gpu_group.c
54.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
/*
* Copyright 2010-2011 INRIA Saclay
* Copyright 2012-2014 Ecole Normale Superieure
* Copyright 2015 Sven Verdoolaege
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
* Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
* 91893 Orsay, France
* and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
*/
#include <isl/constraint.h>
#include <isl/ilp.h>
#include "gpu_array_tile.h"
#include "gpu_group.h"
#include "gpu_tree.h"
#include "schedule.h"
/* Print the name of the local copy of a given group of array references.
*/
__isl_give isl_printer *gpu_array_ref_group_print_name(
struct gpu_array_ref_group *group, __isl_take isl_printer *p)
{
int global = 0;
enum ppcg_group_access_type type;
type = gpu_array_ref_group_type(group);
if (type == ppcg_access_private)
p = isl_printer_print_str(p, "private_");
else if (type == ppcg_access_shared)
p = isl_printer_print_str(p, "shared_");
else
global = 1;
p = isl_printer_print_str(p, group->array->name);
if (!global && group->local_array->n_group > 1) {
p = isl_printer_print_str(p, "_");
p = isl_printer_print_int(p, group->nr);
}
return p;
}
/* Return the union of all read (read = 1) and/or write (write = 1)
* access relations in the group.
*/
__isl_give isl_union_map *gpu_array_ref_group_access_relation(
struct gpu_array_ref_group *group, int read, int write)
{
int i;
isl_union_map *access;
access = isl_union_map_empty(isl_map_get_space(group->access));
for (i = 0; i < group->n_ref; ++i) {
isl_map *map_i;
if (!((read && group->refs[i]->read) ||
(write && group->refs[i]->write)))
continue;
map_i = isl_map_copy(group->refs[i]->access);
access = isl_union_map_union(access,
isl_union_map_from_map(map_i));
}
return access;
}
/* Should this array reference group be mapped to private, shared or global
* memory?
* If we have computed both a private and a shared tile, then
* the tile with the smallest depth is used. If both have the same depth,
* then the private tile is used.
*/
enum ppcg_group_access_type gpu_array_ref_group_type(
struct gpu_array_ref_group *group)
{
if (group->private_tile && group->shared_tile &&
group->shared_tile->depth < group->private_tile->depth)
return ppcg_access_shared;
if (group->private_tile)
return ppcg_access_private;
if (group->shared_tile)
return ppcg_access_shared;
return ppcg_access_global;
}
/* Return the effective gpu_array_tile associated to "group" or
* NULL if there is no such gpu_array_tile.
*/
struct gpu_array_tile *gpu_array_ref_group_tile(
struct gpu_array_ref_group *group)
{
switch (gpu_array_ref_group_type(group)) {
case ppcg_access_global:
return NULL;
case ppcg_access_shared:
return group->shared_tile;
case ppcg_access_private:
return group->private_tile;
}
}
/* Does the tile associated to "group" require unrolling of the schedule
* dimensions mapped to threads?
* Note that this can only happen for private tiles.
*/
int gpu_array_ref_group_requires_unroll(struct gpu_array_ref_group *group)
{
struct gpu_array_tile *tile;
tile = gpu_array_ref_group_tile(group);
if (!tile)
return 0;
return tile->requires_unroll;
}
/* Given a constraint
*
* a(p,i) + j = g f(e)
*
* or -a(p,i) - j = g f(e) if sign < 0,
* store a(p,i) in bound->shift and g (stride) in bound->stride.
* a(p,i) is assumed to be an expression in only the parameters
* and the input dimensions.
*/
static void extract_stride(__isl_keep isl_constraint *c,
struct gpu_array_bound *bound, __isl_keep isl_val *stride, int sign)
{
int i;
isl_val *v;
isl_space *space;
unsigned nparam;
unsigned nvar;
isl_aff *aff;
isl_val_free(bound->stride);
bound->stride = isl_val_copy(stride);
space = isl_constraint_get_space(c);
space = isl_space_domain(space);
nparam = isl_space_dim(space, isl_dim_param);
nvar = isl_space_dim(space, isl_dim_set);
v = isl_constraint_get_constant_val(c);
if (sign < 0)
v = isl_val_neg(v);
aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
aff = isl_aff_set_constant_val(aff, v);
for (i = 0; i < nparam; ++i) {
if (!isl_constraint_involves_dims(c, isl_dim_param, i, 1))
continue;
v = isl_constraint_get_coefficient_val(c, isl_dim_param, i);
if (sign < 0)
v = isl_val_neg(v);
aff = isl_aff_add_coefficient_val(aff, isl_dim_param, i, v);
}
for (i = 0; i < nvar; ++i) {
if (!isl_constraint_involves_dims(c, isl_dim_in, i, 1))
continue;
v = isl_constraint_get_coefficient_val(c, isl_dim_in, i);
if (sign < 0)
v = isl_val_neg(v);
aff = isl_aff_add_coefficient_val(aff, isl_dim_in, i, v);
}
bound->shift = aff;
}
/* Given an equality constraint of a map with a single output dimension j,
* check if the constraint is of the form
*
* a(p,i) + j = g f(e)
*
* with a(p,i) an expression in the parameters and input dimensions
* and f(e) an expression in the existentially quantified variables.
* If so, and if g is larger than any such g from a previously considered
* constraint, then call extract_stride to record the stride information
* in bound.
*/
static isl_stat check_stride_constraint(__isl_take isl_constraint *c,
void *user)
{
int i;
isl_ctx *ctx;
isl_val *v;
unsigned n_div;
struct gpu_array_bound *bound = user;
ctx = isl_constraint_get_ctx(c);
n_div = isl_constraint_dim(c, isl_dim_div);
v = isl_constraint_get_coefficient_val(c, isl_dim_out, 0);
if (n_div && (isl_val_is_one(v) || isl_val_is_negone(v))) {
int s = isl_val_sgn(v);
isl_val *stride = isl_val_zero(ctx);
isl_val_free(v);
for (i = 0; i < n_div; ++i) {
v = isl_constraint_get_coefficient_val(c,
isl_dim_div, i);
stride = isl_val_gcd(stride, v);
}
if (!isl_val_is_zero(stride) &&
isl_val_gt(stride, bound->stride))
extract_stride(c, bound, stride, s);
isl_val_free(stride);
} else
isl_val_free(v);
isl_constraint_free(c);
return isl_stat_ok;
}
/* Given contraints on an array index i, check if we can find
* a shift a(p) and a stride g such that
*
* a(p) + i = 0 mod g
*
* If so, record the information in bound and apply the mapping
* i -> (i + a(p))/g to the array index in bounds and return
* the new constraints.
* If not, simply return the original constraints.
*
* If bounds is a subset of the space
*
* D -> i
*
* then the bound recorded in bound->shift is of the form
*
* D -> s(D)
*
* with s(D) equal to a(p) above.
* Next, we construct a mapping of the form
*
* [D -> i] -> [D -> (i + S(D))/g]
*
* This mapping is computed as follows.
