ScopHelper.cpp 23.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
//===- ScopHelper.cpp - Some Helper Functions for Scop.  ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Small functions that help with Scop and LLVM-IR.
//
//===----------------------------------------------------------------------===//

#include "polly/Support/ScopHelper.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/Support/SCEVValidator.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"

using namespace llvm;
using namespace polly;

#define DEBUG_TYPE "polly-scop-helper"

static cl::opt<bool> PollyAllowErrorBlocks(
    "polly-allow-error-blocks",
    cl::desc("Allow to speculate on the execution of 'error blocks'."),
    cl::Hidden, cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::list<std::string> DebugFunctions(
    "polly-debug-func",
    cl::desc("Allow calls to the specified functions in SCoPs even if their "
             "side-effects are unknown. This can be used to do debug output in "
             "Polly-transformed code."),
    cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory));

// Ensures that there is just one predecessor to the entry node from outside the
// region.
// The identity of the region entry node is preserved.
static void simplifyRegionEntry(Region *R, DominatorTree *DT, LoopInfo *LI,
                                RegionInfo *RI) {
  BasicBlock *EnteringBB = R->getEnteringBlock();
  BasicBlock *Entry = R->getEntry();

  // Before (one of):
  //
  //                       \    /            //
  //                      EnteringBB         //
  //                        |    \------>    //
  //   \   /                |                //
  //   Entry <--\         Entry <--\         //
  //   /   \    /         /   \    /         //
  //        ....               ....          //

  // Create single entry edge if the region has multiple entry edges.
  if (!EnteringBB) {
    SmallVector<BasicBlock *, 4> Preds;
    for (BasicBlock *P : predecessors(Entry))
      if (!R->contains(P))
        Preds.push_back(P);

    BasicBlock *NewEntering =
        SplitBlockPredecessors(Entry, Preds, ".region_entering", DT, LI);

    if (RI) {
      // The exit block of predecessing regions must be changed to NewEntering
      for (BasicBlock *ExitPred : predecessors(NewEntering)) {
        Region *RegionOfPred = RI->getRegionFor(ExitPred);
        if (RegionOfPred->getExit() != Entry)
          continue;

        while (!RegionOfPred->isTopLevelRegion() &&
               RegionOfPred->getExit() == Entry) {
          RegionOfPred->replaceExit(NewEntering);
          RegionOfPred = RegionOfPred->getParent();
        }
      }

      // Make all ancestors use EnteringBB as entry; there might be edges to it
      Region *AncestorR = R->getParent();
      RI->setRegionFor(NewEntering, AncestorR);
      while (!AncestorR->isTopLevelRegion() && AncestorR->getEntry() == Entry) {
        AncestorR->replaceEntry(NewEntering);
        AncestorR = AncestorR->getParent();
      }
    }

    EnteringBB = NewEntering;
  }
  assert(R->getEnteringBlock() == EnteringBB);

  // After:
  //
  //    \    /       //
  //  EnteringBB     //
  //      |          //
  //      |          //
  //    Entry <--\   //
  //    /   \    /   //
  //         ....    //
}

// Ensure that the region has a single block that branches to the exit node.
static void simplifyRegionExit(Region *R, DominatorTree *DT, LoopInfo *LI,
                               RegionInfo *RI) {
  BasicBlock *ExitBB = R->getExit();
  BasicBlock *ExitingBB = R->getExitingBlock();

  // Before:
  //
  //   (Region)   ______/  //
  //      \  |   /         //
  //       ExitBB          //
  //       /    \          //

  if (!ExitingBB) {
    SmallVector<BasicBlock *, 4> Preds;
    for (BasicBlock *P : predecessors(ExitBB))
      if (R->contains(P))
        Preds.push_back(P);

    //  Preds[0] Preds[1]      otherBB //
    //         \  |  ________/         //
    //          \ | /                  //
    //           BB                    //
    ExitingBB =
        SplitBlockPredecessors(ExitBB, Preds, ".region_exiting", DT, LI);
    // Preds[0] Preds[1]      otherBB  //
    //        \  /           /         //
    // BB.region_exiting    /          //
    //                  \  /           //
    //                   BB            //

    if (RI)
      RI->setRegionFor(ExitingBB, R);

    // Change the exit of nested regions, but not the region itself,
    R->replaceExitRecursive(ExitingBB);
    R->replaceExit(ExitBB);
  }
  assert(ExitingBB == R->getExitingBlock());

