transform_reduce.pass.cpp
4.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
// -*- C++ -*-
//===-- transform_reduce.pass.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++98, c++03, c++11, c++14
#include "support/pstl_test_config.h"
#include <execution>
#include <numeric>
#include "support/utils.h"
using namespace TestUtils;
// Functor for xor-operation for modeling binary operations in inner_product
class XOR
{
public:
template <typename T>
T
operator()(const T& left, const T& right) const
{
return left ^ right;
}
};
// Model of User-defined class
class MyClass
{
public:
int32_t my_field;
MyClass() { my_field = 0; }
MyClass(int32_t in) { my_field = in; }
MyClass(const MyClass& in) { my_field = in.my_field; }
friend MyClass
operator+(const MyClass& x, const MyClass& y)
{
return MyClass(x.my_field + y.my_field);
}
friend MyClass
operator-(const MyClass& x)
{
return MyClass(-x.my_field);
}
friend MyClass operator*(const MyClass& x, const MyClass& y)
{
return MyClass(x.my_field * y.my_field);
}
friend bool operator==(const MyClass& x, const MyClass& y)
{
return x.my_field == y.my_field;
}
};
template <typename T>
void
CheckResults(const T& expected, const T& in)
{
EXPECT_TRUE(expected == in, "wrong result of transform_reduce");
}
// We need to check correctness only for "int" (for example) except cases
// if we have "floating-point type"-specialization
void
CheckResults(const float32_t&, const float32_t&)
{
}
// Test for different types and operations with different iterators
struct test_transform_reduce
{
template <typename Policy, typename InputIterator1, typename InputIterator2, typename T, typename BinaryOperation1,
typename BinaryOperation2, typename UnaryOp>
void
operator()(Policy&& exec, InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2,
T init, BinaryOperation1 opB1, BinaryOperation2 opB2, UnaryOp opU)
{
auto expectedB = std::inner_product(first1, last1, first2, init, opB1, opB2);
auto expectedU = transform_reduce_serial(first1, last1, init, opB1, opU);
T resRA = std::transform_reduce(exec, first1, last1, first2, init, opB1, opB2);
CheckResults(expectedB, resRA);
resRA = std::transform_reduce(exec, first1, last1, init, opB1, opU);
CheckResults(expectedU, resRA);
}
};
template <typename T, typename BinaryOperation1, typename BinaryOperation2, typename UnaryOp, typename Initializer>
void
test_by_type(T init, BinaryOperation1 opB1, BinaryOperation2 opB2, UnaryOp opU, Initializer initObj)
{
std::size_t maxSize = 100000;
Sequence<T> in1(maxSize, initObj);
Sequence<T> in2(maxSize, initObj);
for (std::size_t n = 0; n < maxSize; n = n < 16 ? n + 1 : size_t(3.1415 * n))
{
invoke_on_all_policies(test_transform_reduce(), in1.begin(), in1.begin() + n, in2.begin(), in2.begin() + n,
init, opB1, opB2, opU);
invoke_on_all_policies(test_transform_reduce(), in1.cbegin(), in1.cbegin() + n, in2.cbegin(), in2.cbegin() + n,
init, opB1, opB2, opU);
}
}
int
main()
{
test_by_type<int32_t>(42, std::plus<int32_t>(), std::multiplies<int32_t>(), std::negate<int32_t>(),
[](std::size_t) -> int32_t { return int32_t(rand() % 1000); });
test_by_type<int64_t>(0, [](const int64_t& a, const int64_t& b) -> int64_t { return a | b; }, XOR(),
[](const int64_t& x) -> int64_t { return x * 2; },
[](std::size_t) -> int64_t { return int64_t(rand() % 1000); });
test_by_type<float32_t>(
1.0f, std::multiplies<float32_t>(), [](const float32_t& a, const float32_t& b) -> float32_t { return a + b; },
[](const float32_t& x) -> float32_t { return x + 2; }, [](std::size_t) -> float32_t { return rand() % 1000; });
test_by_type<MyClass>(MyClass(), std::plus<MyClass>(), std::multiplies<MyClass>(), std::negate<MyClass>(),
[](std::size_t) -> MyClass { return MyClass(rand() % 1000); });
std::cout << done() << std::endl;
return 0;
}