* We first introduce "i" in the domain through precomposition
* with [D -> i] -> D obtaining
*
* [D -> i] -> s(D)
*
* Adding [D -> i] -> i produces
*
* [D -> i] -> i + s(D)
*
* and the domain product with [D -> i] -> D yields
*
* [D -> i] -> [D -> i + s(D)]
*
* Composition with [D -> i] -> [D -> i/g] gives the desired result.
*/
static __isl_give isl_basic_map *check_stride(struct gpu_array_bound *bound,
__isl_take isl_basic_map *bounds)
{
isl_space *space;
isl_basic_map *hull;
isl_basic_map *shift, *id, *bmap, *scale;
isl_basic_set *bset;
isl_aff *aff;
bound->stride = NULL;
hull = isl_basic_map_affine_hull(isl_basic_map_copy(bounds));
isl_basic_map_foreach_constraint(hull, &check_stride_constraint, bound);
isl_basic_map_free(hull);
if (!bound->stride)
return bounds;
shift = isl_basic_map_from_aff(isl_aff_copy(bound->shift));
space = isl_basic_map_get_space(bounds);
bmap = isl_basic_map_domain_map(isl_basic_map_universe(space));
shift = isl_basic_map_apply_range(bmap, shift);
space = isl_basic_map_get_space(bounds);
id = isl_basic_map_range_map(isl_basic_map_universe(space));
shift = isl_basic_map_sum(id, shift);
space = isl_basic_map_get_space(bounds);
id = isl_basic_map_domain_map(isl_basic_map_universe(space));
shift = isl_basic_map_range_product(id, shift);
space = isl_space_domain(isl_basic_map_get_space(bounds));
id = isl_basic_map_identity(isl_space_map_from_set(space));
space = isl_space_range(isl_basic_map_get_space(bounds));
aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
aff = isl_aff_scale_down_val(aff, isl_val_copy(bound->stride));
scale = isl_basic_map_from_aff(aff);
scale = isl_basic_map_product(id, scale);
bmap = isl_basic_map_apply_range(shift, scale);
bset = isl_basic_set_apply(isl_basic_map_wrap(bounds), bmap);
bounds = isl_basic_set_unwrap(bset);
return bounds;
}
/* Data used in compute_array_dim_size and compute_size_in_direction.
*
* pos is the position of the variable representing the array index,
* i.e., the variable for which want to compute the size. This variable
* is also the last variable in the set.
*/
struct gpu_size_info {
isl_basic_set *bset;
struct gpu_array_bound *bound;
int pos;
};
/* Given a constraint from the basic set describing the bounds on
* an array index, check if it is a lower bound, say m i >= b(x), and,
* if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
* upper bound. If so, and if this bound is smaller than any bound
* derived from earlier constraints, set the size to this bound on
* the expression and the lower bound to ceil(b(x)/m).
*/
static isl_stat compute_size_in_direction(__isl_take isl_constraint *c,
void *user)
{
struct gpu_size_info *size = user;
unsigned nparam;
unsigned n_div;
isl_val *v;
isl_aff *aff;
isl_aff *lb;
nparam = isl_basic_set_dim(size->bset, isl_dim_param);
n_div = isl_constraint_dim(c, isl_dim_div);
if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div) ||
!isl_constraint_is_lower_bound(c, isl_dim_set, size->pos)) {
isl_constraint_free(c);
return isl_stat_ok;
}
aff = isl_constraint_get_bound(c, isl_dim_set, size->pos);
aff = isl_aff_ceil(aff);
lb = isl_aff_copy(aff);
aff = isl_aff_neg(aff);
aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1);
v = isl_basic_set_max_val(size->bset, aff);
isl_aff_free(aff);
if (isl_val_is_int(v)) {
v = isl_val_add_ui(v, 1);
if (!size->bound->size || isl_val_lt(v, size->bound->size)) {
isl_val_free(size->bound->size);
size->bound->size = isl_val_copy(v);
lb = isl_aff_drop_dims(lb, isl_dim_in, size->pos, 1);
isl_aff_free(size->bound->lb);
size->bound->lb = isl_aff_copy(lb);
}
}
isl_val_free(v);
isl_aff_free(lb);
isl_constraint_free(c);
return isl_stat_ok;
}
/* Given a basic map "bounds" that maps parameters and input dimensions
* to a single output dimension, look for an expression in the parameters
* and input dimensions such that the range of the output dimension shifted
* by this expression is a constant.
*
* In particular, we currently only consider lower bounds on the output
* dimension as candidate expressions.
*/
static int compute_array_dim_size(struct gpu_array_bound *bound,
__isl_take isl_basic_map *bounds)
{
struct gpu_size_info size;
bounds = isl_basic_map_detect_equalities(bounds);
bounds = check_stride(bound, bounds);
bound->size = NULL;
bound->lb = NULL;
size.bound = bound;
size.pos = isl_basic_map_dim(bounds, isl_dim_in);
size.bset = isl_basic_map_wrap(bounds);
size.bset = isl_basic_set_flatten(size.bset);
size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset));
isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction,
&size);
isl_basic_set_free(size.bset);
return bound->size ? 0 : -1;
}
/* Check if we can find a memory tile for the given array
* based on the given accesses, and if so, put the results in "tile".
*
* We project the accesses on each index in turn and look for a parametric
* offset such that the size is constant.
*
* tile->depth is initialized to the input dimension of the computed bounds.
*/
static int can_tile(__isl_keep isl_map *access, struct gpu_array_tile *tile)
{
int i;
tile->depth = isl_map_dim(access, isl_dim_in);
for (i = 0; i < tile->n; ++i) {
isl_map *access_i;
isl_basic_map *hull;
access_i = isl_map_copy(access);
access_i = isl_map_project_out(access_i, isl_dim_out, 0, i);
access_i = isl_map_project_out(access_i, isl_dim_out,
1, tile->n - (i + 1));
access_i = isl_map_compute_divs(access_i);
hull = isl_map_simple_hull(access_i);
if (compute_array_dim_size(&tile->bound[i], hull) < 0)
return 0;
}
return 1;
}
/* Internal data structure for gpu_group_references.
*
* scop represents the input scop.
* kernel_depth is the schedule depth where the kernel launch will
* be introduced, i.e., it is the depth of the band that is mapped
* to blocks.
* shared_depth is the schedule depth at which the copying to/from
* shared memory is computed. The copy operation may then
* later be hoisted to a higher level.
* thread_depth is the schedule depth where the thread mark is located,
* i.e., it is the depth of the band that is mapped to threads and also
* the schedule depth at which the copying to/from private memory
* is computed. The copy operation may then later be hoisted to
* a higher level.
* n_thread is the number of schedule dimensions in the band that
* is mapped to threads.
* privatization lives in the range of thread_sched (i.e., it is
* of dimension thread_depth + n_thread) and encodes the mapping
* to thread identifiers (as parameters).
* host_sched contains the kernel_depth dimensions of the host schedule.
* shared_sched contains the first shared_depth dimensions of the
* kernel schedule.
* copy_sched contains the first thread_depth dimensions of the
* kernel schedule.
* thread_sched contains the first (thread_depth + n_thread) dimensions
* of the kernel schedule.
