AttributeDetail.h 25.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
//===- AttributeDetail.h - MLIR Affine Map details Class --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This holds implementation details of Attribute.
//
//===----------------------------------------------------------------------===//

#ifndef ATTRIBUTEDETAIL_H_
#define ATTRIBUTEDETAIL_H_

#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Identifier.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Support/StorageUniquer.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/Support/TrailingObjects.h"

namespace mlir {
namespace detail {
// An attribute representing a reference to an affine map.
struct AffineMapAttributeStorage : public AttributeStorage {
  using KeyTy = AffineMap;

  AffineMapAttributeStorage(AffineMap value)
      : AttributeStorage(IndexType::get(value.getContext())), value(value) {}

  /// Key equality function.
  bool operator==(const KeyTy &key) const { return key == value; }

  /// Construct a new storage instance.
  static AffineMapAttributeStorage *
  construct(AttributeStorageAllocator &allocator, KeyTy key) {
    return new (allocator.allocate<AffineMapAttributeStorage>())
        AffineMapAttributeStorage(key);
  }

  AffineMap value;
};

/// An attribute representing an array of other attributes.
struct ArrayAttributeStorage : public AttributeStorage {
  using KeyTy = ArrayRef<Attribute>;

  ArrayAttributeStorage(ArrayRef<Attribute> value) : value(value) {}

  /// Key equality function.
  bool operator==(const KeyTy &key) const { return key == value; }

  /// Construct a new storage instance.
  static ArrayAttributeStorage *construct(AttributeStorageAllocator &allocator,
                                          const KeyTy &key) {
    return new (allocator.allocate<ArrayAttributeStorage>())
        ArrayAttributeStorage(allocator.copyInto(key));
  }

  ArrayRef<Attribute> value;
};

/// An attribute representing a dictionary of sorted named attributes.
struct DictionaryAttributeStorage final
    : public AttributeStorage,
      private llvm::TrailingObjects<DictionaryAttributeStorage,
                                    NamedAttribute> {
  using KeyTy = ArrayRef<NamedAttribute>;

  /// Given a list of NamedAttribute's, canonicalize the list (sorting
  /// by name) and return the unique'd result.
  static DictionaryAttributeStorage *get(ArrayRef<NamedAttribute> attrs);

  /// Key equality function.
  bool operator==(const KeyTy &key) const { return key == getElements(); }

  /// Construct a new storage instance.
  static DictionaryAttributeStorage *
  construct(AttributeStorageAllocator &allocator, const KeyTy &key) {
    auto size = DictionaryAttributeStorage::totalSizeToAlloc<NamedAttribute>(
        key.size());
    auto rawMem = allocator.allocate(size, alignof(NamedAttribute));

    // Initialize the storage and trailing attribute list.
    auto result = ::new (rawMem) DictionaryAttributeStorage(key.size());
    std::uninitialized_copy(key.begin(), key.end(),
                            result->getTrailingObjects<NamedAttribute>());
    return result;
  }

  /// Return the elements of this dictionary attribute.
  ArrayRef<NamedAttribute> getElements() const {
    return {getTrailingObjects<NamedAttribute>(), numElements};
  }

private:
  friend class llvm::TrailingObjects<DictionaryAttributeStorage,
                                     NamedAttribute>;

  // This is used by the llvm::TrailingObjects base class.
  size_t numTrailingObjects(OverloadToken<NamedAttribute>) const {
    return numElements;
  }
  DictionaryAttributeStorage(unsigned numElements) : numElements(numElements) {}

  /// This is the number of attributes.
  const unsigned numElements;
};

/// An attribute representing a floating point value.
struct FloatAttributeStorage final
    : public AttributeStorage,
      public llvm::TrailingObjects<FloatAttributeStorage, uint64_t> {
  using KeyTy = std::pair<Type, APFloat>;

  FloatAttributeStorage(const llvm::fltSemantics &semantics, Type type,
                        size_t numObjects)
      : AttributeStorage(type), semantics(semantics), numObjects(numObjects) {}

  /// Key equality and hash functions.
  bool operator==(const KeyTy &key) const {
    return key.first == getType() && key.second.bitwiseIsEqual(getValue());
  }
  static unsigned hashKey(const KeyTy &key) {
    return llvm::hash_combine(key.first, llvm::hash_value(key.second));
  }

