LLVMDialect.cpp 74.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
//===- LLVMDialect.cpp - LLVM IR Ops and Dialect registration -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the types and operation details for the LLVM IR dialect in
// MLIR, and the LLVM IR dialect.  It also registers the dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/FunctionImplementation.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/StandardTypes.h"

#include "llvm/ADT/StringSwitch.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/SourceMgr.h"

using namespace mlir;
using namespace mlir::LLVM;

static constexpr const char kVolatileAttrName[] = "volatile_";
static constexpr const char kNonTemporalAttrName[] = "nontemporal";

#include "mlir/Dialect/LLVMIR/LLVMOpsEnums.cpp.inc"

//===----------------------------------------------------------------------===//
// Printing/parsing for LLVM::CmpOp.
//===----------------------------------------------------------------------===//
static void printICmpOp(OpAsmPrinter &p, ICmpOp &op) {
  p << op.getOperationName() << " \"" << stringifyICmpPredicate(op.predicate())
    << "\" " << op.getOperand(0) << ", " << op.getOperand(1);
  p.printOptionalAttrDict(op.getAttrs(), {"predicate"});
  p << " : " << op.lhs().getType();
}

static void printFCmpOp(OpAsmPrinter &p, FCmpOp &op) {
  p << op.getOperationName() << " \"" << stringifyFCmpPredicate(op.predicate())
    << "\" " << op.getOperand(0) << ", " << op.getOperand(1);
  p.printOptionalAttrDict(op.getAttrs(), {"predicate"});
  p << " : " << op.lhs().getType();
}

// <operation> ::= `llvm.icmp` string-literal ssa-use `,` ssa-use
//                 attribute-dict? `:` type
// <operation> ::= `llvm.fcmp` string-literal ssa-use `,` ssa-use
//                 attribute-dict? `:` type
template <typename CmpPredicateType>
static ParseResult parseCmpOp(OpAsmParser &parser, OperationState &result) {
  Builder &builder = parser.getBuilder();

  StringAttr predicateAttr;
  OpAsmParser::OperandType lhs, rhs;
  Type type;
  llvm::SMLoc predicateLoc, trailingTypeLoc;
  if (parser.getCurrentLocation(&predicateLoc) ||
      parser.parseAttribute(predicateAttr, "predicate", result.attributes) ||
      parser.parseOperand(lhs) || parser.parseComma() ||
      parser.parseOperand(rhs) ||
      parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() ||
      parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(type) ||
      parser.resolveOperand(lhs, type, result.operands) ||
      parser.resolveOperand(rhs, type, result.operands))
    return failure();

  // Replace the string attribute `predicate` with an integer attribute.
  int64_t predicateValue = 0;
  if (std::is_same<CmpPredicateType, ICmpPredicate>()) {
    Optional<ICmpPredicate> predicate =
        symbolizeICmpPredicate(predicateAttr.getValue());
    if (!predicate)
      return parser.emitError(predicateLoc)
             << "'" << predicateAttr.getValue()
             << "' is an incorrect value of the 'predicate' attribute";
    predicateValue = static_cast<int64_t>(predicate.getValue());
  } else {
    Optional<FCmpPredicate> predicate =
        symbolizeFCmpPredicate(predicateAttr.getValue());
    if (!predicate)
      return parser.emitError(predicateLoc)
             << "'" << predicateAttr.getValue()
             << "' is an incorrect value of the 'predicate' attribute";
    predicateValue = static_cast<int64_t>(predicate.getValue());
  }

  result.attributes.set("predicate",
                        parser.getBuilder().getI64IntegerAttr(predicateValue));

  // The result type is either i1 or a vector type <? x i1> if the inputs are
  // vectors.
  auto resultType = LLVMType::getInt1Ty(builder.getContext());
  auto argType = type.dyn_cast<LLVM::LLVMType>();
  if (!argType)
    return parser.emitError(trailingTypeLoc, "expected LLVM IR dialect type");
  if (argType.isVectorTy())
    resultType =
        LLVMType::getVectorTy(resultType, argType.getVectorNumElements());

  result.addTypes({resultType});
  return success();
}

//===----------------------------------------------------------------------===//
// Printing/parsing for LLVM::AllocaOp.
//===----------------------------------------------------------------------===//

static void printAllocaOp(OpAsmPrinter &p, AllocaOp &op) {
  auto elemTy = op.getType().cast<LLVM::LLVMType>().getPointerElementTy();

  auto funcTy = FunctionType::get({op.arraySize().getType()}, {op.getType()},
                                  op.getContext());

  p << op.getOperationName() << ' ' << op.arraySize() << " x " << elemTy;
  if (op.alignment().hasValue() && *op.alignment() != 0)
    p.printOptionalAttrDict(op.getAttrs());
  else
    p.printOptionalAttrDict(op.getAttrs(), {"alignment"});
  p << " : " << funcTy;
}

// <operation> ::= `llvm.alloca` ssa-use `x` type attribute-dict?
//                 `:` type `,` type
static ParseResult parseAllocaOp(OpAsmParser &parser, OperationState &result) {
  OpAsmParser::OperandType arraySize;
  Type type, elemType;
  llvm::SMLoc trailingTypeLoc;
  if (parser.parseOperand(arraySize) || parser.parseKeyword("x") ||
      parser.parseType(elemType) ||
      parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() ||
      parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(type))
    return failure();

  // Extract the result type from the trailing function type.
  auto funcType = type.dyn_cast<FunctionType>();
  if (!funcType || funcType.getNumInputs() != 1 ||
      funcType.getNumResults() != 1)
    return parser.emitError(
        trailingTypeLoc,
        "expected trailing function type with one argument and one result");

  if (parser.resolveOperand(arraySize, funcType.getInput(0), result.operands))
    return failure();

  result.addTypes({funcType.getResult(0)});
  return success();
}

//===----------------------------------------------------------------------===//
// LLVM::BrOp
//===----------------------------------------------------------------------===//

Optional<MutableOperandRange>
BrOp::getMutableSuccessorOperands(unsigned index) {
  assert(index == 0 && "invalid successor index");
  return destOperandsMutable();
}

//===----------------------------------------------------------------------===//
// LLVM::CondBrOp
//===----------------------------------------------------------------------===//

Optional<MutableOperandRange>
CondBrOp::getMutableSuccessorOperands(unsigned index) {
  assert(index < getNumSuccessors() && "invalid successor index");
  return index == 0 ? trueDestOperandsMutable() : falseDestOperandsMutable();
}

//===----------------------------------------------------------------------===//
// Builder, printer and parser for for LLVM::LoadOp.
//===----------------------------------------------------------------------===//

void LoadOp::build(OpBuilder &builder, OperationState &result, Type t,
                   Value addr, unsigned alignment, bool isVolatile,
                   bool isNonTemporal) {
  result.addOperands(addr);
  result.addTypes(t);
  if (isVolatile)
    result.addAttribute(kVolatileAttrName, builder.getUnitAttr());
  if (isNonTemporal)
    result.addAttribute(kNonTemporalAttrName, builder.getUnitAttr());
  if (alignment != 0)
    result.addAttribute("alignment", builder.getI64IntegerAttr(alignment));
}

static void printLoadOp(OpAsmPrinter &p, LoadOp &op) {
  p << op.getOperationName() << ' ';
  if (op.volatile_())
    p << "volatile ";
  p << op.addr();
  p.printOptionalAttrDict(op.getAttrs(), {kVolatileAttrName});
  p << " : " << op.addr().getType();
}

// Extract the pointee type from the LLVM pointer type wrapped in MLIR.  Return
// the resulting type wrapped in MLIR, or nullptr on error.
static Type getLoadStoreElementType(OpAsmParser &parser, Type type,
                                    llvm::SMLoc trailingTypeLoc) {
  auto llvmTy = type.dyn_cast<LLVM::LLVMType>();
  if (!llvmTy)
    return parser.emitError(trailingTypeLoc, "expected LLVM IR dialect type"),
           nullptr;
  if (!llvmTy.isPointerTy())
    return parser.emitError(trailingTypeLoc, "expected LLVM pointer type"),
           nullptr;
  return llvmTy.getPointerElementTy();
}

// <operation> ::= `llvm.load` `volatile` ssa-use attribute-dict? `:` type
static ParseResult parseLoadOp(OpAsmParser &parser, OperationState &result) {
  OpAsmParser::OperandType addr;
  Type type;
  llvm::SMLoc trailingTypeLoc;

  if (succeeded(parser.parseOptionalKeyword("volatile")))
    result.addAttribute(kVolatileAttrName, parser.getBuilder().getUnitAttr());

  if (parser.parseOperand(addr) ||
      parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() ||
      parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(type) ||
      parser.resolveOperand(addr, type, result.operands))
    return failure();

  Type elemTy = getLoadStoreElementType(parser, type, trailingTypeLoc);

  result.addTypes(elemTy);
  return success();
}

//===----------------------------------------------------------------------===//
// Builder, printer and parser for LLVM::StoreOp.
//===----------------------------------------------------------------------===//

void StoreOp::build(OpBuilder &builder, OperationState &result, Value value,
                    Value addr, unsigned alignment, bool isVolatile,
                    bool isNonTemporal) {
  result.addOperands({value, addr});
  result.addTypes({});
  if (isVolatile)
    result.addAttribute(kVolatileAttrName, builder.getUnitAttr());
  if (isNonTemporal)
    result.addAttribute(kNonTemporalAttrName, builder.getUnitAttr());
  if (alignment != 0)
    result.addAttribute("alignment", builder.getI64IntegerAttr(alignment));
}

static void printStoreOp(OpAsmPrinter &p, StoreOp &op) {
  p << op.getOperationName() << ' ';
  if (op.volatile_())
    p << "volatile ";
  p << op.value() << ", " << op.addr();
  p.printOptionalAttrDict(op.getAttrs(), {kVolatileAttrName});
  p << " : " << op.addr().getType();
}