* full_sched is a union_map representation of the entire kernel schedule.
* The schedules are all formulated in terms of the original statement
* instances, i.e., those that appear in the domains of the access
* relations.
*/
struct gpu_group_data {
struct ppcg_scop *scop;
int kernel_depth;
int shared_depth;
int thread_depth;
int n_thread;
isl_set *privatization;
isl_union_map *host_sched;
isl_union_map *shared_sched;
isl_union_map *copy_sched;
isl_union_map *thread_sched;
isl_union_map *full_sched;
};
/* Construct a map from domain_space to domain_space that increments
* the dimension at position "pos" and leaves all other dimensions
* constant.
*/
static __isl_give isl_map *next(__isl_take isl_space *domain_space, int pos)
{
isl_space *space;
isl_aff *aff;
isl_multi_aff *next;
space = isl_space_map_from_set(domain_space);
next = isl_multi_aff_identity(space);
aff = isl_multi_aff_get_aff(next, pos);
aff = isl_aff_add_constant_si(aff, 1);
next = isl_multi_aff_set_aff(next, pos, aff);
return isl_map_from_multi_aff(next);
}
/* Check if the given access is coalesced (or if there is no point
* in trying to coalesce the access by mapping the array to shared memory).
* That is, check whether incrementing the dimension that will get
* wrapped over the last thread index results in incrementing
* the last array index.
*
* If no two consecutive array elements are ever accessed by "access",
* then mapping the corresponding array to shared memory will not
* improve coalescing. In fact, the copying will likely be performed
* by a single thread. Consider the access as coalesced such that
* the caller will not try and map the array to shared memory just
* to improve coalescing.
*
* This function is only called for access relations without reuse and
* kernels with at least one thread identifier.
*/
static int access_is_coalesced(struct gpu_group_data *data,
__isl_keep isl_union_map *access)
{
int dim;
isl_space *space;
isl_set *accessed;
isl_map *access_map;
isl_map *next_thread_x;
isl_map *next_element;
isl_map *map;
int coalesced, empty;
access = isl_union_map_copy(access);
access = isl_union_map_apply_domain(access,
isl_union_map_copy(data->full_sched));
access_map = isl_map_from_union_map(access);
space = isl_map_get_space(access_map);
space = isl_space_range(space);
dim = isl_space_dim(space, isl_dim_set);
if (dim == 0)
next_element = isl_map_empty(isl_space_map_from_set(space));
else
next_element = next(space, dim - 1);
accessed = isl_map_range(isl_map_copy(access_map));
map = isl_map_copy(next_element);
map = isl_map_intersect_domain(map, isl_set_copy(accessed));
map = isl_map_intersect_range(map, accessed);
empty = isl_map_is_empty(map);
isl_map_free(map);
if (empty < 0 || empty) {
isl_map_free(next_element);
isl_map_free(access_map);
return empty;
}
space = isl_map_get_space(access_map);
space = isl_space_domain(space);
next_thread_x = next(space, data->thread_depth + data->n_thread - 1);
map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
map = isl_map_apply_range(map, access_map);
coalesced = isl_map_is_subset(map, next_element);
isl_map_free(next_element);
isl_map_free(map);
return coalesced;
}
/* Replace the host schedule dimensions in the access relation "access"
* by parameters, so that they are treated as fixed when checking for reuse
* (within a kernel) or whether two consecutive elements are accessed
* (within a kernel).
*/
static __isl_give isl_union_map *localize_access(struct gpu_group_data *data,
__isl_take isl_union_map *access)
{
int n;
isl_space *space;
isl_set *param;
isl_union_map *umap;
isl_id_list *ids;
umap = isl_union_map_copy(data->host_sched);
space = isl_union_map_get_space(umap);
n = data->kernel_depth;
ids = ppcg_scop_generate_names(data->scop, n, "__ppcg_host_");
param = parametrization(space, n, 0, ids);
isl_id_list_free(ids);
umap = isl_union_map_intersect_range(umap,
isl_union_set_from_set(param));
access = isl_union_map_intersect_domain(access,
isl_union_map_domain(umap));
return access;
}
/* Given an access relation in terms of at least data->thread_depth initial
* dimensions of the computed schedule, check if it is bijective for
* fixed values of the first data->thread_depth dimensions.
* We perform this check by equating these dimensions to parameters.
*/
static int access_is_bijective(struct gpu_group_data *data,
__isl_keep isl_map *access)
{
int res;
int dim;
isl_set *par;
isl_space *space;
isl_id_list *ids;
access = isl_map_copy(access);
space = isl_space_params(isl_map_get_space(access));
ids = ppcg_scop_generate_names(data->scop, data->thread_depth, "s");
dim = isl_map_dim(access, isl_dim_in);
par = parametrization(space, dim, 0, ids);
isl_id_list_free(ids);
access = isl_map_intersect_domain(access, par);
res = isl_map_is_bijective(access);
isl_map_free(access);
return res;
}
/* Compute the number of outer schedule tile dimensions that affect
* the offset of "tile".
* If there is no such dimension, then return the index
* of the first kernel dimension, i.e., data->kernel_depth.
*/
static int compute_tile_depth(struct gpu_group_data *data,
struct gpu_array_tile *tile)
{
int i, j;
for (j = tile->depth - 1; j >= data->kernel_depth; --j) {
for (i = 0; i < tile->n; ++i) {
isl_aff *lb;
isl_aff *shift;
lb = tile->bound[i].lb;
if (isl_aff_involves_dims(lb, isl_dim_in, j, 1))
break;
shift = tile->bound[i].shift;
if (!shift)
continue;
if (isl_aff_involves_dims(shift, isl_dim_in, j, 1))
break;
}
if (i < tile->n)
break;
}
return ++j;
}
/* Return the lowest depth between data->kernel_depth and data->thread_depth
* at which every array element accessed through "acc" is accessed
* by a single thread. The input dimension of "acc" is
* data->thread_depth + data->n_thread, where the final data->n_thread
* dimensions are those that will be mapped to threads.
* If the values for these dimensions are uniquely determined
* by the array index and a given number of outer dimensions, then
* there is only one thread accessing that array element within those
* outer dimensions.
*
* The input space of "acc" is first split up, such that it has the form
*
* [O -> T] -> A
*
* with O the outer dimensions, T the dimensions that will be mapped to threads
* and A the array index.
*
* Then the positions of T and A are interchanged to simplify the test
* whether T uniquely depends on O and A.
* In particular, the above access relation is first combined with
*
* [O -> T] -> T
*
* to form
*
* [O -> T] -> [A -> T]
*
* from which
*
* O -> [A -> T]
*
* is extracted, which is then uncurried to
*
* [O -> A] -> T
*
* Finally, the final dimensions of O are projected out one by one
* until T is no longer uniquely determined by A and the remaining
* dimensions in O. The value returned is that of the last dimension
* that was successfully projected out.
* Note that there is no need to test whether [O -> A] -> T itself
* is single-valued as that was already tested in access_is_bijective.
