_code hashCode;
/// A boolean that indicates if this data is a splat or not.
bool isSplat;
};
/// Compare this storage instance with the provided key.
bool operator==(const KeyTy &key) const {
if (key.type != getType())
return false;
// Otherwise, we can default to just checking the data. StringRefs compare
// by contents.
return key.data == data;
}
/// Construct a key from a shaped type, StringRef data buffer, and a flag that
/// signals if the data is already known to be a splat. Callers to this
/// function are expected to tag preknown splat values when possible, e.g. one
/// element shapes.
static KeyTy getKey(ShapedType ty, ArrayRef<StringRef> data,
bool isKnownSplat) {
// Handle an empty storage instance.
if (data.empty())
return KeyTy(ty, data, 0);
// If the data is already known to be a splat, the key hash value is
// directly the data buffer.
if (isKnownSplat)
return KeyTy(ty, data, llvm::hash_value(data.front()), isKnownSplat);
// Handle the simple case of only one element.
assert(ty.getNumElements() != 1 &&
"splat of 1 element should already be detected");
// Create the initial hash value with just the first element.
const auto &firstElt = data.front();
auto hashVal = llvm::hash_value(firstElt);
// Check to see if this storage represents a splat. If it doesn't then
// combine the hash for the data starting with the first non splat element.
for (size_t i = 1, e = data.size(); i != e; i++)
if (!firstElt.equals(data[i]))
return KeyTy(ty, data, llvm::hash_combine(hashVal, data.drop_front(i)));
// Otherwise, this is a splat so just return the hash of the first element.
return KeyTy(ty, data.take_front(), hashVal, /*isSplat=*/true);
}
/// Hash the key for the storage.
static llvm::hash_code hashKey(const KeyTy &key) {
return llvm::hash_combine(key.type, key.hashCode);
}
/// Construct a new storage instance.
static DenseStringElementsAttributeStorage *
construct(AttributeStorageAllocator &allocator, KeyTy key) {
// If the data buffer is non-empty, we copy it into the allocator with a
// 64-bit alignment.
ArrayRef<StringRef> copy, data = key.data;
if (data.empty()) {
return new (allocator.allocate<DenseStringElementsAttributeStorage>())
DenseStringElementsAttributeStorage(key.type, copy, key.isSplat);
}
int numEntries = key.isSplat ? 1 : data.size();
// Compute the amount data needed to store the ArrayRef and StringRef
// contents.
size_t dataSize = sizeof(StringRef) * numEntries;
for (int i = 0; i < numEntries; i++)
dataSize += data[i].size();
char *rawData = reinterpret_cast<char *>(
allocator.allocate(dataSize, alignof(uint64_t)));
// Setup a mutable array ref of our string refs so that we can update their
// contents.
auto mutableCopy = MutableArrayRef<StringRef>(
reinterpret_cast<StringRef *>(rawData), numEntries);
auto stringData = rawData + numEntries * sizeof(StringRef);
for (int i = 0; i < numEntries; i++) {
memcpy(stringData, data[i].data(), data[i].size());
mutableCopy[i] = StringRef(stringData, data[i].size());
stringData += data[i].size();
}
copy =
ArrayRef<StringRef>(reinterpret_cast<StringRef *>(rawData), numEntries);
return new (allocator.allocate<DenseStringElementsAttributeStorage>())
DenseStringElementsAttributeStorage(key.type, copy, key.isSplat);
}
ArrayRef<StringRef> data;
};
/// An attribute representing a reference to a tensor constant with opaque
/// content.
struct OpaqueElementsAttributeStorage : public AttributeStorage {
using KeyTy = std::tuple<Type, Dialect *, StringRef>;
OpaqueElementsAttributeStorage(Type type, Dialect *dialect, StringRef bytes)
: AttributeStorage(type), dialect(dialect), bytes(bytes) {}
/// Key equality and hash functions.
bool operator==(const KeyTy &key) const {
return key == std::make_tuple(getType(), dialect, bytes);
}
static unsigned hashKey(const KeyTy &key) {
return llvm::hash_combine(std::get<0>(key), std::get<1>(key),
std::get<2>(key));
}
/// Construct a new storage instance.
static OpaqueElementsAttributeStorage *
construct(AttributeStorageAllocator &allocator, KeyTy key) {
// TODO: Provide a way to avoid copying content of large opaque
// tensors This will likely require a new reference attribute kind.
return new (allocator.allocate<OpaqueElementsAttributeStorage>())
OpaqueElementsAttributeStorage(std::get<0>(key), std::get<1>(key),
allocator.copyInto(std::get<2>(key)));
}
Dialect *dialect;
StringRef bytes;
};
/// An attribute representing a reference to a sparse vector or tensor object.
struct SparseElementsAttributeStorage : public AttributeStorage {
using KeyTy = std::tuple<Type, DenseIntElementsAttr, DenseElementsAttr>;
SparseElementsAttributeStorage(Type type, DenseIntElementsAttr indices,
DenseElementsAttr values)
: AttributeStorage(type), indices(indices), values(values) {}
/// Key equality and hash functions.
bool operator==(const KeyTy &key) const {
return key == std::make_tuple(getType(), indices, values);
}
static unsigned hashKey(const KeyTy &key) {
return llvm::hash_combine(std::get<0>(key), std::get<1>(key),
std::get<2>(key));
}
/// Construct a new storage instance.
static SparseElementsAttributeStorage *
construct(AttributeStorageAllocator &allocator, KeyTy key) {
return new (allocator.allocate<SparseElementsAttributeStorage>())
SparseElementsAttributeStorage(std::get<0>(key), std::get<1>(key),
std::get<2>(key));
}
DenseIntElementsAttr indices;
DenseElementsAttr values;
};
} // namespace detail
} // namespace mlir
#endif // ATTRIBUTEDETAIL_H_