  // After:
  //
  //     \   /                //
  //    ExitingBB     _____/  //
  //          \      /        //
  //           ExitBB         //
  //           /    \         //
}

void polly::simplifyRegion(Region *R, DominatorTree *DT, LoopInfo *LI,
                           RegionInfo *RI) {
  assert(R && !R->isTopLevelRegion());
  assert(!RI || RI == R->getRegionInfo());
  assert((!RI || DT) &&
         "RegionInfo requires DominatorTree to be updated as well");

  simplifyRegionEntry(R, DT, LI, RI);
  simplifyRegionExit(R, DT, LI, RI);
  assert(R->isSimple());
}

// Split the block into two successive blocks.
//
// Like llvm::SplitBlock, but also preserves RegionInfo
static BasicBlock *splitBlock(BasicBlock *Old, Instruction *SplitPt,
                              DominatorTree *DT, llvm::LoopInfo *LI,
                              RegionInfo *RI) {
  assert(Old && SplitPt);

  // Before:
  //
  //  \   /  //
  //   Old   //
  //  /   \  //

  BasicBlock *NewBlock = llvm::SplitBlock(Old, SplitPt, DT, LI);

  if (RI) {
    Region *R = RI->getRegionFor(Old);
    RI->setRegionFor(NewBlock, R);
  }

  // After:
  //
  //   \   /    //
  //    Old     //
  //     |      //
  //  NewBlock  //
  //   /   \    //

  return NewBlock;
}

void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, DominatorTree *DT,
                                     LoopInfo *LI, RegionInfo *RI) {
  // Find first non-alloca instruction. Every basic block has a non-alloca
  // instruction, as every well formed basic block has a terminator.
  BasicBlock::iterator I = EntryBlock->begin();
  while (isa<AllocaInst>(I))
    ++I;

  // splitBlock updates DT, LI and RI.
  splitBlock(EntryBlock, &*I, DT, LI, RI);
}

void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) {
  auto *DTWP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
  auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
  auto *LIWP = P->getAnalysisIfAvailable<LoopInfoWrapperPass>();
  auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
  RegionInfoPass *RIP = P->getAnalysisIfAvailable<RegionInfoPass>();
  RegionInfo *RI = RIP ? &RIP->getRegionInfo() : nullptr;

  // splitBlock updates DT, LI and RI.
  polly::splitEntryBlockForAlloca(EntryBlock, DT, LI, RI);
}

void polly::recordAssumption(polly::RecordedAssumptionsTy *RecordedAssumptions,
                             polly::AssumptionKind Kind, isl::set Set,
                             DebugLoc Loc, polly::AssumptionSign Sign,
                             BasicBlock *BB) {
  assert((Set.is_params() || BB) &&
         "Assumptions without a basic block must be parameter sets");
  if (RecordedAssumptions)
    RecordedAssumptions->push_back({Kind, Sign, Set, Loc, BB});
}

/// The SCEVExpander will __not__ generate any code for an existing SDiv/SRem
/// instruction but just use it, if it is referenced as a SCEVUnknown. We want
/// however to generate new code if the instruction is in the analyzed region
/// and we generate code outside/in front of that region. Hence, we generate the
/// code for the SDiv/SRem operands in front of the analyzed region and then
/// create a new SDiv/SRem operation there too.
struct ScopExpander : SCEVVisitor<ScopExpander, const SCEV *> {
  friend struct SCEVVisitor<ScopExpander, const SCEV *>;

  explicit ScopExpander(const Region &R, ScalarEvolution &SE,
                        const DataLayout &DL, const char *Name, ValueMapT *VMap,
                        BasicBlock *RTCBB)
      : Expander(SE, DL, Name), SE(SE), Name(Name), R(R), VMap(VMap),
        RTCBB(RTCBB) {}