*/
static int compute_accessed_by_single_thread_depth(struct gpu_group_data *data,
__isl_keep isl_map *acc)
{
int i;
isl_space *space;
isl_map *map;
isl_bool sv;
if (data->thread_depth == data->kernel_depth)
return data->thread_depth;
acc = isl_map_copy(acc);
space = isl_map_get_space(acc);
space = isl_space_params(space);
space = isl_space_set_from_params(space);
space = isl_space_add_dims(space, isl_dim_set, data->thread_depth);
space = isl_space_from_domain(space);
space = isl_space_add_dims(space, isl_dim_out, data->n_thread);
space = isl_space_wrap(space);
map = isl_set_flatten_map(isl_set_universe(space));
acc = isl_map_apply_range(map, acc);
space = isl_space_domain(isl_map_get_space(acc));
map = isl_map_range_map(isl_map_universe(isl_space_unwrap(space)));
acc = isl_map_range_product(acc, map);
acc = isl_map_domain_factor_domain(acc);
acc = isl_map_uncurry(acc);
for (i = data->thread_depth - 1; i >= data->kernel_depth; --i) {
acc = isl_map_project_out(acc, isl_dim_in, i, 1);
sv = isl_map_is_single_valued(acc);
if (sv < 0)
return -1;
if (!sv)
break;
}
isl_map_free(acc);
return ++i;
}
/* Adjust the fields of "tile" to reflect the new input dimension "depth".
* The dimension beyond "depth" are assumed not to affect the tile,
* so they can simply be dropped.
*/
static int tile_adjust_depth(struct gpu_array_tile *tile, int depth)
{
int i;
if (tile->depth == depth)
return 0;
for (i = 0; i < tile->n; ++i) {
tile->bound[i].lb = isl_aff_drop_dims(tile->bound[i].lb,
isl_dim_in, depth, tile->depth - depth);
if (!tile->bound[i].lb)
return -1;
if (!tile->bound[i].shift)
continue;
tile->bound[i].shift = isl_aff_drop_dims(tile->bound[i].shift,
isl_dim_in, depth, tile->depth - depth);
if (!tile->bound[i].shift)
return -1;
}
tile->depth = depth;
return 0;
}
/* Determine the number of schedule dimensions that affect the offset of the
* shared or private tile "tile" and store the result in tile->depth, with
* a lower bound of data->kernel_depth.
* Also adjust the fields of the tile to only refer to the tile->depth
* outer schedule dimensions.
*/
static isl_stat tile_set_depth(struct gpu_group_data *data,
struct gpu_array_tile *tile)
{
if (tile_adjust_depth(tile, compute_tile_depth(data, tile)) < 0)
return isl_stat_error;
return isl_stat_ok;
}
/* Determine the number of schedule dimensions that affect the offset of the
* shared tile and store the minimum of the private and shared tile depth
* in group->min_depth, with a lower bound of data->kernel_depth.
* If there is no tile defined on the array reference group,
* then set group->min_depth to data->thread_depth.
*/
static int set_depth(struct gpu_group_data *data,
struct gpu_array_ref_group *group)
{
group->min_depth = data->thread_depth;
if (group->private_tile) {
if (group->private_tile->depth < group->min_depth)
group->min_depth = group->private_tile->depth;
}
if (group->shared_tile) {
if (tile_set_depth(data, group->shared_tile) < 0)
return -1;
if (group->shared_tile->depth < group->min_depth)
group->min_depth = group->shared_tile->depth;
}
return 0;
}
/* Fill up the groups array with singleton groups, i.e., one group
* per reference, initializing the array, access, write, n_ref and refs fields.
* In particular the access field is initialized to the scheduled
* access relation of the array reference.
*
* Return the number of elements initialized, i.e., the number of
* active references in the current kernel.
*/
static int populate_array_references(struct gpu_local_array_info *local,
struct gpu_array_ref_group **groups, struct gpu_group_data *data)
{
int i;
int n;
isl_ctx *ctx = isl_union_map_get_ctx(data->copy_sched);
n = 0;
for (i = 0; i < local->array->n_ref; ++i) {
isl_union_map *umap;
isl_map *map;
struct gpu_array_ref_group *group;
struct gpu_stmt_access *access = local->array->refs[i];
map = isl_map_copy(access->access);
umap = isl_union_map_from_map(map);
umap = isl_union_map_apply_domain(umap,
isl_union_map_copy(data->copy_sched));
if (isl_union_map_is_empty(umap)) {
isl_union_map_free(umap);
continue;
}
map = isl_map_from_union_map(umap);
map = isl_map_detect_equalities(map);
group = isl_calloc_type(ctx, struct gpu_array_ref_group);
if (!group)
return -1;
group->local_array = local;
group->array = local->array;
group->access = map;
group->write = access->write;
group->exact_write = access->exact_write;
group->slice = access->n_index < local->array->n_index;
group->refs = &local->array->refs[i];
group->n_ref = 1;
groups[n++] = group;
}
return n;
}
/* If group->n_ref == 1, then group->refs was set by
* populate_array_references to point directly into
* group->array->refs and should not be freed.
* If group->n_ref > 1, then group->refs was set by join_groups
* to point to a newly allocated array.
*/
struct gpu_array_ref_group *gpu_array_ref_group_free(
struct gpu_array_ref_group *group)
{
if (!group)
return NULL;
gpu_array_tile_free(group->shared_tile);
gpu_array_tile_free(group->private_tile);
isl_map_free(group->access);
if (group->n_ref > 1)
free(group->refs);
free(group);
return NULL;
}
/* Check if the access relations of group1 and group2 overlap within
* copy_sched.
*/
static int accesses_overlap(struct gpu_array_ref_group *group1,
struct gpu_array_ref_group *group2)
{
int disjoint;
disjoint = isl_map_is_disjoint(group1->access, group2->access);
if (disjoint < 0)
return -1;
return !disjoint;
}
/* Combine the given two groups into a single group, containing
* the references of both groups.
*/
static struct gpu_array_ref_group *join_groups(
struct gpu_array_ref_group *group1,
struct gpu_array_ref_group *group2)
{
int i;
isl_ctx *ctx;
struct gpu_array_ref_group *group;
if (!group1 || !group2)
return NULL;
ctx = isl_map_get_ctx(group1->access);
group = isl_calloc_type(ctx, struct gpu_array_ref_group);
if (!group)
return NULL;
group->local_array = group1->local_array;
group->array = group1->array;
group->access = isl_map_union(isl_map_copy(group1->access),
isl_map_copy(group2->access));
group->write = group1->write || group2->write;
group->exact_write = group1->exact_write && group2->exact_write;
group->slice = group1->slice || group2->slice;
group->n_ref = group1->n_ref + group2->n_ref;
group->refs = isl_alloc_array(ctx, struct gpu_stmt_access *,
group->n_ref);
if (!group->refs)
return gpu_array_ref_group_free(group);
for (i = 0; i < group1->n_ref; ++i)
group->refs[i] = group1->refs[i];
for (i = 0; i < group2->n_ref; ++i)
group->refs[group1->n_ref + i] = group2->refs[i];
return group;
}
/* Combine the given two groups into a single group and free
* the original two groups.