  /// Construct a key with a type and double.
  static KeyTy getKey(Type type, double value) {
    if (type.isF64())
      return KeyTy(type, APFloat(value));

    // This handles, e.g., F16 because there is no APFloat constructor for it.
    bool unused;
    APFloat val(value);
    val.convert(type.cast<FloatType>().getFloatSemantics(),
                APFloat::rmNearestTiesToEven, &unused);
    return KeyTy(type, val);
  }

  /// Construct a new storage instance.
  static FloatAttributeStorage *construct(AttributeStorageAllocator &allocator,
                                          const KeyTy &key) {
    const auto &apint = key.second.bitcastToAPInt();

    // Here one word's bitwidth equals to that of uint64_t.
    auto elements = ArrayRef<uint64_t>(apint.getRawData(), apint.getNumWords());

    auto byteSize =
        FloatAttributeStorage::totalSizeToAlloc<uint64_t>(elements.size());
    auto rawMem = allocator.allocate(byteSize, alignof(FloatAttributeStorage));
    auto result = ::new (rawMem) FloatAttributeStorage(
        key.second.getSemantics(), key.first, elements.size());
    std::uninitialized_copy(elements.begin(), elements.end(),
                            result->getTrailingObjects<uint64_t>());
    return result;
  }

  /// Returns an APFloat representing the stored value.
  APFloat getValue() const {
    auto val = APInt(APFloat::getSizeInBits(semantics),
                     {getTrailingObjects<uint64_t>(), numObjects});
    return APFloat(semantics, val);
  }

  const llvm::fltSemantics &semantics;
  size_t numObjects;
};

/// An attribute representing an integral value.
struct IntegerAttributeStorage final
    : public AttributeStorage,
      public llvm::TrailingObjects<IntegerAttributeStorage, uint64_t> {
  using KeyTy = std::pair<Type, APInt>;

  IntegerAttributeStorage(Type type, size_t numObjects)
      : AttributeStorage(type), numObjects(numObjects) {
    assert((type.isIndex() || type.isa<IntegerType>()) && "invalid type");
  }

  /// Key equality and hash functions.
  bool operator==(const KeyTy &key) const {
    return key == KeyTy(getType(), getValue());
  }
  static unsigned hashKey(const KeyTy &key) {
    return llvm::hash_combine(key.first, llvm::hash_value(key.second));
  }

  /// Construct a new storage instance.
  static IntegerAttributeStorage *
  construct(AttributeStorageAllocator &allocator, const KeyTy &key) {
    Type type;
    APInt value;
    std::tie(type, value) = key;

    auto elements = ArrayRef<uint64_t>(value.getRawData(), value.getNumWords());
    auto size =
        IntegerAttributeStorage::totalSizeToAlloc<uint64_t>(elements.size());
    auto rawMem = allocator.allocate(size, alignof(IntegerAttributeStorage));
    auto result = ::new (rawMem) IntegerAttributeStorage(type, elements.size());
    std::uninitialized_copy(elements.begin(), elements.end(),
                            result->getTrailingObjects<uint64_t>());
    return result;
  }

  /// Returns an APInt representing the stored value.
  APInt getValue() const {
    if (getType().isIndex())
      return APInt(64, {getTrailingObjects<uint64_t>(), numObjects});
    return APInt(getType().getIntOrFloatBitWidth(),
                 {getTrailingObjects<uint64_t>(), numObjects});
  }

  size_t numObjects;
};

// An attribute representing a reference to an integer set.
struct IntegerSetAttributeStorage : public AttributeStorage {
  using KeyTy = IntegerSet;

  IntegerSetAttributeStorage(IntegerSet value) : value(value) {}

  /// Key equality function.
  bool operator==(const KeyTy &key) const { return key == value; }

  /// Construct a new storage instance.
  static IntegerSetAttributeStorage *
  construct(AttributeStorageAllocator &allocator, KeyTy key) {
    return new (allocator.allocate<IntegerSetAttributeStorage>())
        IntegerSetAttributeStorage(key);
  }

  IntegerSet value;
};

/// Opaque Attribute Storage and Uniquing.
struct OpaqueAttributeStorage : public AttributeStorage {
  OpaqueAttributeStorage(Identifier dialectNamespace, StringRef attrData,
                         Type type)
      : AttributeStorage(type), dialectNamespace(dialectNamespace),
        attrData(attrData) {}