  Value *expandCodeFor(const SCEV *E, Type *Ty, Instruction *I) {
    // If we generate code in the region we will immediately fall back to the
    // SCEVExpander, otherwise we will stop at all unknowns in the SCEV and if
    // needed replace them by copies computed in the entering block.
    if (!R.contains(I))
      E = visit(E);
    return Expander.expandCodeFor(E, Ty, I);
  }

  const SCEV *visit(const SCEV *E) {
    // Cache the expansion results for intermediate SCEV expressions. A SCEV
    // expression can refer to an operand multiple times (e.g. "x*x), so
    // a naive visitor takes exponential time.
    if (SCEVCache.count(E))
      return SCEVCache[E];
    const SCEV *Result = SCEVVisitor::visit(E);
    SCEVCache[E] = Result;
    return Result;
  }

private:
  SCEVExpander Expander;
  ScalarEvolution &SE;
  const char *Name;
  const Region &R;
  ValueMapT *VMap;
  BasicBlock *RTCBB;
  DenseMap<const SCEV *, const SCEV *> SCEVCache;

  const SCEV *visitGenericInst(const SCEVUnknown *E, Instruction *Inst,
                               Instruction *IP) {
    if (!Inst || !R.contains(Inst))
      return E;

    assert(!Inst->mayThrow() && !Inst->mayReadOrWriteMemory() &&
           !isa<PHINode>(Inst));

    auto *InstClone = Inst->clone();
    for (auto &Op : Inst->operands()) {
      assert(SE.isSCEVable(Op->getType()));
      auto *OpSCEV = SE.getSCEV(Op);
      auto *OpClone = expandCodeFor(OpSCEV, Op->getType(), IP);
      InstClone->replaceUsesOfWith(Op, OpClone);
    }

    InstClone->setName(Name + Inst->getName());
    InstClone->insertBefore(IP);
    return SE.getSCEV(InstClone);
  }

  const SCEV *visitUnknown(const SCEVUnknown *E) {

    // If a value mapping was given try if the underlying value is remapped.
    Value *NewVal = VMap ? VMap->lookup(E->getValue()) : nullptr;
    if (NewVal) {
      auto *NewE = SE.getSCEV(NewVal);

      // While the mapped value might be different the SCEV representation might
      // not be. To this end we will check before we go into recursion here.
      if (E != NewE)
        return visit(NewE);
    }

    Instruction *Inst = dyn_cast<Instruction>(E->getValue());
    Instruction *IP;
    if (Inst && !R.contains(Inst))
      IP = Inst;
    else if (Inst && RTCBB->getParent() == Inst->getFunction())
      IP = RTCBB->getTerminator();
    else
      IP = RTCBB->getParent()->getEntryBlock().getTerminator();

    if (!Inst || (Inst->getOpcode() != Instruction::SRem &&
                  Inst->getOpcode() != Instruction::SDiv))
      return visitGenericInst(E, Inst, IP);

    const SCEV *LHSScev = SE.getSCEV(Inst->getOperand(0));
    const SCEV *RHSScev = SE.getSCEV(Inst->getOperand(1));

    if (!SE.isKnownNonZero(RHSScev))
      RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1));

    Value *LHS = expandCodeFor(LHSScev, E->getType(), IP);
    Value *RHS = expandCodeFor(RHSScev, E->getType(), IP);

    Inst = BinaryOperator::Create((Instruction::BinaryOps)Inst->getOpcode(),
                                  LHS, RHS, Inst->getName() + Name, IP);
    return SE.getSCEV(Inst);
  }