// <operation> ::= `llvm.store` `volatile` ssa-use `,` ssa-use
//                 attribute-dict? `:` type
static ParseResult parseStoreOp(OpAsmParser &parser, OperationState &result) {
  OpAsmParser::OperandType addr, value;
  Type type;
  llvm::SMLoc trailingTypeLoc;

  if (succeeded(parser.parseOptionalKeyword("volatile")))
    result.addAttribute(kVolatileAttrName, parser.getBuilder().getUnitAttr());

  if (parser.parseOperand(value) || parser.parseComma() ||
      parser.parseOperand(addr) ||
      parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() ||
      parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(type))
    return failure();

  Type elemTy = getLoadStoreElementType(parser, type, trailingTypeLoc);
  if (!elemTy)
    return failure();

  if (parser.resolveOperand(value, elemTy, result.operands) ||
      parser.resolveOperand(addr, type, result.operands))
    return failure();

  return success();
}

///===---------------------------------------------------------------------===//
/// LLVM::InvokeOp
///===---------------------------------------------------------------------===//

Optional<MutableOperandRange>
InvokeOp::getMutableSuccessorOperands(unsigned index) {
  assert(index < getNumSuccessors() && "invalid successor index");
  return index == 0 ? normalDestOperandsMutable() : unwindDestOperandsMutable();
}

static LogicalResult verify(InvokeOp op) {
  if (op.getNumResults() > 1)
    return op.emitOpError("must have 0 or 1 result");

  Block *unwindDest = op.unwindDest();
  if (unwindDest->empty())
    return op.emitError(
        "must have at least one operation in unwind destination");

  // In unwind destination, first operation must be LandingpadOp
  if (!isa<LandingpadOp>(unwindDest->front()))
    return op.emitError("first operation in unwind destination should be a "
                        "llvm.landingpad operation");

  return success();
}

static void printInvokeOp(OpAsmPrinter &p, InvokeOp op) {
  auto callee = op.callee();
  bool isDirect = callee.hasValue();

  p << op.getOperationName() << ' ';

  // Either function name or pointer
  if (isDirect)
    p.printSymbolName(callee.getValue());
  else
    p << op.getOperand(0);

  p << '(' << op.getOperands().drop_front(isDirect ? 0 : 1) << ')';
  p << " to ";
  p.printSuccessorAndUseList(op.normalDest(), op.normalDestOperands());
  p << " unwind ";
  p.printSuccessorAndUseList(op.unwindDest(), op.unwindDestOperands());

  p.printOptionalAttrDict(op.getAttrs(),
                          {InvokeOp::getOperandSegmentSizeAttr(), "callee"});
  p << " : ";
  p.printFunctionalType(
      llvm::drop_begin(op.getOperandTypes(), isDirect ? 0 : 1),
      op.getResultTypes());
}

/// <operation> ::= `llvm.invoke` (function-id | ssa-use) `(` ssa-use-list `)`
///                  `to` bb-id (`[` ssa-use-and-type-list `]`)?
///                  `unwind` bb-id (`[` ssa-use-and-type-list `]`)?
///                  attribute-dict? `:` function-type
static ParseResult parseInvokeOp(OpAsmParser &parser, OperationState &result) {
  SmallVector<OpAsmParser::OperandType, 8> operands;
  FunctionType funcType;
  SymbolRefAttr funcAttr;
  llvm::SMLoc trailingTypeLoc;
  Block *normalDest, *unwindDest;
  SmallVector<Value, 4> normalOperands, unwindOperands;
  Builder &builder = parser.getBuilder();

  // Parse an operand list that will, in practice, contain 0 or 1 operand.  In
  // case of an indirect call, there will be 1 operand before `(`.  In case of a
  // direct call, there will be no operands and the parser will stop at the
  // function identifier without complaining.
  if (parser.parseOperandList(operands))
    return failure();
  bool isDirect = operands.empty();

  // Optionally parse a function identifier.
  if (isDirect && parser.parseAttribute(funcAttr, "callee", result.attributes))
    return failure();

  if (parser.parseOperandList(operands, OpAsmParser::Delimiter::Paren) ||
      parser.parseKeyword("to") ||
      parser.parseSuccessorAndUseList(normalDest, normalOperands) ||
      parser.parseKeyword("unwind") ||
      parser.parseSuccessorAndUseList(unwindDest, unwindOperands) ||
      parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() ||
      parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(funcType))
    return failure();

  if (isDirect) {
    // Make sure types match.
    if (parser.resolveOperands(operands, funcType.getInputs(),
                               parser.getNameLoc(), result.operands))
      return failure();
    result.addTypes(funcType.getResults());
  } else {
    // Construct the LLVM IR Dialect function type that the first operand
    // should match.
    if (funcType.getNumResults() > 1)
      return parser.emitError(trailingTypeLoc,
                              "expected function with 0 or 1 result");

    LLVM::LLVMType llvmResultType;
    if (funcType.getNumResults() == 0) {
      llvmResultType = LLVM::LLVMType::getVoidTy(builder.getContext());
    } else {
      llvmResultType = funcType.getResult(0).dyn_cast<LLVM::LLVMType>();
      if (!llvmResultType)
        return parser.emitError(trailingTypeLoc,
                                "expected result to have LLVM type");
    }

    SmallVector<LLVM::LLVMType, 8> argTypes;
    argTypes.reserve(funcType.getNumInputs());
    for (Type ty : funcType.getInputs()) {
      if (auto argType = ty.dyn_cast<LLVM::LLVMType>())
        argTypes.push_back(argType);
      else
        return parser.emitError(trailingTypeLoc,
                                "expected LLVM types as inputs");
    }

    auto llvmFuncType = LLVM::LLVMType::getFunctionTy(llvmResultType, argTypes,
                                                      /*isVarArg=*/false);
    auto wrappedFuncType = llvmFuncType.getPointerTo();

    auto funcArguments = llvm::makeArrayRef(operands).drop_front();

    // Make sure that the first operand (indirect callee) matches the wrapped
    // LLVM IR function type, and that the types of the other call operands
    // match the types of the function arguments.
    if (parser.resolveOperand(operands[0], wrappedFuncType, result.operands) ||
        parser.resolveOperands(funcArguments, funcType.getInputs(),
                               parser.getNameLoc(), result.operands))
      return failure();

    result.addTypes(llvmResultType);
  }
  result.addSuccessors({normalDest, unwindDest});
  result.addOperands(normalOperands);
  result.addOperands(unwindOperands);

  result.addAttribute(
      InvokeOp::getOperandSegmentSizeAttr(),
      builder.getI32VectorAttr({static_cast<int32_t>(operands.size()),
                                static_cast<int32_t>(normalOperands.size()),
                                static_cast<int32_t>(unwindOperands.size())}));
  return success();
}

///===----------------------------------------------------------------------===//
/// Verifying/Printing/Parsing for LLVM::LandingpadOp.
///===----------------------------------------------------------------------===//

static LogicalResult verify(LandingpadOp op) {
  Value value;
  if (LLVMFuncOp func = op.getParentOfType<LLVMFuncOp>()) {
    if (!func.personality().hasValue())
      return op.emitError(
          "llvm.landingpad needs to be in a function with a personality");
  }

  if (!op.cleanup() && op.getOperands().empty())
    return op.emitError("landingpad instruction expects at least one clause or "
                        "cleanup attribute");

  for (unsigned idx = 0, ie = op.getNumOperands(); idx < ie; idx++) {
    value = op.getOperand(idx);
    bool isFilter = value.getType().cast<LLVMType>().isArrayTy();
    if (isFilter) {
      // FIXME: Verify filter clauses when arrays are appropriately handled
    } else {
      // catch - global addresses only.
      // Bitcast ops should have global addresses as their args.
      if (auto bcOp = value.getDefiningOp<BitcastOp>()) {
        if (auto addrOp = bcOp.arg().getDefiningOp<AddressOfOp>())
          continue;
        return op.emitError("constant clauses expected")
                   .attachNote(bcOp.getLoc())
               << "global addresses expected as operand to "
                  "bitcast used in clauses for landingpad";
      }
      // NullOp and AddressOfOp allowed
      if (value.getDefiningOp<NullOp>())
        continue;
      if (value.getDefiningOp<AddressOfOp>())
        continue;
      return op.emitError("clause #")
             << idx << " is not a known constant - null, addressof, bitcast";
    }
  }
  return success();
}

static void printLandingpadOp(OpAsmPrinter &p, LandingpadOp &op) {
  p << op.getOperationName() << (op.cleanup() ? " cleanup " : " ");