  /// The hash key used for uniquing.
  using KeyTy = std::tuple<Identifier, StringRef, Type>;
  bool operator==(const KeyTy &key) const {
    return key == KeyTy(dialectNamespace, attrData, getType());
  }

  static OpaqueAttributeStorage *construct(AttributeStorageAllocator &allocator,
                                           const KeyTy &key) {
    return new (allocator.allocate<OpaqueAttributeStorage>())
        OpaqueAttributeStorage(std::get<0>(key),
                               allocator.copyInto(std::get<1>(key)),
                               std::get<2>(key));
  }

  // The dialect namespace.
  Identifier dialectNamespace;

  // The parser attribute data for this opaque attribute.
  StringRef attrData;
};

/// An attribute representing a string value.
struct StringAttributeStorage : public AttributeStorage {
  using KeyTy = std::pair<StringRef, Type>;

  StringAttributeStorage(StringRef value, Type type)
      : AttributeStorage(type), value(value) {}

  /// Key equality function.
  bool operator==(const KeyTy &key) const {
    return key == KeyTy(value, getType());
  }

  /// Construct a new storage instance.
  static StringAttributeStorage *construct(AttributeStorageAllocator &allocator,
                                           const KeyTy &key) {
    return new (allocator.allocate<StringAttributeStorage>())
        StringAttributeStorage(allocator.copyInto(key.first), key.second);
  }

  StringRef value;
};

/// An attribute representing a symbol reference.
struct SymbolRefAttributeStorage final
    : public AttributeStorage,
      public llvm::TrailingObjects<SymbolRefAttributeStorage,
                                   FlatSymbolRefAttr> {
  using KeyTy = std::pair<StringRef, ArrayRef<FlatSymbolRefAttr>>;

  SymbolRefAttributeStorage(StringRef value, size_t numNestedRefs)
      : value(value), numNestedRefs(numNestedRefs) {}

  /// Key equality function.
  bool operator==(const KeyTy &key) const {
    return key == KeyTy(value, getNestedRefs());
  }

  /// Construct a new storage instance.
  static SymbolRefAttributeStorage *
  construct(AttributeStorageAllocator &allocator, const KeyTy &key) {
    auto size = SymbolRefAttributeStorage::totalSizeToAlloc<FlatSymbolRefAttr>(
        key.second.size());
    auto rawMem = allocator.allocate(size, alignof(SymbolRefAttributeStorage));
    auto result = ::new (rawMem) SymbolRefAttributeStorage(
        allocator.copyInto(key.first), key.second.size());
    std::uninitialized_copy(key.second.begin(), key.second.end(),
                            result->getTrailingObjects<FlatSymbolRefAttr>());
    return result;
  }

  /// Returns the set of nested references.
  ArrayRef<FlatSymbolRefAttr> getNestedRefs() const {
    return {getTrailingObjects<FlatSymbolRefAttr>(), numNestedRefs};
  }

  StringRef value;
  size_t numNestedRefs;
};

/// An attribute representing a reference to a type.
struct TypeAttributeStorage : public AttributeStorage {
  using KeyTy = Type;

  TypeAttributeStorage(Type value) : value(value) {}

  /// Key equality function.
  bool operator==(const KeyTy &key) const { return key == value; }

  /// Construct a new storage instance.
  static TypeAttributeStorage *construct(AttributeStorageAllocator &allocator,
                                         KeyTy key) {
    return new (allocator.allocate<TypeAttributeStorage>())
        TypeAttributeStorage(key);
  }

  Type value;
};

//===----------------------------------------------------------------------===//
// Elements Attributes
//===----------------------------------------------------------------------===//

/// Return the bit width which DenseElementsAttr should use for this type.
inline size_t getDenseElementBitWidth(Type eltType) {
  // Align the width for complex to 8 to make storage and interpretation easier.
  if (ComplexType comp = eltType.dyn_cast<ComplexType>())
    return llvm::alignTo<8>(getDenseElementBitWidth(comp.getElementType())) * 2;
  if (eltType.isIndex())
    return IndexType::kInternalStorageBitWidth;
  return eltType.getIntOrFloatBitWidth();
}

/// An attribute representing a reference to a dense vector or tensor object.
struct DenseElementsAttributeStorage : public AttributeStorage {
public:
  DenseElementsAttributeStorage(ShapedType ty, bool isSplat)
      : AttributeStorage(ty), isSplat(isSplat) {}

  bool isSplat;
};

