adjacent_difference.pass.cpp
5.63 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
// -*- C++ -*-
//===-- adjacent_difference.pass.cpp --------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++98, c++03, c++11, c++14
#include "support/pstl_test_config.h"
#include <iterator>
#include <execution>
#include <numeric>
#include "support/utils.h"
using namespace TestUtils;
template <typename T>
struct wrapper
{
T t;
constexpr explicit wrapper(T t_) : t(t_) {}
template <typename T2>
constexpr wrapper(const wrapper<T2>& a)
{
t = a.t;
}
template <typename T2>
constexpr void
operator=(const wrapper<T2>& a)
{
t = a.t;
}
constexpr wrapper<T>
operator-(const wrapper<T>& a) const
{
return wrapper<T>(t - a.t);
}
};
template <typename T>
bool
compare(const T& a, const T& b)
{
return a == b;
}
template <typename T>
bool
compare(const wrapper<T>& a, const wrapper<T>& b)
{
return a.t == b.t;
}
template <typename Iterator1, typename Iterator2, typename T, typename Function>
typename std::enable_if<!std::is_floating_point<T>::value, bool>::type
compute_and_check(Iterator1 first, Iterator1 last, Iterator2 d_first, T, Function f)
{
using T2 = typename std::iterator_traits<Iterator2>::value_type;
if (first == last)
return true;
{
T2 temp(*first);
if (!compare(temp, *d_first))
return false;
}
Iterator1 second = std::next(first);
++d_first;
for (; second != last; ++first, ++second, ++d_first)
{
T2 temp(f(*second, *first));
if (!compare(temp, *d_first))
return false;
}
return true;
}
// we don't want to check equality here
// because we can't be sure it will be strictly equal for floating point types
template <typename Iterator1, typename Iterator2, typename T, typename Function>
typename std::enable_if<std::is_floating_point<T>::value, bool>::type compute_and_check(Iterator1, Iterator1, Iterator2,
T, Function)
{
return true;
}
struct test_one_policy
{
#if _PSTL_ICC_17_VC141_TEST_SIMD_LAMBDA_DEBUG_32_BROKEN || \
_PSTL_ICC_16_VC14_TEST_SIMD_LAMBDA_DEBUG_32_BROKEN // dummy specialization by policy type, in case of broken configuration
template <typename Iterator1, typename Iterator2, typename T, typename Function>
typename std::enable_if<is_same_iterator_category<Iterator1, std::random_access_iterator_tag>::value, void>::type
operator()(pstl::execution::unsequenced_policy, Iterator1 data_b, Iterator1 data_e, Iterator2 actual_b,
Iterator2 actual_e, T trash, Function f)
{
}
template <typename Iterator1, typename Iterator2, typename T, typename Function>
typename std::enable_if<is_same_iterator_category<Iterator1, std::random_access_iterator_tag>::value, void>::type
operator()(pstl::execution::parallel_unsequenced_policy, Iterator1 data_b, Iterator1 data_e, Iterator2 actual_b,
Iterator2 actual_e, T trash, Function f)
{
}
#endif
template <typename ExecutionPolicy, typename Iterator1, typename Iterator2, typename T, typename Function>
void
operator()(ExecutionPolicy&& exec, Iterator1 data_b, Iterator1 data_e, Iterator2 actual_b, Iterator2 actual_e,
T trash, Function f)
{
using namespace std;
using T2 = typename std::iterator_traits<Iterator1>::value_type;
fill(actual_b, actual_e, trash);
Iterator2 actual_return = adjacent_difference(exec, data_b, data_e, actual_b);
EXPECT_TRUE(compute_and_check(data_b, data_e, actual_b, T2(0), std::minus<T2>()),
"wrong effect of adjacent_difference");
EXPECT_TRUE(actual_return == actual_e, "wrong result of adjacent_difference");
fill(actual_b, actual_e, trash);
actual_return = adjacent_difference(exec, data_b, data_e, actual_b, f);
EXPECT_TRUE(compute_and_check(data_b, data_e, actual_b, T2(0), f),
"wrong effect of adjacent_difference with functor");
EXPECT_TRUE(actual_return == actual_e, "wrong result of adjacent_difference with functor");
}
};
template <typename T1, typename T2, typename Pred>
void
test(Pred pred)
{
const std::size_t max_len = 100000;
static constexpr T2 value = T2(77);
static constexpr T1 trash = T1(31);
Sequence<T1> actual(max_len, [](std::size_t i) { return T1(i); });
Sequence<T2> data(max_len, [](std::size_t i) { return i % 3 == 2 ? T2(i * i) : value; });
for (std::size_t len = 0; len < max_len; len = len <= 16 ? len + 1 : std::size_t(3.1415 * len))
{
invoke_on_all_policies(test_one_policy(), data.begin(), data.begin() + len, actual.begin(),
actual.begin() + len, trash, pred);
invoke_on_all_policies(test_one_policy(), data.cbegin(), data.cbegin() + len, actual.begin(),
actual.begin() + len, trash, pred);
}
}
int
main()
{
test<uint8_t, uint32_t>([](uint32_t a, uint32_t b) { return a - b; });
test<int32_t, int64_t>([](int64_t a, int64_t b) { return a / (b + 1); });
test<int64_t, float32_t>([](float32_t a, float32_t b) { return (a + b) / 2; });
test<wrapper<int32_t>, wrapper<int64_t>>(
[](const wrapper<int64_t>& a, const wrapper<int64_t>& b) { return a - b; });
std::cout << done() << std::endl;
return 0;
}