  // Clauses
  for (auto value : op.getOperands()) {
    // Similar to llvm - if clause is an array type then it is filter
    // clause else catch clause
    bool isArrayTy = value.getType().cast<LLVMType>().isArrayTy();
    p << '(' << (isArrayTy ? "filter " : "catch ") << value << " : "
      << value.getType() << ") ";
  }

  p.printOptionalAttrDict(op.getAttrs(), {"cleanup"});

  p << ": " << op.getType();
}

/// <operation> ::= `llvm.landingpad` `cleanup`?
///                 ((`catch` | `filter`) operand-type ssa-use)* attribute-dict?
static ParseResult parseLandingpadOp(OpAsmParser &parser,
                                     OperationState &result) {
  // Check for cleanup
  if (succeeded(parser.parseOptionalKeyword("cleanup")))
    result.addAttribute("cleanup", parser.getBuilder().getUnitAttr());

  // Parse clauses with types
  while (succeeded(parser.parseOptionalLParen()) &&
         (succeeded(parser.parseOptionalKeyword("filter")) ||
          succeeded(parser.parseOptionalKeyword("catch")))) {
    OpAsmParser::OperandType operand;
    Type ty;
    if (parser.parseOperand(operand) || parser.parseColon() ||
        parser.parseType(ty) ||
        parser.resolveOperand(operand, ty, result.operands) ||
        parser.parseRParen())
      return failure();
  }

  Type type;
  if (parser.parseColon() || parser.parseType(type))
    return failure();

  result.addTypes(type);
  return success();
}

//===----------------------------------------------------------------------===//
// Verifying/Printing/parsing for LLVM::CallOp.
//===----------------------------------------------------------------------===//

static LogicalResult verify(CallOp &op) {
  if (op.getNumResults() > 1)
    return op.emitOpError("must have 0 or 1 result");

  // Type for the callee, we'll get it differently depending if it is a direct
  // or indirect call.
  LLVMType fnType;

  bool isIndirect = false;

  // If this is an indirect call, the callee attribute is missing.
  Optional<StringRef> calleeName = op.callee();
  if (!calleeName) {
    isIndirect = true;
    if (!op.getNumOperands())
      return op.emitOpError(
          "must have either a `callee` attribute or at least an operand");
    fnType = op.getOperand(0).getType().dyn_cast<LLVMType>();
    if (!fnType)
      return op.emitOpError("indirect call to a non-llvm type: ")
             << op.getOperand(0).getType();
    auto ptrType = fnType.dyn_cast<LLVMPointerType>();
    if (!ptrType)
      return op.emitOpError("indirect call expects a pointer as callee: ")
             << fnType;
    fnType = ptrType.getElementType();
  } else {
    Operation *callee = SymbolTable::lookupNearestSymbolFrom(op, *calleeName);
    if (!callee)
      return op.emitOpError()
             << "'" << *calleeName
             << "' does not reference a symbol in the current scope";
    auto fn = dyn_cast<LLVMFuncOp>(callee);
    if (!fn)
      return op.emitOpError() << "'" << *calleeName
                              << "' does not reference a valid LLVM function";

    fnType = fn.getType();
  }
  if (!fnType.isFunctionTy())
    return op.emitOpError("callee does not have a functional type: ") << fnType;

  // Verify that the operand and result types match the callee.

  if (!fnType.isFunctionVarArg() &&
      fnType.getFunctionNumParams() != (op.getNumOperands() - isIndirect))
    return op.emitOpError()
           << "incorrect number of operands ("
           << (op.getNumOperands() - isIndirect)
           << ") for callee (expecting: " << fnType.getFunctionNumParams()
           << ")";

  if (fnType.getFunctionNumParams() > (op.getNumOperands() - isIndirect))
    return op.emitOpError() << "incorrect number of operands ("
                            << (op.getNumOperands() - isIndirect)
                            << ") for varargs callee (expecting at least: "
                            << fnType.getFunctionNumParams() << ")";

  for (unsigned i = 0, e = fnType.getFunctionNumParams(); i != e; ++i)
    if (op.getOperand(i + isIndirect).getType() !=
        fnType.getFunctionParamType(i))
      return op.emitOpError() << "operand type mismatch for operand " << i
                              << ": " << op.getOperand(i + isIndirect).getType()
                              << " != " << fnType.getFunctionParamType(i);

  if (op.getNumResults() &&
      op.getResult(0).getType() != fnType.getFunctionResultType())
    return op.emitOpError()
           << "result type mismatch: " << op.getResult(0).getType()
           << " != " << fnType.getFunctionResultType();

  return success();
}

static void printCallOp(OpAsmPrinter &p, CallOp &op) {
  auto callee = op.callee();
  bool isDirect = callee.hasValue();

  // Print the direct callee if present as a function attribute, or an indirect
  // callee (first operand) otherwise.
  p << op.getOperationName() << ' ';
  if (isDirect)
    p.printSymbolName(callee.getValue());
  else
    p << op.getOperand(0);

  auto args = op.getOperands().drop_front(isDirect ? 0 : 1);
  p << '(' << args << ')';
  p.printOptionalAttrDict(op.getAttrs(), {"callee"});

  // Reconstruct the function MLIR function type from operand and result types.
  p << " : "
    << FunctionType::get(args.getTypes(), op.getResultTypes(), op.getContext());
}

// <operation> ::= `llvm.call` (function-id | ssa-use) `(` ssa-use-list `)`
//                 attribute-dict? `:` function-type
static ParseResult parseCallOp(OpAsmParser &parser, OperationState &result) {
  SmallVector<OpAsmParser::OperandType, 8> operands;
  Type type;
  SymbolRefAttr funcAttr;
  llvm::SMLoc trailingTypeLoc;

  // Parse an operand list that will, in practice, contain 0 or 1 operand.  In
  // case of an indirect call, there will be 1 operand before `(`.  In case of a
  // direct call, there will be no operands and the parser will stop at the
  // function identifier without complaining.
  if (parser.parseOperandList(operands))
    return failure();
  bool isDirect = operands.empty();

  // Optionally parse a function identifier.
  if (isDirect)
    if (parser.parseAttribute(funcAttr, "callee", result.attributes))
      return failure();

  if (parser.parseOperandList(operands, OpAsmParser::Delimiter::Paren) ||
      parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() ||
      parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(type))
    return failure();

  auto funcType = type.dyn_cast<FunctionType>();
  if (!funcType)
    return parser.emitError(trailingTypeLoc, "expected function type");
  if (isDirect) {
    // Make sure types match.
    if (parser.resolveOperands(operands, funcType.getInputs(),
                               parser.getNameLoc(), result.operands))
      return failure();
    result.addTypes(funcType.getResults());
  } else {
    // Construct the LLVM IR Dialect function type that the first operand
    // should match.
    if (funcType.getNumResults() > 1)
      return parser.emitError(trailingTypeLoc,
                              "expected function with 0 or 1 result");

    Builder &builder = parser.getBuilder();
    LLVM::LLVMType llvmResultType;
    if (funcType.getNumResults() == 0) {
      llvmResultType = LLVM::LLVMType::getVoidTy(builder.getContext());
    } else {
      llvmResultType = funcType.getResult(0).dyn_cast<LLVM::LLVMType>();
      if (!llvmResultType)
        return parser.emitError(trailingTypeLoc,
                                "expected result to have LLVM type");
    }

    SmallVector<LLVM::LLVMType, 8> argTypes;
    argTypes.reserve(funcType.getNumInputs());
    for (int i = 0, e = funcType.getNumInputs(); i < e; ++i) {
      auto argType = funcType.getInput(i).dyn_cast<LLVM::LLVMType>();
      if (!argType)
        return parser.emitError(trailingTypeLoc,
                                "expected LLVM types as inputs");
      argTypes.push_back(argType);
    }
    auto llvmFuncType = LLVM::LLVMType::getFunctionTy(llvmResultType, argTypes,
                                                      /*isVarArg=*/false);
    auto wrappedFuncType = llvmFuncType.getPointerTo();

    auto funcArguments =
        ArrayRef<OpAsmParser::OperandType>(operands).drop_front();

    // Make sure that the first operand (indirect callee) matches the wrapped
    // LLVM IR function type, and that the types of the other call operands
    // match the types of the function arguments.
    if (parser.resolveOperand(operands[0], wrappedFuncType, result.operands) ||
        parser.resolveOperands(funcArguments, funcType.getInputs(),
                               parser.getNameLoc(), result.operands))
      return failure();

    result.addTypes(llvmResultType);
  }

  return success();
}

//===----------------------------------------------------------------------===//
// Printing/parsing for LLVM::ExtractElementOp.
//===----------------------------------------------------------------------===//
// Expects vector to be of wrapped LLVM vector type and position to be of
// wrapped LLVM i32 type.
void LLVM::ExtractElementOp::build(OpBuilder &b, OperationState &result,
                                   Value vector, Value position,
                                   ArrayRef<NamedAttribute> attrs) {
  auto wrappedVectorType = vector.getType().cast<LLVM::LLVMType>();
  auto llvmType = wrappedVectorType.getVectorElementType();
  build(b, result, llvmType, vector, position);
  result.addAttributes(attrs);
}

static void printExtractElementOp(OpAsmPrinter &p, ExtractElementOp &op) {
  p << op.getOperationName() << ' ' << op.vector() << "[" << op.position()
    << " : " << op.position().getType() << "]";
  p.printOptionalAttrDict(op.getAttrs());
  p << " : " << op.vector().getType();
}