/// An attribute representing a reference to a dense vector or tensor object.
struct DenseIntOrFPElementsAttributeStorage
    : public DenseElementsAttributeStorage {
  DenseIntOrFPElementsAttributeStorage(ShapedType ty, ArrayRef<char> data,
                                       bool isSplat = false)
      : DenseElementsAttributeStorage(ty, isSplat), data(data) {}

  struct KeyTy {
    KeyTy(ShapedType type, ArrayRef<char> data, llvm::hash_code hashCode,
          bool isSplat = false)
        : type(type), data(data), hashCode(hashCode), isSplat(isSplat) {}

    /// The type of the dense elements.
    ShapedType type;

    /// The raw buffer for the data storage.
    ArrayRef<char> data;

    /// The computed hash code for the storage data.
    llvm::hash_code hashCode;

    /// A boolean that indicates if this data is a splat or not.
    bool isSplat;
  };

  /// Compare this storage instance with the provided key.
  bool operator==(const KeyTy &key) const {
    if (key.type != getType())
      return false;

    // For boolean splats we need to explicitly check that the first bit is the
    // same. Boolean values are packed at the bit level, and even though a splat
    // is detected the rest of the bits in the first byte may differ from the
    // splat value.
    if (key.type.getElementType().isInteger(1)) {
      if (key.isSplat != isSplat)
        return false;
      if (isSplat)
        return (key.data.front() & 1) == data.front();
    }

    // Otherwise, we can default to just checking the data.
    return key.data == data;
  }

  /// Construct a key from a shaped type, raw data buffer, and a flag that
  /// signals if the data is already known to be a splat. Callers to this
  /// function are expected to tag preknown splat values when possible, e.g. one
  /// element shapes.
  static KeyTy getKey(ShapedType ty, ArrayRef<char> data, bool isKnownSplat) {
    // Handle an empty storage instance.
    if (data.empty())
      return KeyTy(ty, data, 0);

    // If the data is already known to be a splat, the key hash value is
    // directly the data buffer.
    if (isKnownSplat)
      return KeyTy(ty, data, llvm::hash_value(data), isKnownSplat);

    // Otherwise, we need to check if the data corresponds to a splat or not.

    // Handle the simple case of only one element.
    size_t numElements = ty.getNumElements();
    assert(numElements != 1 && "splat of 1 element should already be detected");

    // Handle boolean values directly as they are packed to 1-bit.
    if (ty.getElementType().isInteger(1) == 1)
      return getKeyForBoolData(ty, data, numElements);

    size_t elementWidth = getDenseElementBitWidth(ty.getElementType());
    // Non 1-bit dense elements are padded to 8-bits.
    size_t storageSize = llvm::divideCeil(elementWidth, CHAR_BIT);
    assert(((data.size() / storageSize) == numElements) &&
           "data does not hold expected number of elements");

    // Create the initial hash value with just the first element.
    auto firstElt = data.take_front(storageSize);
    auto hashVal = llvm::hash_value(firstElt);

    // Check to see if this storage represents a splat. If it doesn't then
    // combine the hash for the data starting with the first non splat element.
    for (size_t i = storageSize, e = data.size(); i != e; i += storageSize)
      if (memcmp(data.data(), &data[i], storageSize))
        return KeyTy(ty, data, llvm::hash_combine(hashVal, data.drop_front(i)));

    // Otherwise, this is a splat so just return the hash of the first element.
    return KeyTy(ty, firstElt, hashVal, /*isSplat=*/true);
  }

  /// Construct a key with a set of boolean data.
  static KeyTy getKeyForBoolData(ShapedType ty, ArrayRef<char> data,
                                 size_t numElements) {
    ArrayRef<char> splatData = data;
    bool splatValue = splatData.front() & 1;

    // Helper functor to generate a KeyTy for a boolean splat value.
    auto generateSplatKey = [=] {
      return KeyTy(ty, data.take_front(1),
                   llvm::hash_value(ArrayRef<char>(splatValue ? 1 : 0)),
                   /*isSplat=*/true);
    };

    // Handle the case where the potential splat value is 1 and the number of
    // elements is non 8-bit aligned.
    size_t numOddElements = numElements % CHAR_BIT;
    if (splatValue && numOddElements != 0) {
      // Check that all bits are set in the last value.
      char lastElt = splatData.back();
      if (lastElt != llvm::maskTrailingOnes<unsigned char>(numOddElements))
        return KeyTy(ty, data, llvm::hash_value(data));