  /// The following functions will just traverse the SCEV and rebuild it with
  /// the new operands returned by the traversal.
  ///
  ///{
  const SCEV *visitConstant(const SCEVConstant *E) { return E; }
  const SCEV *visitTruncateExpr(const SCEVTruncateExpr *E) {
    return SE.getTruncateExpr(visit(E->getOperand()), E->getType());
  }
  const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *E) {
    return SE.getZeroExtendExpr(visit(E->getOperand()), E->getType());
  }
  const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *E) {
    return SE.getSignExtendExpr(visit(E->getOperand()), E->getType());
  }
  const SCEV *visitUDivExpr(const SCEVUDivExpr *E) {
    auto *RHSScev = visit(E->getRHS());
    if (!SE.isKnownNonZero(RHSScev))
      RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1));
    return SE.getUDivExpr(visit(E->getLHS()), RHSScev);
  }
  const SCEV *visitAddExpr(const SCEVAddExpr *E) {
    SmallVector<const SCEV *, 4> NewOps;
    for (const SCEV *Op : E->operands())
      NewOps.push_back(visit(Op));
    return SE.getAddExpr(NewOps);
  }
  const SCEV *visitMulExpr(const SCEVMulExpr *E) {
    SmallVector<const SCEV *, 4> NewOps;
    for (const SCEV *Op : E->operands())
      NewOps.push_back(visit(Op));
    return SE.getMulExpr(NewOps);
  }
  const SCEV *visitUMaxExpr(const SCEVUMaxExpr *E) {
    SmallVector<const SCEV *, 4> NewOps;
    for (const SCEV *Op : E->operands())
      NewOps.push_back(visit(Op));
    return SE.getUMaxExpr(NewOps);
  }
  const SCEV *visitSMaxExpr(const SCEVSMaxExpr *E) {
    SmallVector<const SCEV *, 4> NewOps;
    for (const SCEV *Op : E->operands())
      NewOps.push_back(visit(Op));
    return SE.getSMaxExpr(NewOps);
  }
  const SCEV *visitUMinExpr(const SCEVUMinExpr *E) {
    SmallVector<const SCEV *, 4> NewOps;
    for (const SCEV *Op : E->operands())
      NewOps.push_back(visit(Op));
    return SE.getUMinExpr(NewOps);
  }
  const SCEV *visitSMinExpr(const SCEVSMinExpr *E) {
    SmallVector<const SCEV *, 4> NewOps;
    for (const SCEV *Op : E->operands())
      NewOps.push_back(visit(Op));
    return SE.getSMinExpr(NewOps);
  }
  const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) {
    SmallVector<const SCEV *, 4> NewOps;
    for (const SCEV *Op : E->operands())
      NewOps.push_back(visit(Op));
    return SE.getAddRecExpr(NewOps, E->getLoop(), E->getNoWrapFlags());
  }
  ///}
};

Value *polly::expandCodeFor(Scop &S, ScalarEvolution &SE, const DataLayout &DL,
                            const char *Name, const SCEV *E, Type *Ty,
                            Instruction *IP, ValueMapT *VMap,
                            BasicBlock *RTCBB) {
  ScopExpander Expander(S.getRegion(), SE, DL, Name, VMap, RTCBB);
  return Expander.expandCodeFor(E, Ty, IP);
}

bool polly::isErrorBlock(BasicBlock &BB, const Region &R, LoopInfo &LI,
                         const DominatorTree &DT) {
  if (!PollyAllowErrorBlocks)
    return false;

  if (isa<UnreachableInst>(BB.getTerminator()))
    return true;

  if (LI.isLoopHeader(&BB))
    return false;

  // Basic blocks that are always executed are not considered error blocks,
  // as their execution can not be a rare event.
  bool DominatesAllPredecessors = true;
  if (R.isTopLevelRegion()) {
    for (BasicBlock &I : *R.getEntry()->getParent())
      if (isa<ReturnInst>(I.getTerminator()) && !DT.dominates(&BB, &I))
        DominatesAllPredecessors = false;
  } else {
    for (auto Pred : predecessors(R.getExit()))
      if (R.contains(Pred) && !DT.dominates(&BB, Pred))
        DominatesAllPredecessors = false;
  }

  if (DominatesAllPredecessors)
    return false;

  for (Instruction &Inst : BB)
    if (CallInst *CI = dyn_cast<CallInst>(&Inst)) {
      if (isDebugCall(CI))
        continue;

      if (isIgnoredIntrinsic(CI))
        continue;

      // memset, memcpy and memmove are modeled intrinsics.
      if (isa<MemSetInst>(CI) || isa<MemTransferInst>(CI))
        continue;

      if (!CI->doesNotAccessMemory())
        return true;
      if (CI->doesNotReturn())
        return true;
    }

  return false;
}

Value *polly::getConditionFromTerminator(Instruction *TI) {
  if (BranchInst *BR = dyn_cast<BranchInst>(TI)) {
    if (BR->isUnconditional())
      return ConstantInt::getTrue(Type::getInt1Ty(TI->getContext()));

    return BR->getCondition();
  }

  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI))
    return SI->getCondition();

  return nullptr;
}

Loop *polly::getLoopSurroundingScop(Scop &S, LoopInfo &LI) {
  // Start with the smallest loop containing the entry and expand that
  // loop until it contains all blocks in the region. If there is a loop
  // containing all blocks in the region check if it is itself contained
  // and if so take the parent loop as it will be the smallest containing
  // the region but not contained by it.
  Loop *L = LI.getLoopFor(S.getEntry());
  while (L) {
    bool AllContained = true;
    for (auto *BB : S.blocks())
      AllContained &= L->contains(BB);
    if (AllContained)
      break;
    L = L->getParentLoop();
  }