*/
static struct gpu_array_ref_group *join_groups_and_free(
struct gpu_array_ref_group *group1,
struct gpu_array_ref_group *group2)
{
struct gpu_array_ref_group *group;
group = join_groups(group1, group2);
gpu_array_ref_group_free(group1);
gpu_array_ref_group_free(group2);
return group;
}
/* Report that the array reference group with the given access relation
* is not mapped to shared memory in the given kernel because
* it does not exhibit any reuse and is considered to be coalesced.
*/
static void report_no_reuse_and_coalesced(struct ppcg_kernel *kernel,
__isl_keep isl_union_map *access)
{
isl_ctx *ctx;
isl_printer *p;
ctx = isl_union_map_get_ctx(access);
p = isl_printer_to_file(ctx, stdout);
p = isl_printer_print_str(p, "Array reference group ");
p = isl_printer_print_union_map(p, access);
p = isl_printer_print_str(p,
" not considered for mapping to shared memory in kernel");
p = isl_printer_print_int(p, kernel->id);
p = isl_printer_print_str(p,
" because it exhibits no reuse and is considered to be coalesced");
p = isl_printer_end_line(p);
isl_printer_free(p);
}
/* Given an access relation in terms of the data->thread_depth initial
* dimensions of the computed schedule and the thread identifiers
* (as parameters), check if the use of the corresponding private tile
* requires unrolling.
*
* If we are creating a private tile because we are forced to,
* then no unrolling is required.
* Otherwise we check if "access" is bijective and unrolling
* is required if it is not. Note that the access relation
* has already been determined to be bijective before the introduction
* of the thread identifiers and the removal of the schedule dimensions
* that are mapped to these threads. If the access relation is no longer
* bijective, then this means that more than one value of one of those
* schedule dimensions is mapped to the same thread and therefore
* unrolling is required.
*/
static int check_requires_unroll(struct gpu_group_data *data,
__isl_keep isl_map *access, int force_private)
{
int bijective;
if (force_private)
return 0;
bijective = access_is_bijective(data, access);
if (bijective < 0)
return -1;
return !bijective;
}
/* Map the domain of "access" to the outer data->shared_depth
* schedule dimensions. When data->shared_depth is equal to
* data->thread_depth, this result is already available in group->access.
*/
static __isl_give isl_map *shared_access(struct gpu_array_ref_group *group,
__isl_keep isl_union_map *access, struct gpu_group_data *data)
{
isl_union_map *shared;
if (data->shared_depth == data->thread_depth)
return isl_map_copy(group->access);
shared = isl_union_map_copy(access);
shared = isl_union_map_apply_domain(shared,
isl_union_map_copy(data->shared_sched));
return isl_map_from_union_map(shared);
}
/* Compute the private and/or shared memory tiles for the array
* reference group "group" of array "array".
* Return 0 on success and -1 on error.
*
* If the array is a read-only scalar or if the user requested
* not to use shared or private memory, then we do not need to do anything.
*
* If any reference in the reference group accesses more than one element,
* then we would have to make sure that the layout in shared memory
* is the same as that in global memory. Since we do not handle this yet
* (and it may not even be possible), we refuse to map to private or
* shared memory in such cases.
*
* If the array group involves any may writes (that are not must writes),
* then we would have to make sure that we load the data into shared/private
* memory first in case the data is not written by the kernel
* (but still written back out to global memory).
* Since we don't have any such mechanism at the moment, we don't
* compute shared/private tiles for groups involving may writes.
*
* We only try to compute a shared memory tile if there is any reuse
* or if the access is not coalesced.
* Reuse and coalescing are checked within the given kernel.
*
* For computing a private memory tile, we also require that there is
* some reuse. Moreover, we require that the access is private
* to the thread. That is, we check that any given array element
* is only accessed by a single thread.
* We compute an access relation that maps the outer
* data->thread_depth + data->n_thread schedule dimensions.
* The latter data->n_thread will be mapped to thread identifiers.
* We actually check that those iterators that will be wrapped
* partition the array space. This check is stricter than necessary
* since several iterations may be mapped onto the same thread
* and then they could be allowed to access the same memory elements,
* but our check does not allow this situation.
*
* For private memory tiles, the number of schedule dimensions that
* affect the offset is computed and stored in tile->depth, with
* a lower bound of data->kernel_depth. If this depth is smaller
* than the minimal depth that still ensures that every element
* is accessed by a single thread, then the depth is raised
* to this minimal depth.
* The fields of the tile are then adjusted to only refer to the tile->depth
* outer schedule dimensions.
*
* We also check that the index expression only depends on parallel
* loops. That way, we can move those loops innermost and unroll them.
* Again, we use a test that is stricter than necessary.
* We actually check whether the index expression only depends
* on the iterators that are wrapped over the threads.
* These are necessarily parallel, but there may be more parallel loops.
*
* Combining the injectivity of the first test with the single-valuedness
* of the second test, we simply test for bijectivity.
*
* If the use of the private tile requires unrolling, but some
* of the other arrays are forcibly mapped to private memory,
* then we do not allow the use of this private tile since
* we cannot move the schedule dimensions that need to be unrolled down
* without performing some kind of expansion on those arrays
* that are forcibly mapped to private memory.
*
* If the array is marked force_private, then we bypass all checks
* and assume we can (and should) use registers only.
*
* If it turns out we can (or have to) use registers, we compute
* the private memory tile size using can_tile, after introducing a dependence
* on the thread indices.