// <operation> ::= `llvm.extractelement` ssa-use `, ` ssa-use
//                 attribute-dict? `:` type
static ParseResult parseExtractElementOp(OpAsmParser &parser,
                                         OperationState &result) {
  llvm::SMLoc loc;
  OpAsmParser::OperandType vector, position;
  Type type, positionType;
  if (parser.getCurrentLocation(&loc) || parser.parseOperand(vector) ||
      parser.parseLSquare() || parser.parseOperand(position) ||
      parser.parseColonType(positionType) || parser.parseRSquare() ||
      parser.parseOptionalAttrDict(result.attributes) ||
      parser.parseColonType(type) ||
      parser.resolveOperand(vector, type, result.operands) ||
      parser.resolveOperand(position, positionType, result.operands))
    return failure();
  auto wrappedVectorType = type.dyn_cast<LLVM::LLVMType>();
  if (!wrappedVectorType || !wrappedVectorType.isVectorTy())
    return parser.emitError(
        loc, "expected LLVM IR dialect vector type for operand #1");
  result.addTypes(wrappedVectorType.getVectorElementType());
  return success();
}

//===----------------------------------------------------------------------===//
// Printing/parsing for LLVM::ExtractValueOp.
//===----------------------------------------------------------------------===//

static void printExtractValueOp(OpAsmPrinter &p, ExtractValueOp &op) {
  p << op.getOperationName() << ' ' << op.container() << op.position();
  p.printOptionalAttrDict(op.getAttrs(), {"position"});
  p << " : " << op.container().getType();
}

// Extract the type at `position` in the wrapped LLVM IR aggregate type
// `containerType`.  Position is an integer array attribute where each value
// is a zero-based position of the element in the aggregate type.  Return the
// resulting type wrapped in MLIR, or nullptr on error.
static LLVM::LLVMType getInsertExtractValueElementType(OpAsmParser &parser,
                                                       Type containerType,
                                                       ArrayAttr positionAttr,
                                                       llvm::SMLoc attributeLoc,
                                                       llvm::SMLoc typeLoc) {
  auto wrappedContainerType = containerType.dyn_cast<LLVM::LLVMType>();
  if (!wrappedContainerType)
    return parser.emitError(typeLoc, "expected LLVM IR Dialect type"), nullptr;

  // Infer the element type from the structure type: iteratively step inside the
  // type by taking the element type, indexed by the position attribute for
  // structures.  Check the position index before accessing, it is supposed to
  // be in bounds.
  for (Attribute subAttr : positionAttr) {
    auto positionElementAttr = subAttr.dyn_cast<IntegerAttr>();
    if (!positionElementAttr)
      return parser.emitError(attributeLoc,
                              "expected an array of integer literals"),
             nullptr;
    int position = positionElementAttr.getInt();
    if (wrappedContainerType.isArrayTy()) {
      if (position < 0 || static_cast<unsigned>(position) >=
                              wrappedContainerType.getArrayNumElements())
        return parser.emitError(attributeLoc, "position out of bounds"),
               nullptr;
      wrappedContainerType = wrappedContainerType.getArrayElementType();
    } else if (wrappedContainerType.isStructTy()) {
      if (position < 0 || static_cast<unsigned>(position) >=
                              wrappedContainerType.getStructNumElements())
        return parser.emitError(attributeLoc, "position out of bounds"),
               nullptr;
      wrappedContainerType =
          wrappedContainerType.getStructElementType(position);
    } else {
      return parser.emitError(typeLoc,
                              "expected wrapped LLVM IR structure/array type"),
             nullptr;
    }
  }
  return wrappedContainerType;
}

// <operation> ::= `llvm.extractvalue` ssa-use
//                 `[` integer-literal (`,` integer-literal)* `]`
//                 attribute-dict? `:` type
static ParseResult parseExtractValueOp(OpAsmParser &parser,
                                       OperationState &result) {
  OpAsmParser::OperandType container;
  Type containerType;
  ArrayAttr positionAttr;
  llvm::SMLoc attributeLoc, trailingTypeLoc;

  if (parser.parseOperand(container) ||
      parser.getCurrentLocation(&attributeLoc) ||
      parser.parseAttribute(positionAttr, "position", result.attributes) ||
      parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() ||
      parser.getCurrentLocation(&trailingTypeLoc) ||
      parser.parseType(containerType) ||
      parser.resolveOperand(container, containerType, result.operands))
    return failure();

  auto elementType = getInsertExtractValueElementType(
      parser, containerType, positionAttr, attributeLoc, trailingTypeLoc);
  if (!elementType)
    return failure();

  result.addTypes(elementType);
  return success();
}

//===----------------------------------------------------------------------===//
// Printing/parsing for LLVM::InsertElementOp.
//===----------------------------------------------------------------------===//

static void printInsertElementOp(OpAsmPrinter &p, InsertElementOp &op) {
  p << op.getOperationName() << ' ' << op.value() << ", " << op.vector() << "["
    << op.position() << " : " << op.position().getType() << "]";
  p.printOptionalAttrDict(op.getAttrs());
  p << " : " << op.vector().getType();
}

// <operation> ::= `llvm.insertelement` ssa-use `,` ssa-use `,` ssa-use
//                 attribute-dict? `:` type
static ParseResult parseInsertElementOp(OpAsmParser &parser,
                                        OperationState &result) {
  llvm::SMLoc loc;
  OpAsmParser::OperandType vector, value, position;
  Type vectorType, positionType;
  if (parser.getCurrentLocation(&loc) || parser.parseOperand(value) ||
      parser.parseComma() || parser.parseOperand(vector) ||
      parser.parseLSquare() || parser.parseOperand(position) ||
      parser.parseColonType(positionType) || parser.parseRSquare() ||
      parser.parseOptionalAttrDict(result.attributes) ||
      parser.parseColonType(vectorType))
    return failure();

  auto wrappedVectorType = vectorType.dyn_cast<LLVM::LLVMType>();
  if (!wrappedVectorType || !wrappedVectorType.isVectorTy())
    return parser.emitError(
        loc, "expected LLVM IR dialect vector type for operand #1");
  auto valueType = wrappedVectorType.getVectorElementType();
  if (!valueType)
    return failure();

  if (parser.resolveOperand(vector, vectorType, result.operands) ||
      parser.resolveOperand(value, valueType, result.operands) ||
      parser.resolveOperand(position, positionType, result.operands))
    return failure();

  result.addTypes(vectorType);
  return success();
}

//===----------------------------------------------------------------------===//
// Printing/parsing for LLVM::InsertValueOp.
//===----------------------------------------------------------------------===//

static void printInsertValueOp(OpAsmPrinter &p, InsertValueOp &op) {
  p << op.getOperationName() << ' ' << op.value() << ", " << op.container()
    << op.position();
  p.printOptionalAttrDict(op.getAttrs(), {"position"});
  p << " : " << op.container().getType();
}

// <operation> ::= `llvm.insertvaluevalue` ssa-use `,` ssa-use
//                 `[` integer-literal (`,` integer-literal)* `]`
//                 attribute-dict? `:` type
static ParseResult parseInsertValueOp(OpAsmParser &parser,
                                      OperationState &result) {
  OpAsmParser::OperandType container, value;
  Type containerType;
  ArrayAttr positionAttr;
  llvm::SMLoc attributeLoc, trailingTypeLoc;

  if (parser.parseOperand(value) || parser.parseComma() ||
      parser.parseOperand(container) ||
      parser.getCurrentLocation(&attributeLoc) ||
      parser.parseAttribute(positionAttr, "position", result.attributes) ||
      parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() ||
      parser.getCurrentLocation(&trailingTypeLoc) ||
      parser.parseType(containerType))
    return failure();

  auto valueType = getInsertExtractValueElementType(
      parser, containerType, positionAttr, attributeLoc, trailingTypeLoc);
  if (!valueType)
    return failure();

  if (parser.resolveOperand(container, containerType, result.operands) ||
      parser.resolveOperand(value, valueType, result.operands))
    return failure();

  result.addTypes(containerType);
  return success();
}

//===----------------------------------------------------------------------===//
// Printing/parsing for LLVM::ReturnOp.
//===----------------------------------------------------------------------===//

static void printReturnOp(OpAsmPrinter &p, ReturnOp &op) {
  p << op.getOperationName();
  p.printOptionalAttrDict(op.getAttrs());
  assert(op.getNumOperands() <= 1);

  if (op.getNumOperands() == 0)
    return;

  p << ' ' << op.getOperand(0) << " : " << op.getOperand(0).getType();
}

// <operation> ::= `llvm.return` ssa-use-list attribute-dict? `:`
//                 type-list-no-parens
static ParseResult parseReturnOp(OpAsmParser &parser, OperationState &result) {
  SmallVector<OpAsmParser::OperandType, 1> operands;
  Type type;

  if (parser.parseOperandList(operands) ||
      parser.parseOptionalAttrDict(result.attributes))
    return failure();
  if (operands.empty())
    return success();

  if (parser.parseColonType(type) ||
      parser.resolveOperand(operands[0], type, result.operands))
    return failure();
  return success();
}

//===----------------------------------------------------------------------===//
// Verifier for LLVM::AddressOfOp.
//===----------------------------------------------------------------------===//

template <typename OpTy>
static OpTy lookupSymbolInModule(Operation *parent, StringRef name) {
  Operation *module = parent;
  while (module && !satisfiesLLVMModule(module))
    module = module->getParentOp();
  assert(module && "unexpected operation outside of a module");
  return dyn_cast_or_null<OpTy>(
      mlir::SymbolTable::lookupSymbolIn(module, name));
}