      // If this is the only element, the data is known to be a splat.
      if (splatData.size() == 1)
        return generateSplatKey();
      splatData = splatData.drop_back();
    }

    // Check that the data buffer corresponds to a splat of the proper mask.
    char mask = splatValue ? ~0 : 0;
    return llvm::all_of(splatData, [mask](char c) { return c == mask; })
               ? generateSplatKey()
               : KeyTy(ty, data, llvm::hash_value(data));
  }

  /// Hash the key for the storage.
  static llvm::hash_code hashKey(const KeyTy &key) {
    return llvm::hash_combine(key.type, key.hashCode);
  }

  /// Construct a new storage instance.
  static DenseIntOrFPElementsAttributeStorage *
  construct(AttributeStorageAllocator &allocator, KeyTy key) {
    // If the data buffer is non-empty, we copy it into the allocator with a
    // 64-bit alignment.
    ArrayRef<char> copy, data = key.data;
    if (!data.empty()) {
      char *rawData = reinterpret_cast<char *>(
          allocator.allocate(data.size(), alignof(uint64_t)));
      std::memcpy(rawData, data.data(), data.size());

      // If this is a boolean splat, make sure only the first bit is used.
      if (key.isSplat && key.type.getElementType().isInteger(1))
        rawData[0] &= 1;
      copy = ArrayRef<char>(rawData, data.size());
    }

    return new (allocator.allocate<DenseIntOrFPElementsAttributeStorage>())
        DenseIntOrFPElementsAttributeStorage(key.type, copy, key.isSplat);
  }

  ArrayRef<char> data;
};

/// An attribute representing a reference to a dense vector or tensor object
/// containing strings.
struct DenseStringElementsAttributeStorage
    : public DenseElementsAttributeStorage {
  DenseStringElementsAttributeStorage(ShapedType ty, ArrayRef<StringRef> data,
                                      bool isSplat = false)
      : DenseElementsAttributeStorage(ty, isSplat), data(data) {}

  struct KeyTy {
    KeyTy(ShapedType type, ArrayRef<StringRef> data, llvm::hash_code hashCode,
          bool isSplat = false)
        : type(type), data(data), hashCode(hashCode), isSplat(isSplat) {}

    /// The type of the dense elements.
    ShapedType type;

    /// The raw buffer for the data storage.
    ArrayRef<StringRef> data;

    /// The computed hash code for the storage data.
    llvm::hash_code hashCode;

    /// A boolean that indicates if this data is a splat or not.
    bool isSplat;
  };

  /// Compare this storage instance with the provided key.
  bool operator==(const KeyTy &key) const {
    if (key.type != getType())
      return false;

    // Otherwise, we can default to just checking the data. StringRefs compare
    // by contents.
    return key.data == data;
  }

  /// Construct a key from a shaped type, StringRef data buffer, and a flag that
  /// signals if the data is already known to be a splat. Callers to this
  /// function are expected to tag preknown splat values when possible, e.g. one
  /// element shapes.
  static KeyTy getKey(ShapedType ty, ArrayRef<StringRef> data,
                      bool isKnownSplat) {
    // Handle an empty storage instance.
    if (data.empty())
      return KeyTy(ty, data, 0);

    // If the data is already known to be a splat, the key hash value is
    // directly the data buffer.
    if (isKnownSplat)
      return KeyTy(ty, data, llvm::hash_value(data.front()), isKnownSplat);

    // Handle the simple case of only one element.
    assert(ty.getNumElements() != 1 &&
           "splat of 1 element should already be detected");

    // Create the initial hash value with just the first element.
    const auto &firstElt = data.front();
    auto hashVal = llvm::hash_value(firstElt);

    // Check to see if this storage represents a splat. If it doesn't then
    // combine the hash for the data starting with the first non splat element.
    for (size_t i = 1, e = data.size(); i != e; i++)
      if (!firstElt.equals(data[i]))
        return KeyTy(ty, data, llvm::hash_combine(hashVal, data.drop_front(i)));

    // Otherwise, this is a splat so just return the hash of the first element.
    return KeyTy(ty, data.take_front(), hashVal, /*isSplat=*/true);
  }