*/
static int compute_group_bounds_core(struct ppcg_kernel *kernel,
struct gpu_array_ref_group *group, struct gpu_group_data *data)
{
isl_ctx *ctx = isl_space_get_ctx(group->array->space);
isl_union_map *access, *local;
int n_index = group->array->n_index;
int no_reuse, coalesced;
isl_map *acc;
int force_private = group->local_array->force_private;
int use_shared = !force_private && kernel->options->use_shared_memory &&
data->n_thread > 0;
int use_private = force_private || kernel->options->use_private_memory;
int r = 0;
int requires_unroll;
int unique_depth;
if (!use_shared && !use_private)
return 0;
if (gpu_array_is_read_only_scalar(group->array))
return 0;
if (!force_private && !group->exact_write)
return 0;
if (group->slice)
return 0;
access = gpu_array_ref_group_access_relation(group, 1, 1);
local = localize_access(data, isl_union_map_copy(access));
no_reuse = isl_union_map_is_injective(local);
if (no_reuse < 0)
r = -1;
if (use_shared && no_reuse)
coalesced = access_is_coalesced(data, local);
isl_union_map_free(local);
if (r >= 0 && kernel->options->debug->verbose &&
use_shared && no_reuse && coalesced)
report_no_reuse_and_coalesced(kernel, access);
if (use_shared && (!no_reuse || !coalesced)) {
group->shared_tile = gpu_array_tile_create(ctx,
group->array->n_index);
acc = shared_access(group, access, data);
if (!group->shared_tile)
r = -1;
else if (!can_tile(acc, group->shared_tile))
group->shared_tile =
gpu_array_tile_free(group->shared_tile);
isl_map_free(acc);
}
if (r < 0 || (!force_private && (!use_private || no_reuse))) {
isl_union_map_free(access);
return r;
}
access = isl_union_map_apply_domain(access,
isl_union_map_copy(data->thread_sched));
acc = isl_map_from_union_map(access);
if (!force_private && !access_is_bijective(data, acc)) {
isl_map_free(acc);
return 0;
}
unique_depth = compute_accessed_by_single_thread_depth(data, acc);
acc = isl_map_intersect_domain(acc, isl_set_copy(data->privatization));
acc = isl_map_project_out(acc, isl_dim_in, data->thread_depth,
data->n_thread);
requires_unroll = check_requires_unroll(data, acc, force_private);
if (unique_depth < 0 || requires_unroll < 0 ||
(requires_unroll && kernel->any_force_private)) {
isl_map_free(acc);
return requires_unroll < 0 ? -1 : 0;
}
group->private_tile = gpu_array_tile_create(ctx, n_index);
if (!group->private_tile) {
isl_map_free(acc);
return -1;
}
group->private_tile->requires_unroll = requires_unroll;
if (!can_tile(acc, group->private_tile))
group->private_tile = gpu_array_tile_free(group->private_tile);
isl_map_free(acc);
if (group->private_tile) {
struct gpu_array_tile *tile = group->private_tile;
int tile_depth = compute_tile_depth(data, tile);
if (tile_depth < unique_depth)
tile_depth = unique_depth;
if (tile_adjust_depth(tile, tile_depth) < 0)
return -1;
}
if (force_private && !group->private_tile)
isl_die(ctx, isl_error_internal,
"unable to map array reference group to registers",
return -1);
return 0;
}
/* Compute the private and/or shared memory tiles for the array
* reference group "group" of array "array" and set the tile depth.
* Return 0 on success and -1 on error.
*/
static int compute_group_bounds(struct ppcg_kernel *kernel,
struct gpu_array_ref_group *group, struct gpu_group_data *data)
{
if (!group)
return -1;
if (compute_group_bounds_core(kernel, group, data) < 0)
return -1;
if (set_depth(data, group) < 0)
return -1;
return 0;
}
/* If two groups have overlapping access relations (as determined by
* the "overlap" function) and if one of them involves a write,
* then merge the two groups into one.
* If "compute_bounds" is set, then call compute_group_bounds
* on the merged groups.
*
* Return the updated number of groups.
* Return -1 on error.
*/
static int group_writes(struct ppcg_kernel *kernel,
int n, struct gpu_array_ref_group **groups,
int (*overlap)(struct gpu_array_ref_group *group1,
struct gpu_array_ref_group *group2), int compute_bounds,
struct gpu_group_data *data)
{
int i, j;
for (i = 0; i < n; ++i) {
for (j = n - 1; j > i; --j) {
if (!groups[i]->write && !groups[j]->write)
continue;
if (!overlap(groups[i], groups[j]))
continue;
groups[i] = join_groups_and_free(groups[i], groups[j]);
if (j != n - 1)
groups[j] = groups[n - 1];
groups[n - 1] = NULL;
n--;
if (!groups[i])
return -1;
if (compute_bounds &&
compute_group_bounds(kernel, groups[i], data) < 0)
return -1;
}
}
return n;
}
/* If two groups have overlapping access relations (within the innermost
* loop) and if one of them involves a write, then merge the two groups
* into one.
*
* Return the updated number of groups.
*/
static int group_overlapping_writes(struct ppcg_kernel *kernel,
int n, struct gpu_array_ref_group **groups,
struct gpu_group_data *data)
{
return group_writes(kernel, n, groups, &accesses_overlap, 0, data);
}
/* Check if the access relations of group1 and group2 overlap within
* the outermost min(group1->min_depth, group2->min_depth) loops.
*/
static int depth_accesses_overlap(struct gpu_array_ref_group *group1,
struct gpu_array_ref_group *group2)
{
int depth;
int dim;
int empty;
isl_map *map_i, *map_j, *map;
depth = group1->min_depth;
if (group2->min_depth < depth)
depth = group2->min_depth;
map_i = isl_map_copy(group1->access);
dim = isl_map_dim(map_i, isl_dim_in);
map_i = isl_map_eliminate(map_i, isl_dim_in, depth, dim - depth);
map_j = isl_map_copy(group2->access);
map_j = isl_map_eliminate(map_j, isl_dim_in, depth, dim - depth);
map = isl_map_intersect(map_i, map_j);
empty = isl_map_is_empty(map);
isl_map_free(map);
return !empty;
}
/* If two groups have overlapping access relations (within the outer
* depth loops) and if one of them involves a write,
* then merge the two groups into one.
*
* Return the updated number of groups.
*/
static int group_depth_overlapping_writes(struct ppcg_kernel *kernel,
int n, struct gpu_array_ref_group **groups, struct gpu_group_data *data)
{
return group_writes(kernel, n, groups, &depth_accesses_overlap, 1,
data);
}
/* Is the size of the tile specified by "tile" smaller than the sum of
* the sizes of the tiles specified by "tile1" and "tile2"?
*/
static int smaller_tile(struct gpu_array_tile *tile,
struct gpu_array_tile *tile1, struct gpu_array_tile *tile2)
{
int smaller;
isl_val *size, *size1, *size2;
size = gpu_array_tile_size(tile);
size1 = gpu_array_tile_size(tile1);
size2 = gpu_array_tile_size(tile2);
size = isl_val_sub(size, size1);
size = isl_val_sub(size, size2);
smaller = isl_val_is_neg(size);
isl_val_free(size);
return smaller;
}
/* Given an initial grouping of array references and shared memory tiles
* for each group that allows for a shared memory tile, merge two groups
* if both have a shared memory tile, the merged group also has
* a shared memory tile and the size of the tile for the merge group
* is smaller than the sum of the tile sizes of the individual groups.
*
* If merging two groups decreases the depth of the tile of
* one or both of the two groups, then we need to check for overlapping
* writes again.
*
* Return the number of groups after merging.
* Return -1 on error.
*/
static int group_common_shared_memory_tile(struct ppcg_kernel *kernel,
struct gpu_array_info *array, int n,
struct gpu_array_ref_group **groups, struct gpu_group_data *data)
{
int i, j;
int recompute_overlap = 0;
for (i = 0; i < n; ++i) {
if (!groups[i]->shared_tile)
continue;
for (j = n - 1; j > i; --j) {
struct gpu_array_ref_group *group;
if (!groups[j]->shared_tile)
continue;
if (!depth_accesses_overlap(groups[i], groups[j]))
continue;
group = join_groups(groups[i], groups[j]);
if (compute_group_bounds(kernel, group, data) < 0) {
gpu_array_ref_group_free(group);
return -1;
}
if (!group->shared_tile ||
!smaller_tile(group->shared_tile,
groups[i]->shared_tile,
groups[j]->shared_tile)) {
gpu_array_ref_group_free(group);
continue;
}
if (group->min_depth < groups[i]->min_depth ||
group->min_depth < groups[j]->min_depth)
recompute_overlap = 1;
gpu_array_ref_group_free(groups[i]);
gpu_array_ref_group_free(groups[j]);
groups[i] = group;
if (j != n - 1)
groups[j] = groups[n - 1];
n--;
}
}
if (recompute_overlap)
n = group_depth_overlapping_writes(kernel, n, groups, data);
return n;
}
/* Set array->n_group and array->groups to n and groups.