GlobalOp AddressOfOp::getGlobal() {
  return lookupSymbolInModule<LLVM::GlobalOp>(getParentOp(), global_name());
}

LLVMFuncOp AddressOfOp::getFunction() {
  return lookupSymbolInModule<LLVM::LLVMFuncOp>(getParentOp(), global_name());
}

static LogicalResult verify(AddressOfOp op) {
  auto global = op.getGlobal();
  auto function = op.getFunction();
  if (!global && !function)
    return op.emitOpError(
        "must reference a global defined by 'llvm.mlir.global' or 'llvm.func'");

  if (global && global.getType().getPointerTo(global.addr_space()) !=
                    op.getResult().getType())
    return op.emitOpError(
        "the type must be a pointer to the type of the referenced global");

  if (function && function.getType().getPointerTo() != op.getResult().getType())
    return op.emitOpError(
        "the type must be a pointer to the type of the referenced function");

  return success();
}

//===----------------------------------------------------------------------===//
// Builder, printer and verifier for LLVM::GlobalOp.
//===----------------------------------------------------------------------===//

/// Returns the name used for the linkage attribute. This *must* correspond to
/// the name of the attribute in ODS.
static StringRef getLinkageAttrName() { return "linkage"; }

void GlobalOp::build(OpBuilder &builder, OperationState &result, LLVMType type,
                     bool isConstant, Linkage linkage, StringRef name,
                     Attribute value, unsigned addrSpace,
                     ArrayRef<NamedAttribute> attrs) {
  result.addAttribute(SymbolTable::getSymbolAttrName(),
                      builder.getStringAttr(name));
  result.addAttribute("type", TypeAttr::get(type));
  if (isConstant)
    result.addAttribute("constant", builder.getUnitAttr());
  if (value)
    result.addAttribute("value", value);
  result.addAttribute(getLinkageAttrName(),
                      builder.getI64IntegerAttr(static_cast<int64_t>(linkage)));
  if (addrSpace != 0)
    result.addAttribute("addr_space", builder.getI32IntegerAttr(addrSpace));
  result.attributes.append(attrs.begin(), attrs.end());
  result.addRegion();
}

static void printGlobalOp(OpAsmPrinter &p, GlobalOp op) {
  p << op.getOperationName() << ' ' << stringifyLinkage(op.linkage()) << ' ';
  if (op.constant())
    p << "constant ";
  p.printSymbolName(op.sym_name());
  p << '(';
  if (auto value = op.getValueOrNull())
    p.printAttribute(value);
  p << ')';
  p.printOptionalAttrDict(op.getAttrs(),
                          {SymbolTable::getSymbolAttrName(), "type", "constant",
                           "value", getLinkageAttrName()});

  // Print the trailing type unless it's a string global.
  if (op.getValueOrNull().dyn_cast_or_null<StringAttr>())
    return;
  p << " : " << op.type();

  Region &initializer = op.getInitializerRegion();
  if (!initializer.empty())
    p.printRegion(initializer, /*printEntryBlockArgs=*/false);
}

//===----------------------------------------------------------------------===//
// Verifier for LLVM::DialectCastOp.
//===----------------------------------------------------------------------===//

static LogicalResult verify(DialectCastOp op) {
  auto verifyMLIRCastType = [&op](Type type) -> LogicalResult {
    if (auto llvmType = type.dyn_cast<LLVM::LLVMType>()) {
      if (llvmType.isVectorTy())
        llvmType = llvmType.getVectorElementType();
      if (llvmType.isIntegerTy() || llvmType.isBFloatTy() ||
          llvmType.isHalfTy() || llvmType.isFloatTy() ||
          llvmType.isDoubleTy()) {
        return success();
      }
      return op.emitOpError("type must be non-index integer types, float "
                            "types, or vector of mentioned types.");
    }
    if (auto vectorType = type.dyn_cast<VectorType>()) {
      if (vectorType.getShape().size() > 1)
        return op.emitOpError("only 1-d vector is allowed");
      type = vectorType.getElementType();
    }
    if (type.isSignlessIntOrFloat())
      return success();
    // Note that memrefs are not supported. We currently don't have a use case
    // for it, but even if we do, there are challenges:
    // * if we allow memrefs to cast from/to memref descriptors, then the
    // semantics of the cast op depends on the implementation detail of the
    // descriptor.
    // * if we allow memrefs to cast from/to bare pointers, some users might
    // alternatively want metadata that only present in the descriptor.
    //
    // TODO: re-evaluate the memref cast design when it's needed.
    return op.emitOpError("type must be non-index integer types, float types, "
                          "or vector of mentioned types.");
  };
  return failure(failed(verifyMLIRCastType(op.in().getType())) ||
                 failed(verifyMLIRCastType(op.getType())));
}

// Parses one of the keywords provided in the list `keywords` and returns the
// position of the parsed keyword in the list. If none of the keywords from the
// list is parsed, returns -1.
static int parseOptionalKeywordAlternative(OpAsmParser &parser,
                                           ArrayRef<StringRef> keywords) {
  for (auto en : llvm::enumerate(keywords)) {
    if (succeeded(parser.parseOptionalKeyword(en.value())))
      return en.index();
  }
  return -1;
}

namespace {
template <typename Ty> struct EnumTraits {};

#define REGISTER_ENUM_TYPE(Ty)                                                 \
  template <> struct EnumTraits<Ty> {                                          \
    static StringRef stringify(Ty value) { return stringify##Ty(value); }      \
    static unsigned getMaxEnumVal() { return getMaxEnumValFor##Ty(); }         \
  }

REGISTER_ENUM_TYPE(Linkage);
} // end namespace

template <typename EnumTy>
static ParseResult parseOptionalLLVMKeyword(OpAsmParser &parser,
                                            OperationState &result,
                                            StringRef name) {
  SmallVector<StringRef, 10> names;
  for (unsigned i = 0, e = getMaxEnumValForLinkage(); i <= e; ++i)
    names.push_back(EnumTraits<EnumTy>::stringify(static_cast<EnumTy>(i)));

  int index = parseOptionalKeywordAlternative(parser, names);
  if (index == -1)
    return failure();
  result.addAttribute(name, parser.getBuilder().getI64IntegerAttr(index));
  return success();
}

// operation ::= `llvm.mlir.global` linkage? `constant`? `@` identifier
//               `(` attribute? `)` attribute-list? (`:` type)? region?
//
// The type can be omitted for string attributes, in which case it will be
// inferred from the value of the string as [strlen(value) x i8].
static ParseResult parseGlobalOp(OpAsmParser &parser, OperationState &result) {
  if (failed(parseOptionalLLVMKeyword<Linkage>(parser, result,
                                               getLinkageAttrName())))
    result.addAttribute(getLinkageAttrName(),
                        parser.getBuilder().getI64IntegerAttr(
                            static_cast<int64_t>(LLVM::Linkage::External)));

  if (succeeded(parser.parseOptionalKeyword("constant")))
    result.addAttribute("constant", parser.getBuilder().getUnitAttr());

  StringAttr name;
  if (parser.parseSymbolName(name, SymbolTable::getSymbolAttrName(),
                             result.attributes) ||
      parser.parseLParen())
    return failure();

  Attribute value;
  if (parser.parseOptionalRParen()) {
    if (parser.parseAttribute(value, "value", result.attributes) ||
        parser.parseRParen())
      return failure();
  }

  SmallVector<Type, 1> types;
  if (parser.parseOptionalAttrDict(result.attributes) ||
      parser.parseOptionalColonTypeList(types))
    return failure();

  if (types.size() > 1)
    return parser.emitError(parser.getNameLoc(), "expected zero or one type");

  Region &initRegion = *result.addRegion();
  if (types.empty()) {
    if (auto strAttr = value.dyn_cast_or_null<StringAttr>()) {
      MLIRContext *context = parser.getBuilder().getContext();
      auto arrayType = LLVM::LLVMType::getArrayTy(
          LLVM::LLVMType::getInt8Ty(context), strAttr.getValue().size());
      types.push_back(arrayType);
    } else {
      return parser.emitError(parser.getNameLoc(),
                              "type can only be omitted for string globals");
    }
  } else if (parser.parseOptionalRegion(initRegion, /*arguments=*/{},
                                        /*argTypes=*/{})) {
    return failure();
  }

  result.addAttribute("type", TypeAttr::get(types[0]));
  return success();
}

static LogicalResult verify(GlobalOp op) {
  if (!LLVMPointerType::isValidElementType(op.getType()))
    return op.emitOpError(
        "expects type to be a valid element type for an LLVM pointer");
  if (op.getParentOp() && !satisfiesLLVMModule(op.getParentOp()))
    return op.emitOpError("must appear at the module level");

  if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) {
    auto type = op.getType();
    if (!type.isArrayTy() || !type.getArrayElementType().isIntegerTy(8) ||
        type.getArrayNumElements() != strAttr.getValue().size())
      return op.emitOpError(
          "requires an i8 array type of the length equal to that of the string "
          "attribute");
  }

  if (Block *b = op.getInitializerBlock()) {
    ReturnOp ret = cast<ReturnOp>(b->getTerminator());
    if (ret.operand_type_begin() == ret.operand_type_end())
      return op.emitOpError("initializer region cannot return void");
    if (*ret.operand_type_begin() != op.getType())
      return op.emitOpError("initializer region type ")
             << *ret.operand_type_begin() << " does not match global type "
             << op.getType();

    if (op.getValueOrNull())
      return op.emitOpError("cannot have both initializer value and region");
  }
  return success();
}