  /// Hash the key for the storage.
  static llvm::hash_code hashKey(const KeyTy &key) {
    return llvm::hash_combine(key.type, key.hashCode);
  }

  /// Construct a new storage instance.
  static DenseStringElementsAttributeStorage *
  construct(AttributeStorageAllocator &allocator, KeyTy key) {
    // If the data buffer is non-empty, we copy it into the allocator with a
    // 64-bit alignment.
    ArrayRef<StringRef> copy, data = key.data;
    if (data.empty()) {
      return new (allocator.allocate<DenseStringElementsAttributeStorage>())
          DenseStringElementsAttributeStorage(key.type, copy, key.isSplat);
    }

    int numEntries = key.isSplat ? 1 : data.size();

    // Compute the amount data needed to store the ArrayRef and StringRef
    // contents.
    size_t dataSize = sizeof(StringRef) * numEntries;
    for (int i = 0; i < numEntries; i++)
      dataSize += data[i].size();

    char *rawData = reinterpret_cast<char *>(
        allocator.allocate(dataSize, alignof(uint64_t)));

    // Setup a mutable array ref of our string refs so that we can update their
    // contents.
    auto mutableCopy = MutableArrayRef<StringRef>(
        reinterpret_cast<StringRef *>(rawData), numEntries);
    auto stringData = rawData + numEntries * sizeof(StringRef);

    for (int i = 0; i < numEntries; i++) {
      memcpy(stringData, data[i].data(), data[i].size());
      mutableCopy[i] = StringRef(stringData, data[i].size());
      stringData += data[i].size();
    }

    copy =
        ArrayRef<StringRef>(reinterpret_cast<StringRef *>(rawData), numEntries);

    return new (allocator.allocate<DenseStringElementsAttributeStorage>())
        DenseStringElementsAttributeStorage(key.type, copy, key.isSplat);
  }

  ArrayRef<StringRef> data;
};

/// An attribute representing a reference to a tensor constant with opaque
/// content.
struct OpaqueElementsAttributeStorage : public AttributeStorage {
  using KeyTy = std::tuple<Type, Dialect *, StringRef>;

  OpaqueElementsAttributeStorage(Type type, Dialect *dialect, StringRef bytes)
      : AttributeStorage(type), dialect(dialect), bytes(bytes) {}

  /// Key equality and hash functions.
  bool operator==(const KeyTy &key) const {
    return key == std::make_tuple(getType(), dialect, bytes);
  }
  static unsigned hashKey(const KeyTy &key) {
    return llvm::hash_combine(std::get<0>(key), std::get<1>(key),
                              std::get<2>(key));
  }

  /// Construct a new storage instance.
  static OpaqueElementsAttributeStorage *
  construct(AttributeStorageAllocator &allocator, KeyTy key) {
    // TODO: Provide a way to avoid copying content of large opaque
    // tensors This will likely require a new reference attribute kind.
    return new (allocator.allocate<OpaqueElementsAttributeStorage>())
        OpaqueElementsAttributeStorage(std::get<0>(key), std::get<1>(key),
                                       allocator.copyInto(std::get<2>(key)));
  }

  Dialect *dialect;
  StringRef bytes;
};

/// An attribute representing a reference to a sparse vector or tensor object.
struct SparseElementsAttributeStorage : public AttributeStorage {
  using KeyTy = std::tuple<Type, DenseIntElementsAttr, DenseElementsAttr>;

  SparseElementsAttributeStorage(Type type, DenseIntElementsAttr indices,
                                 DenseElementsAttr values)
      : AttributeStorage(type), indices(indices), values(values) {}

  /// Key equality and hash functions.
  bool operator==(const KeyTy &key) const {
    return key == std::make_tuple(getType(), indices, values);
  }
  static unsigned hashKey(const KeyTy &key) {
    return llvm::hash_combine(std::get<0>(key), std::get<1>(key),
                              std::get<2>(key));
  }

  /// Construct a new storage instance.
  static SparseElementsAttributeStorage *
  construct(AttributeStorageAllocator &allocator, KeyTy key) {
    return new (allocator.allocate<SparseElementsAttributeStorage>())
        SparseElementsAttributeStorage(std::get<0>(key), std::get<1>(key),
                                       std::get<2>(key));
  }

  DenseIntElementsAttr indices;
  DenseElementsAttr values;
};
} // namespace detail
} // namespace mlir

#endif // ATTRIBUTEDETAIL_H_