*
* Additionally, set the "nr" field of each group.
*/
static void set_array_groups(struct gpu_local_array_info *array,
int n, struct gpu_array_ref_group **groups)
{
int i;
array->n_group = n;
array->groups = groups;
for (i = 0; i < n; ++i)
groups[i]->nr = i;
}
/* Combine all groups in "groups" into a single group and return
* the new number of groups (1 or 0 if there were no groups to start with).
*/
static int join_all_groups(int n, struct gpu_array_ref_group **groups)
{
int i;
for (i = n - 1; i > 0; --i) {
groups[0] = join_groups_and_free(groups[0], groups[i]);
groups[i] = NULL;
n--;
}
return n;
}
/* Group array references that should be considered together when
* deciding whether to access them from private, shared or global memory.
* Return -1 on error.
*
* In particular, if two array references overlap and if one of them
* is a write, then the two references are grouped together.
* We first perform an initial grouping based only on the access relation.
* After computing shared and private memory tiles, we check for
* overlapping writes again, but this time taking into account
* the depth of the effective tile.
*
* Furthermore, if two groups admit a shared memory tile and if the
* combination of the two also admits a shared memory tile, we merge
* the two groups.
*
* If the array contains structures, then we compute a single
* reference group without trying to find any tiles
* since we do not map such arrays to private or shared
* memory. The only exception is when those arrays of structures
* are required to be mapped to private memory.
*/
static int group_array_references(struct ppcg_kernel *kernel,
struct gpu_local_array_info *local, struct gpu_group_data *data)
{
int i;
int n;
isl_ctx *ctx = isl_union_map_get_ctx(data->shared_sched);
struct gpu_array_ref_group **groups;
groups = isl_calloc_array(ctx, struct gpu_array_ref_group *,
local->array->n_ref);
if (!groups)
return -1;
n = populate_array_references(local, groups, data);
if (local->array->has_compound_element && !local->force_private) {
n = join_all_groups(n, groups);
set_array_groups(local, n, groups);
return 0;
}
n = group_overlapping_writes(kernel, n, groups, data);
for (i = 0; i < n; ++i)
if (compute_group_bounds(kernel, groups[i], data) < 0)
n = -1;
n = group_depth_overlapping_writes(kernel, n, groups, data);
n = group_common_shared_memory_tile(kernel, local->array,
n, groups, data);
set_array_groups(local, n, groups);
if (n >= 0)
return 0;
for (i = 0; i < local->array->n_ref; ++i)
gpu_array_ref_group_free(groups[i]);
return -1;
}
/* For each array in the input program that can be mapped to private memory,
* check if there are any order dependences active inside the current kernel,
* within the same iteration of the host schedule, i.e., the prefix
* schedule at "node".
* If so, mark the array as force_private so that its reference groups will be
* mapped to a registers.
*
* Note that the arrays that cannot be mapped to private memory have
* had their order dependences added to prog->array_order and
* subsequently to the coincidence constraints.
*/
static void check_can_be_private_live_ranges(struct ppcg_kernel *kernel,
__isl_keep isl_schedule_node *node)
{
int i;
isl_union_set *domain;
isl_multi_union_pw_aff *prefix;
isl_union_pw_multi_aff *contraction;
if (!kernel->options->live_range_reordering)
return;
kernel->any_force_private = 0;
prefix = isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node);
contraction = isl_union_pw_multi_aff_copy(kernel->contraction);
prefix = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(prefix,
contraction);
domain = isl_union_set_copy(kernel->expanded_domain);
domain = isl_union_set_universe(domain);
for (i = 0; i < kernel->n_array; ++i) {
struct gpu_local_array_info *local = &kernel->array[i];
isl_union_map *order;
local->force_private = 0;
if (!gpu_array_can_be_private(local->array))
continue;
order = isl_union_map_copy(local->array->dep_order);
order = isl_union_map_intersect_domain(order,
isl_union_set_copy(domain));
order = isl_union_map_intersect_range(order,
isl_union_set_copy(domain));
order = isl_union_map_eq_at_multi_union_pw_aff(order,
isl_multi_union_pw_aff_copy(prefix));
if (!isl_union_map_is_empty(order)) {
local->force_private = 1;
kernel->any_force_private = 1;
}
isl_union_map_free(order);
}
isl_multi_union_pw_aff_free(prefix);
isl_union_set_free(domain);
}
/* Expand the domain of the schedule "s" by plugging in
* the contraction "contraction" and return the result.
*/
static __isl_give isl_union_map *expand(__isl_take isl_union_map *s,
__isl_keep isl_union_pw_multi_aff *contraction)
{
contraction = isl_union_pw_multi_aff_copy(contraction);
s = isl_union_map_preimage_domain_union_pw_multi_aff(s, contraction);
return s;
}
/* Create a set of dimension data->thread_depth + data->n_thread
* that equates the residue of the final data->n_thread dimensions
* modulo the kernel->block_dim sizes to the thread identifiers.
* Store the computed set in data->privatization.
*
* The construction starts with the space of kernel->thread_filter,
* which is known to reference all thread identifiers.
*/
static void compute_privatization(struct gpu_group_data *data,
struct ppcg_kernel *kernel)
{
int i;
isl_ctx *ctx;
isl_space *space;
isl_local_space *ls;
isl_set *set;
ctx = isl_union_map_get_ctx(data->shared_sched);
space = isl_union_set_get_space(kernel->thread_filter);
space = isl_space_set_from_params(space);
space = isl_space_add_dims(space, isl_dim_set,
data->thread_depth + data->n_thread);
set = isl_set_universe(space);
space = isl_set_get_space(set);
ls = isl_local_space_from_space(space);
for (i = 0; i < data->n_thread; ++i) {
isl_aff *aff, *aff2;
isl_constraint *c;
isl_val *v;
isl_id *id;
int pos;
aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
isl_dim_set, data->thread_depth + i);
v = isl_val_int_from_si(ctx, kernel->block_dim[i]);
aff = isl_aff_mod_val(aff, v);
id = isl_id_list_get_id(kernel->thread_ids, i);
pos = isl_set_find_dim_by_id(set, isl_dim_param, id);
isl_id_free(id);
aff2 = isl_aff_var_on_domain(isl_local_space_copy(ls),
isl_dim_param, pos);
aff = isl_aff_sub(aff, aff2);
c = isl_equality_from_aff(aff);
set = isl_set_add_constraint(set, c);
}
isl_local_space_free(ls);
data->privatization = set;
}
/* Return the prefix schedule at "node" as a relation
* between domain elements and schedule dimensions after detecting
* equalities in this relation.