  return L ? (S.contains(L) ? L->getParentLoop() : L) : nullptr;
}

unsigned polly::getNumBlocksInLoop(Loop *L) {
  unsigned NumBlocks = L->getNumBlocks();
  SmallVector<BasicBlock *, 4> ExitBlocks;
  L->getExitBlocks(ExitBlocks);

  for (auto ExitBlock : ExitBlocks) {
    if (isa<UnreachableInst>(ExitBlock->getTerminator()))
      NumBlocks++;
  }
  return NumBlocks;
}

unsigned polly::getNumBlocksInRegionNode(RegionNode *RN) {
  if (!RN->isSubRegion())
    return 1;

  Region *R = RN->getNodeAs<Region>();
  return std::distance(R->block_begin(), R->block_end());
}

Loop *polly::getRegionNodeLoop(RegionNode *RN, LoopInfo &LI) {
  if (!RN->isSubRegion()) {
    BasicBlock *BB = RN->getNodeAs<BasicBlock>();
    Loop *L = LI.getLoopFor(BB);

    // Unreachable statements are not considered to belong to a LLVM loop, as
    // they are not part of an actual loop in the control flow graph.
    // Nevertheless, we handle certain unreachable statements that are common
    // when modeling run-time bounds checks as being part of the loop to be
    // able to model them and to later eliminate the run-time bounds checks.
    //
    // Specifically, for basic blocks that terminate in an unreachable and
    // where the immediate predecessor is part of a loop, we assume these
    // basic blocks belong to the loop the predecessor belongs to. This
    // allows us to model the following code.
    //
    // for (i = 0; i < N; i++) {
    //   if (i > 1024)
    //     abort();            <- this abort might be translated to an
    //                            unreachable
    //
    //   A[i] = ...
    // }
    if (!L && isa<UnreachableInst>(BB->getTerminator()) && BB->getPrevNode())
      L = LI.getLoopFor(BB->getPrevNode());
    return L;
  }

  Region *NonAffineSubRegion = RN->getNodeAs<Region>();
  Loop *L = LI.getLoopFor(NonAffineSubRegion->getEntry());
  while (L && NonAffineSubRegion->contains(L))
    L = L->getParentLoop();
  return L;
}

static bool hasVariantIndex(GetElementPtrInst *Gep, Loop *L, Region &R,
                            ScalarEvolution &SE) {
  for (const Use &Val : llvm::drop_begin(Gep->operands(), 1)) {
    const SCEV *PtrSCEV = SE.getSCEVAtScope(Val, L);
    Loop *OuterLoop = R.outermostLoopInRegion(L);
    if (!SE.isLoopInvariant(PtrSCEV, OuterLoop))
      return true;
  }
  return false;
}

bool polly::isHoistableLoad(LoadInst *LInst, Region &R, LoopInfo &LI,
                            ScalarEvolution &SE, const DominatorTree &DT,
                            const InvariantLoadsSetTy &KnownInvariantLoads) {
  Loop *L = LI.getLoopFor(LInst->getParent());
  auto *Ptr = LInst->getPointerOperand();

  // A LoadInst is hoistable if the address it is loading from is also
  // invariant; in this case: another invariant load (whether that address
  // is also not written to has to be checked separately)
  // TODO: This only checks for a LoadInst->GetElementPtrInst->LoadInst
  // pattern generated by the Chapel frontend, but generally this applies
  // for any chain of instruction that does not also depend on any
  // induction variable
  if (auto *GepInst = dyn_cast<GetElementPtrInst>(Ptr)) {
    if (!hasVariantIndex(GepInst, L, R, SE)) {
      if (auto *DecidingLoad =
              dyn_cast<LoadInst>(GepInst->getPointerOperand())) {
        if (KnownInvariantLoads.count(DecidingLoad))
          return true;
      }
    }
  }

  const SCEV *PtrSCEV = SE.getSCEVAtScope(Ptr, L);
  while (L && R.contains(L)) {
    if (!SE.isLoopInvariant(PtrSCEV, L))
      return false;
    L = L->getParentLoop();
  }

  for (auto *User : Ptr->users()) {
    auto *UserI = dyn_cast<Instruction>(User);
    if (!UserI || !R.contains(UserI))
      continue;
    if (!UserI->mayWriteToMemory())
      continue;