//===----------------------------------------------------------------------===//
// Printing/parsing for LLVM::ShuffleVectorOp.
//===----------------------------------------------------------------------===//
// Expects vector to be of wrapped LLVM vector type and position to be of
// wrapped LLVM i32 type.
void LLVM::ShuffleVectorOp::build(OpBuilder &b, OperationState &result,
                                  Value v1, Value v2, ArrayAttr mask,
                                  ArrayRef<NamedAttribute> attrs) {
  auto wrappedContainerType1 = v1.getType().cast<LLVM::LLVMType>();
  auto vType = LLVMType::getVectorTy(
      wrappedContainerType1.getVectorElementType(), mask.size());
  build(b, result, vType, v1, v2, mask);
  result.addAttributes(attrs);
}

static void printShuffleVectorOp(OpAsmPrinter &p, ShuffleVectorOp &op) {
  p << op.getOperationName() << ' ' << op.v1() << ", " << op.v2() << " "
    << op.mask();
  p.printOptionalAttrDict(op.getAttrs(), {"mask"});
  p << " : " << op.v1().getType() << ", " << op.v2().getType();
}

// <operation> ::= `llvm.shufflevector` ssa-use `, ` ssa-use
//                 `[` integer-literal (`,` integer-literal)* `]`
//                 attribute-dict? `:` type
static ParseResult parseShuffleVectorOp(OpAsmParser &parser,
                                        OperationState &result) {
  llvm::SMLoc loc;
  OpAsmParser::OperandType v1, v2;
  ArrayAttr maskAttr;
  Type typeV1, typeV2;
  if (parser.getCurrentLocation(&loc) || parser.parseOperand(v1) ||
      parser.parseComma() || parser.parseOperand(v2) ||
      parser.parseAttribute(maskAttr, "mask", result.attributes) ||
      parser.parseOptionalAttrDict(result.attributes) ||
      parser.parseColonType(typeV1) || parser.parseComma() ||
      parser.parseType(typeV2) ||
      parser.resolveOperand(v1, typeV1, result.operands) ||
      parser.resolveOperand(v2, typeV2, result.operands))
    return failure();
  auto wrappedContainerType1 = typeV1.dyn_cast<LLVM::LLVMType>();
  if (!wrappedContainerType1 || !wrappedContainerType1.isVectorTy())
    return parser.emitError(
        loc, "expected LLVM IR dialect vector type for operand #1");
  auto vType = LLVMType::getVectorTy(
      wrappedContainerType1.getVectorElementType(), maskAttr.size());
  result.addTypes(vType);
  return success();
}

//===----------------------------------------------------------------------===//
// Implementations for LLVM::LLVMFuncOp.
//===----------------------------------------------------------------------===//

// Add the entry block to the function.
Block *LLVMFuncOp::addEntryBlock() {
  assert(empty() && "function already has an entry block");
  assert(!isVarArg() && "unimplemented: non-external variadic functions");

  auto *entry = new Block;
  push_back(entry);

  LLVMType type = getType();
  for (unsigned i = 0, e = type.getFunctionNumParams(); i < e; ++i)
    entry->addArgument(type.getFunctionParamType(i));
  return entry;
}

void LLVMFuncOp::build(OpBuilder &builder, OperationState &result,
                       StringRef name, LLVMType type, LLVM::Linkage linkage,
                       ArrayRef<NamedAttribute> attrs,
                       ArrayRef<MutableDictionaryAttr> argAttrs) {
  result.addRegion();
  result.addAttribute(SymbolTable::getSymbolAttrName(),
                      builder.getStringAttr(name));
  result.addAttribute("type", TypeAttr::get(type));
  result.addAttribute(getLinkageAttrName(),
                      builder.getI64IntegerAttr(static_cast<int64_t>(linkage)));
  result.attributes.append(attrs.begin(), attrs.end());
  if (argAttrs.empty())
    return;

  unsigned numInputs = type.getFunctionNumParams();
  assert(numInputs == argAttrs.size() &&
         "expected as many argument attribute lists as arguments");
  SmallString<8> argAttrName;
  for (unsigned i = 0; i < numInputs; ++i)
    if (auto argDict = argAttrs[i].getDictionary(builder.getContext()))
      result.addAttribute(getArgAttrName(i, argAttrName), argDict);
}

// Builds an LLVM function type from the given lists of input and output types.
// Returns a null type if any of the types provided are non-LLVM types, or if
// there is more than one output type.
static Type buildLLVMFunctionType(OpAsmParser &parser, llvm::SMLoc loc,
                                  ArrayRef<Type> inputs, ArrayRef<Type> outputs,
                                  impl::VariadicFlag variadicFlag) {
  Builder &b = parser.getBuilder();
  if (outputs.size() > 1) {
    parser.emitError(loc, "failed to construct function type: expected zero or "
                          "one function result");
    return {};
  }

  // Convert inputs to LLVM types, exit early on error.
  SmallVector<LLVMType, 4> llvmInputs;
  for (auto t : inputs) {
    auto llvmTy = t.dyn_cast<LLVMType>();
    if (!llvmTy) {
      parser.emitError(loc, "failed to construct function type: expected LLVM "
                            "type for function arguments");
      return {};
    }
    llvmInputs.push_back(llvmTy);
  }

  // No output is denoted as "void" in LLVM type system.
  LLVMType llvmOutput = outputs.empty() ? LLVMType::getVoidTy(b.getContext())
                                        : outputs.front().dyn_cast<LLVMType>();
  if (!llvmOutput) {
    parser.emitError(loc, "failed to construct function type: expected LLVM "
                          "type for function results");
    return {};
  }
  return LLVMType::getFunctionTy(llvmOutput, llvmInputs,
                                 variadicFlag.isVariadic());
}

// Parses an LLVM function.
//
// operation ::= `llvm.func` linkage? function-signature function-attributes?
//               function-body
//
static ParseResult parseLLVMFuncOp(OpAsmParser &parser,
                                   OperationState &result) {
  // Default to external linkage if no keyword is provided.
  if (failed(parseOptionalLLVMKeyword<Linkage>(parser, result,
                                               getLinkageAttrName())))
    result.addAttribute(getLinkageAttrName(),
                        parser.getBuilder().getI64IntegerAttr(
                            static_cast<int64_t>(LLVM::Linkage::External)));

  StringAttr nameAttr;
  SmallVector<OpAsmParser::OperandType, 8> entryArgs;
  SmallVector<NamedAttrList, 1> argAttrs;
  SmallVector<NamedAttrList, 1> resultAttrs;
  SmallVector<Type, 8> argTypes;
  SmallVector<Type, 4> resultTypes;
  bool isVariadic;

  auto signatureLocation = parser.getCurrentLocation();
  if (parser.parseSymbolName(nameAttr, SymbolTable::getSymbolAttrName(),
                             result.attributes) ||
      impl::parseFunctionSignature(parser, /*allowVariadic=*/true, entryArgs,
                                   argTypes, argAttrs, isVariadic, resultTypes,
                                   resultAttrs))
    return failure();

  auto type =
      buildLLVMFunctionType(parser, signatureLocation, argTypes, resultTypes,
                            impl::VariadicFlag(isVariadic));
  if (!type)
    return failure();
  result.addAttribute(impl::getTypeAttrName(), TypeAttr::get(type));

  if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes)))
    return failure();
  impl::addArgAndResultAttrs(parser.getBuilder(), result, argAttrs,
                             resultAttrs);

  auto *body = result.addRegion();
  return parser.parseOptionalRegion(
      *body, entryArgs, entryArgs.empty() ? ArrayRef<Type>() : argTypes);
}

// Print the LLVMFuncOp. Collects argument and result types and passes them to
// helper functions. Drops "void" result since it cannot be parsed back. Skips
// the external linkage since it is the default value.
static void printLLVMFuncOp(OpAsmPrinter &p, LLVMFuncOp op) {
  p << op.getOperationName() << ' ';
  if (op.linkage() != LLVM::Linkage::External)
    p << stringifyLinkage(op.linkage()) << ' ';
  p.printSymbolName(op.getName());

  LLVMType fnType = op.getType();
  SmallVector<Type, 8> argTypes;
  SmallVector<Type, 1> resTypes;
  argTypes.reserve(fnType.getFunctionNumParams());
  for (unsigned i = 0, e = fnType.getFunctionNumParams(); i < e; ++i)
    argTypes.push_back(fnType.getFunctionParamType(i));

  LLVMType returnType = fnType.getFunctionResultType();
  if (!returnType.isVoidTy())
    resTypes.push_back(returnType);

  impl::printFunctionSignature(p, op, argTypes, op.isVarArg(), resTypes);
  impl::printFunctionAttributes(p, op, argTypes.size(), resTypes.size(),
                                {getLinkageAttrName()});

  // Print the body if this is not an external function.
  Region &body = op.body();
  if (!body.empty())
    p.printRegion(body, /*printEntryBlockArgs=*/false,
                  /*printBlockTerminators=*/true);
}