    auto &BB = *UserI->getParent();
    if (DT.dominates(&BB, LInst->getParent()))
      return false;

    bool DominatesAllPredecessors = true;
    if (R.isTopLevelRegion()) {
      for (BasicBlock &I : *R.getEntry()->getParent())
        if (isa<ReturnInst>(I.getTerminator()) && !DT.dominates(&BB, &I))
          DominatesAllPredecessors = false;
    } else {
      for (auto Pred : predecessors(R.getExit()))
        if (R.contains(Pred) && !DT.dominates(&BB, Pred))
          DominatesAllPredecessors = false;
    }

    if (!DominatesAllPredecessors)
      continue;

    return false;
  }

  return true;
}

bool polly::isIgnoredIntrinsic(const Value *V) {
  if (auto *IT = dyn_cast<IntrinsicInst>(V)) {
    switch (IT->getIntrinsicID()) {
    // Lifetime markers are supported/ignored.
    case llvm::Intrinsic::lifetime_start:
    case llvm::Intrinsic::lifetime_end:
    // Invariant markers are supported/ignored.
    case llvm::Intrinsic::invariant_start:
    case llvm::Intrinsic::invariant_end:
    // Some misc annotations are supported/ignored.
    case llvm::Intrinsic::var_annotation:
    case llvm::Intrinsic::ptr_annotation:
    case llvm::Intrinsic::annotation:
    case llvm::Intrinsic::donothing:
    case llvm::Intrinsic::assume:
    // Some debug info intrinsics are supported/ignored.
    case llvm::Intrinsic::dbg_value:
    case llvm::Intrinsic::dbg_declare:
      return true;
    default:
      break;
    }
  }
  return false;
}

bool polly::canSynthesize(const Value *V, const Scop &S, ScalarEvolution *SE,
                          Loop *Scope) {
  if (!V || !SE->isSCEVable(V->getType()))
    return false;

  const InvariantLoadsSetTy &ILS = S.getRequiredInvariantLoads();
  if (const SCEV *Scev = SE->getSCEVAtScope(const_cast<Value *>(V), Scope))
    if (!isa<SCEVCouldNotCompute>(Scev))
      if (!hasScalarDepsInsideRegion(Scev, &S.getRegion(), Scope, false, ILS))
        return true;

  return false;
}

llvm::BasicBlock *polly::getUseBlock(const llvm::Use &U) {
  Instruction *UI = dyn_cast<Instruction>(U.getUser());
  if (!UI)
    return nullptr;

  if (PHINode *PHI = dyn_cast<PHINode>(UI))
    return PHI->getIncomingBlock(U);

  return UI->getParent();
}

llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::Loop *L, llvm::LoopInfo &LI,
                                           const BoxedLoopsSetTy &BoxedLoops) {
  while (BoxedLoops.count(L))
    L = L->getParentLoop();
  return L;
}

llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::BasicBlock *BB,
                                           llvm::LoopInfo &LI,
                                           const BoxedLoopsSetTy &BoxedLoops) {
  Loop *L = LI.getLoopFor(BB);
  return getFirstNonBoxedLoopFor(L, LI, BoxedLoops);
}

bool polly::isDebugCall(Instruction *Inst) {
  auto *CI = dyn_cast<CallInst>(Inst);
  if (!CI)
    return false;

  Function *CF = CI->getCalledFunction();
  if (!CF)
    return false;

  return std::find(DebugFunctions.begin(), DebugFunctions.end(),
                   CF->getName()) != DebugFunctions.end();
}

static bool hasDebugCall(BasicBlock *BB) {
  for (Instruction &Inst : *BB) {
    if (isDebugCall(&Inst))
      return true;
  }
  return false;
}

bool polly::hasDebugCall(ScopStmt *Stmt) {
  // Quick skip if no debug functions have been defined.
  if (DebugFunctions.empty())
    return false;

  if (!Stmt)
    return false;

  for (Instruction *Inst : Stmt->getInstructions())
    if (isDebugCall(Inst))
      return true;

  if (Stmt->isRegionStmt()) {
    for (BasicBlock *RBB : Stmt->getRegion()->blocks())
      if (RBB != Stmt->getEntryBlock() && ::hasDebugCall(RBB))
        return true;
  }

  return false;
}