// Hook for OpTrait::FunctionLike, called after verifying that the 'type'
// attribute is present.  This can check for preconditions of the
// getNumArguments hook not failing.
LogicalResult LLVMFuncOp::verifyType() {
  auto llvmType = getTypeAttr().getValue().dyn_cast_or_null<LLVMType>();
  if (!llvmType || !llvmType.isFunctionTy())
    return emitOpError("requires '" + getTypeAttrName() +
                       "' attribute of wrapped LLVM function type");

  return success();
}

// Hook for OpTrait::FunctionLike, returns the number of function arguments.
// Depends on the type attribute being correct as checked by verifyType
unsigned LLVMFuncOp::getNumFuncArguments() {
  return getType().getFunctionNumParams();
}

// Hook for OpTrait::FunctionLike, returns the number of function results.
// Depends on the type attribute being correct as checked by verifyType
unsigned LLVMFuncOp::getNumFuncResults() {
  // We model LLVM functions that return void as having zero results,
  // and all others as having one result.
  // If we modeled a void return as one result, then it would be possible to
  // attach an MLIR result attribute to it, and it isn't clear what semantics we
  // would assign to that.
  if (getType().getFunctionResultType().isVoidTy())
    return 0;
  return 1;
}

// Verifies LLVM- and implementation-specific properties of the LLVM func Op:
// - functions don't have 'common' linkage
// - external functions have 'external' or 'extern_weak' linkage;
// - vararg is (currently) only supported for external functions;
// - entry block arguments are of LLVM types and match the function signature.
static LogicalResult verify(LLVMFuncOp op) {
  if (op.linkage() == LLVM::Linkage::Common)
    return op.emitOpError()
           << "functions cannot have '"
           << stringifyLinkage(LLVM::Linkage::Common) << "' linkage";

  if (op.isExternal()) {
    if (op.linkage() != LLVM::Linkage::External &&
        op.linkage() != LLVM::Linkage::ExternWeak)
      return op.emitOpError()
             << "external functions must have '"
             << stringifyLinkage(LLVM::Linkage::External) << "' or '"
             << stringifyLinkage(LLVM::Linkage::ExternWeak) << "' linkage";
    return success();
  }

  if (op.isVarArg())
    return op.emitOpError("only external functions can be variadic");

  unsigned numArguments = op.getType().getFunctionNumParams();
  Block &entryBlock = op.front();
  for (unsigned i = 0; i < numArguments; ++i) {
    Type argType = entryBlock.getArgument(i).getType();
    auto argLLVMType = argType.dyn_cast<LLVMType>();
    if (!argLLVMType)
      return op.emitOpError("entry block argument #")
             << i << " is not of LLVM type";
    if (op.getType().getFunctionParamType(i) != argLLVMType)
      return op.emitOpError("the type of entry block argument #")
             << i << " does not match the function signature";
  }

  return success();
}

//===----------------------------------------------------------------------===//
// Verification for LLVM::NullOp.
//===----------------------------------------------------------------------===//

// Only LLVM pointer types are supported.
static LogicalResult verify(LLVM::NullOp op) {
  auto llvmType = op.getType().dyn_cast<LLVM::LLVMType>();
  if (!llvmType || !llvmType.isPointerTy())
    return op.emitOpError("expected LLVM IR pointer type");
  return success();
}

//===----------------------------------------------------------------------===//
// Verification for LLVM::ConstantOp.
//===----------------------------------------------------------------------===//

static LogicalResult verify(LLVM::ConstantOp op) {
  if (!(op.value().isa<IntegerAttr>() || op.value().isa<FloatAttr>() ||
        op.value().isa<ElementsAttr>() || op.value().isa<StringAttr>()))
    return op.emitOpError()
           << "only supports integer, float, string or elements attributes";
  return success();
}

//===----------------------------------------------------------------------===//
// Utility functions for parsing atomic ops
//===----------------------------------------------------------------------===//

// Helper function to parse a keyword into the specified attribute named by
// `attrName`. The keyword must match one of the string values defined by the
// AtomicBinOp enum. The resulting I64 attribute is added to the `result`
// state.
static ParseResult parseAtomicBinOp(OpAsmParser &parser, OperationState &result,
                                    StringRef attrName) {
  llvm::SMLoc loc;
  StringRef keyword;
  if (parser.getCurrentLocation(&loc) || parser.parseKeyword(&keyword))
    return failure();

  // Replace the keyword `keyword` with an integer attribute.
  auto kind = symbolizeAtomicBinOp(keyword);
  if (!kind) {
    return parser.emitError(loc)
           << "'" << keyword << "' is an incorrect value of the '" << attrName
           << "' attribute";
  }

  auto value = static_cast<int64_t>(kind.getValue());
  auto attr = parser.getBuilder().getI64IntegerAttr(value);
  result.addAttribute(attrName, attr);

  return success();
}

// Helper function to parse a keyword into the specified attribute named by
// `attrName`. The keyword must match one of the string values defined by the
// AtomicOrdering enum. The resulting I64 attribute is added to the `result`
// state.
static ParseResult parseAtomicOrdering(OpAsmParser &parser,
                                       OperationState &result,
                                       StringRef attrName) {
  llvm::SMLoc loc;
  StringRef ordering;
  if (parser.getCurrentLocation(&loc) || parser.parseKeyword(&ordering))
    return failure();

  // Replace the keyword `ordering` with an integer attribute.
  auto kind = symbolizeAtomicOrdering(ordering);
  if (!kind) {
    return parser.emitError(loc)
           << "'" << ordering << "' is an incorrect value of the '" << attrName
           << "' attribute";
  }

  auto value = static_cast<int64_t>(kind.getValue());
  auto attr = parser.getBuilder().getI64IntegerAttr(value);
  result.addAttribute(attrName, attr);

  return success();
}

//===----------------------------------------------------------------------===//
// Printer, parser and verifier for LLVM::AtomicRMWOp.
//===----------------------------------------------------------------------===//

static void printAtomicRMWOp(OpAsmPrinter &p, AtomicRMWOp &op) {
  p << op.getOperationName() << ' ' << stringifyAtomicBinOp(op.bin_op()) << ' '
    << op.ptr() << ", " << op.val() << ' '
    << stringifyAtomicOrdering(op.ordering()) << ' ';
  p.printOptionalAttrDict(op.getAttrs(), {"bin_op", "ordering"});
  p << " : " << op.res().getType();
}

// <operation> ::= `llvm.atomicrmw` keyword ssa-use `,` ssa-use keyword
//                 attribute-dict? `:` type
static ParseResult parseAtomicRMWOp(OpAsmParser &parser,
                                    OperationState &result) {
  LLVMType type;
  OpAsmParser::OperandType ptr, val;
  if (parseAtomicBinOp(parser, result, "bin_op") || parser.parseOperand(ptr) ||
      parser.parseComma() || parser.parseOperand(val) ||
      parseAtomicOrdering(parser, result, "ordering") ||
      parser.parseOptionalAttrDict(result.attributes) ||
      parser.parseColonType(type) ||
      parser.resolveOperand(ptr, type.getPointerTo(), result.operands) ||
      parser.resolveOperand(val, type, result.operands))
    return failure();

  result.addTypes(type);
  return success();
}

static LogicalResult verify(AtomicRMWOp op) {
  auto ptrType = op.ptr().getType().cast<LLVM::LLVMType>();
  auto valType = op.val().getType().cast<LLVM::LLVMType>();
  if (valType != ptrType.getPointerElementTy())
    return op.emitOpError("expected LLVM IR element type for operand #0 to "
                          "match type for operand #1");
  auto resType = op.res().getType().cast<LLVM::LLVMType>();
  if (resType != valType)
    return op.emitOpError(
        "expected LLVM IR result type to match type for operand #1");
  if (op.bin_op() == AtomicBinOp::fadd || op.bin_op() == AtomicBinOp::fsub) {
    if (!valType.isFloatingPointTy())
      return op.emitOpError("expected LLVM IR floating point type");
  } else if (op.bin_op() == AtomicBinOp::xchg) {
    if (!valType.isIntegerTy(8) && !valType.isIntegerTy(16) &&
        !valType.isIntegerTy(32) && !valType.isIntegerTy(64) &&
        !valType.isBFloatTy() && !valType.isHalfTy() && !valType.isFloatTy() &&
        !valType.isDoubleTy())
      return op.emitOpError("unexpected LLVM IR type for 'xchg' bin_op");
  } else {
    if (!valType.isIntegerTy(8) && !valType.isIntegerTy(16) &&
        !valType.isIntegerTy(32) && !valType.isIntegerTy(64))
      return op.emitOpError("expected LLVM IR integer type");
  }
  return success();
}

//===----------------------------------------------------------------------===//
// Printer, parser and verifier for LLVM::AtomicCmpXchgOp.
//===----------------------------------------------------------------------===//

static void printAtomicCmpXchgOp(OpAsmPrinter &p, AtomicCmpXchgOp &op) {
  p << op.getOperationName() << ' ' << op.ptr() << ", " << op.cmp() << ", "
    << op.val() << ' ' << stringifyAtomicOrdering(op.success_ordering()) << ' '
    << stringifyAtomicOrdering(op.failure_ordering());
  p.printOptionalAttrDict(op.getAttrs(),
                          {"success_ordering", "failure_ordering"});
  p << " : " << op.val().getType();
}

// <operation> ::= `llvm.cmpxchg` ssa-use `,` ssa-use `,` ssa-use
//                 keyword keyword attribute-dict? `:` type
static ParseResult parseAtomicCmpXchgOp(OpAsmParser &parser,
                                        OperationState &result) {
  auto &builder = parser.getBuilder();
  LLVMType type;
  OpAsmParser::OperandType ptr, cmp, val;
  if (parser.parseOperand(ptr) || parser.parseComma() ||
      parser.parseOperand(cmp) || parser.parseComma() ||
      parser.parseOperand(val) ||
      parseAtomicOrdering(parser, result, "success_ordering") ||
      parseAtomicOrdering(parser, result, "failure_ordering") ||
      parser.parseOptionalAttrDict(result.attributes) ||
      parser.parseColonType(type) ||
      parser.resolveOperand(ptr, type.getPointerTo(), result.operands) ||
      parser.resolveOperand(cmp, type, result.operands) ||
      parser.resolveOperand(val, type, result.operands))
    return failure();

  auto boolType = LLVMType::getInt1Ty(builder.getContext());
  auto resultType = LLVMType::getStructTy(type, boolType);
  result.addTypes(resultType);

  return success();
}

static LogicalResult verify(AtomicCmpXchgOp op) {
  auto ptrType = op.ptr().getType().cast<LLVM::LLVMType>();
  if (!ptrType.isPointerTy())
    return op.emitOpError("expected LLVM IR pointer type for operand #0");
  auto cmpType = op.cmp().getType().cast<LLVM::LLVMType>();
  auto valType = op.val().getType().cast<LLVM::LLVMType>();
  if (cmpType != ptrType.getPointerElementTy() || cmpType != valType)
    return op.emitOpError("expected LLVM IR element type for operand #0 to "
                          "match type for all other operands");
  if (!valType.isPointerTy() && !valType.isIntegerTy(8) &&
      !valType.isIntegerTy(16) && !valType.isIntegerTy(32) &&
      !valType.isIntegerTy(64) && !valType.isBFloatTy() &&
      !valType.isHalfTy() && !valType.isFloatTy() && !valType.isDoubleTy())
    return op.emitOpError("unexpected LLVM IR type");
  if (op.success_ordering() < AtomicOrdering::monotonic ||
      op.failure_ordering() < AtomicOrdering::monotonic)
    return op.emitOpError("ordering must be at least 'monotonic'");
  if (op.failure_ordering() == AtomicOrdering::release ||
      op.failure_ordering() == AtomicOrdering::acq_rel)
    return op.emitOpError("failure ordering cannot be 'release' or 'acq_rel'");
  return success();
}

//===----------------------------------------------------------------------===//
// Printer, parser and verifier for LLVM::FenceOp.
//===----------------------------------------------------------------------===//

// <operation> ::= `llvm.fence` (`syncscope(`strAttr`)`)? keyword
// attribute-dict?
static ParseResult parseFenceOp(OpAsmParser &parser, OperationState &result) {
  StringAttr sScope;
  StringRef syncscopeKeyword = "syncscope";
  if (!failed(parser.parseOptionalKeyword(syncscopeKeyword))) {
    if (parser.parseLParen() ||
        parser.parseAttribute(sScope, syncscopeKeyword, result.attributes) ||
        parser.parseRParen())
      return failure();
  } else {
    result.addAttribute(syncscopeKeyword,
                        parser.getBuilder().getStringAttr(""));
  }
  if (parseAtomicOrdering(parser, result, "ordering") ||
      parser.parseOptionalAttrDict(result.attributes))
    return failure();
  return success();
}

static void printFenceOp(OpAsmPrinter &p, FenceOp &op) {
  StringRef syncscopeKeyword = "syncscope";
  p << op.getOperationName() << ' ';
  if (!op.getAttr(syncscopeKeyword).cast<StringAttr>().getValue().empty())
    p << "syncscope(" << op.getAttr(syncscopeKeyword) << ") ";
  p << stringifyAtomicOrdering(op.ordering());
}

static LogicalResult verify(FenceOp &op) {
  if (op.ordering() == AtomicOrdering::not_atomic ||
      op.ordering() == AtomicOrdering::unordered ||
      op.ordering() == AtomicOrdering::monotonic)
    return op.emitOpError("can be given only acquire, release, acq_rel, "
                          "and seq_cst orderings");
  return success();
}

//===----------------------------------------------------------------------===//
// LLVMDialect initialization, type parsing, and registration.
//===----------------------------------------------------------------------===//

void LLVMDialect::initialize() {
  // clang-format off
  addTypes<LLVMVoidType,
           LLVMHalfType,
           LLVMBFloatType,
           LLVMFloatType,
           LLVMDoubleType,
           LLVMFP128Type,
           LLVMX86FP80Type,
           LLVMPPCFP128Type,
           LLVMX86MMXType,
           LLVMTokenType,
           LLVMLabelType,
           LLVMMetadataType,
           LLVMFunctionType,
           LLVMIntegerType,
           LLVMPointerType,
           LLVMFixedVectorType,
           LLVMScalableVectorType,
           LLVMArrayType,
           LLVMStructType>();
  // clang-format on
  addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/LLVMIR/LLVMOps.cpp.inc"
      >();

  // Support unknown operations because not all LLVM operations are registered.
  allowUnknownOperations();
}

#define GET_OP_CLASSES
#include "mlir/Dialect/LLVMIR/LLVMOps.cpp.inc"

/// Parse a type registered to this dialect.
Type LLVMDialect::parseType(DialectAsmParser &parser) const {
  return detail::parseType(parser);
}

/// Print a type registered to this dialect.
void LLVMDialect::printType(Type type, DialectAsmPrinter &os) const {
  return detail::printType(type.cast<LLVMType>(), os);
}

LogicalResult LLVMDialect::verifyDataLayoutString(
    StringRef descr, llvm::function_ref<void(const Twine &)> reportError) {
  llvm::Expected<llvm::DataLayout> maybeDataLayout =
      llvm::DataLayout::parse(descr);
  if (maybeDataLayout)
    return success();

  std::string message;
  llvm::raw_string_ostream messageStream(message);
  llvm::logAllUnhandledErrors(maybeDataLayout.takeError(), messageStream);
  reportError("invalid data layout descriptor: " + messageStream.str());
  return failure();
}

/// Verify LLVM dialect attributes.
LogicalResult LLVMDialect::verifyOperationAttribute(Operation *op,
                                                    NamedAttribute attr) {
  // If the data layout attribute is present, it must use the LLVM data layout
  // syntax. Try parsing it and report errors in case of failure. Users of this
  // attribute may assume it is well-formed and can pass it to the (asserting)
  // llvm::DataLayout constructor.
  if (attr.first.strref() != LLVM::LLVMDialect::getDataLayoutAttrName())
    return success();
  if (auto stringAttr = attr.second.dyn_cast<StringAttr>())
    return verifyDataLayoutString(
        stringAttr.getValue(),
        [op](const Twine &message) { op->emitOpError() << message.str(); });

  return op->emitOpError() << "expected '"
                           << LLVM::LLVMDialect::getDataLayoutAttrName()
                           << "' to be a string attribute";
}

/// Verify LLVMIR function argument attributes.
LogicalResult LLVMDialect::verifyRegionArgAttribute(Operation *op,
                                                    unsigned regionIdx,
                                                    unsigned argIdx,
                                                    NamedAttribute argAttr) {
  // Check that llvm.noalias is a boolean attribute.
  if (argAttr.first == "llvm.noalias" && !argAttr.second.isa<BoolAttr>())
    return op->emitError()
           << "llvm.noalias argument attribute of non boolean type";
  // Check that llvm.align is an integer attribute.
  if (argAttr.first == "llvm.align" && !argAttr.second.isa<IntegerAttr>())
    return op->emitError()
           << "llvm.align argument attribute of non integer type";
  return success();
}

//===----------------------------------------------------------------------===//
// Utility functions.
//===----------------------------------------------------------------------===//

Value mlir::LLVM::createGlobalString(Location loc, OpBuilder &builder,
                                     StringRef name, StringRef value,
                                     LLVM::Linkage linkage) {
  assert(builder.getInsertionBlock() &&
         builder.getInsertionBlock()->getParentOp() &&
         "expected builder to point to a block constrained in an op");
  auto module =
      builder.getInsertionBlock()->getParentOp()->getParentOfType<ModuleOp>();
  assert(module && "builder points to an op outside of a module");

  // Create the global at the entry of the module.
  OpBuilder moduleBuilder(module.getBodyRegion());
  MLIRContext *ctx = builder.getContext();
  auto type =
      LLVM::LLVMType::getArrayTy(LLVM::LLVMType::getInt8Ty(ctx), value.size());
  auto global = moduleBuilder.create<LLVM::GlobalOp>(
      loc, type, /*isConstant=*/true, linkage, name,
      builder.getStringAttr(value));

  // Get the pointer to the first character in the global string.
  Value globalPtr = builder.create<LLVM::AddressOfOp>(loc, global);
  Value cst0 = builder.create<LLVM::ConstantOp>(
      loc, LLVM::LLVMType::getInt64Ty(ctx),
      builder.getIntegerAttr(builder.getIndexType(), 0));
  return builder.create<LLVM::GEPOp>(loc, LLVM::LLVMType::getInt8PtrTy(ctx),
                                     globalPtr, ValueRange{cst0, cst0});
}

bool mlir::LLVM::satisfiesLLVMModule(Operation *op) {
  return op->hasTrait<OpTrait::SymbolTable>() &&
         op->hasTrait<OpTrait::IsIsolatedFromAbove>();
}