*/
static __isl_give isl_union_map *prefix_with_equalities(
__isl_keep isl_schedule_node *node)
{
isl_union_map *schedule;
schedule = isl_schedule_node_get_prefix_schedule_relation(node);
schedule = isl_union_map_detect_equalities(schedule);
return schedule;
}
/* Group references of all arrays in "kernel".
* "node" points to the kernel mark.
* The mapping to shared memory in computed at the "shared" mark.
*
* We first extract all required schedule information into
* a gpu_group_data structure and then consider each array
* in turn.
*/
int gpu_group_references(struct ppcg_kernel *kernel,
__isl_keep isl_schedule_node *node)
{
int i;
int r = 0;
isl_union_pw_multi_aff *contraction;
struct gpu_group_data data;
check_can_be_private_live_ranges(kernel, node);
data.scop = kernel->prog->scop;
data.kernel_depth = isl_schedule_node_get_schedule_depth(node);
data.host_sched = isl_schedule_node_get_prefix_schedule_relation(node);
node = isl_schedule_node_copy(node);
node = gpu_tree_move_down_to_shared(node, kernel->core);
data.shared_depth = isl_schedule_node_get_schedule_depth(node);
data.shared_sched = prefix_with_equalities(node);
node = gpu_tree_move_down_to_thread(node, kernel->core);
node = isl_schedule_node_child(node, 0);
data.thread_depth = isl_schedule_node_get_schedule_depth(node);
data.n_thread = isl_schedule_node_band_n_member(node);
if (data.thread_depth == data.shared_depth)
data.copy_sched = isl_union_map_copy(data.shared_sched);
else
data.copy_sched = prefix_with_equalities(node);
data.thread_sched = isl_union_map_copy(data.copy_sched);
data.thread_sched = isl_union_map_flat_range_product(data.thread_sched,
isl_schedule_node_band_get_partial_schedule_union_map(node));
data.thread_sched = isl_union_map_detect_equalities(data.thread_sched);
contraction = isl_union_pw_multi_aff_copy(kernel->contraction);
data.host_sched = expand(data.host_sched, contraction);
data.shared_sched = expand(data.shared_sched, contraction);
if (data.thread_depth == data.shared_depth) {
isl_union_map_free(data.copy_sched);
data.copy_sched = isl_union_map_copy(data.shared_sched);
} else {
data.copy_sched = expand(data.copy_sched, contraction);
}
data.thread_sched = expand(data.thread_sched, contraction);
isl_union_pw_multi_aff_free(contraction);
node = isl_schedule_node_child(node, 0);
data.full_sched = isl_union_map_copy(data.thread_sched);
data.full_sched = isl_union_map_flat_range_product(data.full_sched,
isl_schedule_node_get_subtree_schedule_union_map(node));
isl_schedule_node_free(node);
compute_privatization(&data, kernel);
for (i = 0; i < kernel->n_array; ++i) {
r = group_array_references(kernel, &kernel->array[i], &data);
if (r < 0)
break;
}
isl_union_map_free(data.host_sched);
isl_union_map_free(data.shared_sched);
isl_union_map_free(data.copy_sched);
isl_union_map_free(data.thread_sched);
isl_union_map_free(data.full_sched);
isl_set_free(data.privatization);
return r;
}
/* Given a description of an array tile "tile" and the "space"
*
* { D -> A }
*
* where D represents the first tile->depth schedule dimensions
* and A represents the array, construct an isl_multi_aff
*
* { [D[i] -> A[a]] -> A'[a'] }
*
* with A' a scaled down copy of A according to the shifts and strides
* in "tile". In particular,
*
* a' = (a + shift(i))/stride
*
* "insert_array" represents
*
* { [D -> A] -> D }
*
* and is used to insert A into the domain of functions that only
* reference D.
*/
static __isl_give isl_multi_aff *strided_tile(
struct gpu_array_tile *tile, __isl_keep isl_space *space,
__isl_keep isl_multi_aff *insert_array)
{
int i;
isl_ctx *ctx;
isl_multi_aff *shift;
isl_multi_val *stride;
isl_space *space2;
isl_local_space *ls;
isl_multi_aff *tiling;
ctx = isl_space_get_ctx(space);
space2 = isl_space_domain(isl_space_copy(space));
ls = isl_local_space_from_space(space2);
space2 = isl_space_range(isl_space_copy(space));
stride = isl_multi_val_zero(space2);
shift = isl_multi_aff_zero(isl_space_copy(space));
for (i = 0; i < tile->n; ++i) {
struct gpu_array_bound *bound = &tile->bound[i];
isl_val *stride_i;
isl_aff *shift_i;
if (tile->bound[i].shift) {
stride_i = isl_val_copy(bound->stride);
shift_i = isl_aff_copy(bound->shift);
} else {
stride_i = isl_val_one(ctx);
shift_i = isl_aff_zero_on_domain(
isl_local_space_copy(ls));
}
stride = isl_multi_val_set_val(stride, i, stride_i);
shift = isl_multi_aff_set_aff(shift, i, shift_i);
}
isl_local_space_free(ls);
shift = isl_multi_aff_pullback_multi_aff(shift,
isl_multi_aff_copy(insert_array));
tiling = isl_multi_aff_range_map(isl_space_copy(space));
tiling = isl_multi_aff_add(tiling, shift);
tiling = isl_multi_aff_scale_down_multi_val(tiling, stride);
return tiling;
}
/* Compute a tiling for the array reference group "group".
*
* The tiling is of the form
*
* { [D[i] -> A[a]] -> T[t] }
*
* where D represents the first tile->depth schedule dimensions,
* A represents the global array and T represents the shared or
* private memory tile. The name of T is the name of the local
* array.
*
* If there is any stride in the accesses, then the mapping is
*
* t = (a + shift(i))/stride - lb(i)
*
* otherwise, it is simply
*
* t = a - lb(i)
*/
void gpu_array_ref_group_compute_tiling(struct gpu_array_ref_group *group)
{
int i;
struct gpu_array_tile *tile;
isl_space *space;
isl_multi_aff *tiling, *lb, *insert_array;
isl_printer *p;
char *local_name;
tile = gpu_array_ref_group_tile(group);
if (!tile)
return;
space = isl_map_get_space(group->access);
space = isl_space_from_range(isl_space_range(space));
space = isl_space_add_dims(space, isl_dim_in, tile->depth);
insert_array = isl_multi_aff_domain_map(isl_space_copy(space));
for (i = 0; i < tile->n; ++i)
if (tile->bound[i].shift)
break;
if (i < tile->n)
tiling = strided_tile(tile, space, insert_array);
else
tiling = isl_multi_aff_range_map(isl_space_copy(space));
lb = isl_multi_aff_zero(space);
for (i = 0; i < tile->n; ++i) {
isl_aff *lb_i = isl_aff_copy(tile->bound[i].lb);
lb = isl_multi_aff_set_aff(lb, i, lb_i);
}
lb = isl_multi_aff_pullback_multi_aff(lb, insert_array);
tiling = isl_multi_aff_sub(tiling, lb);
p = isl_printer_to_str(isl_multi_aff_get_ctx(tiling));
p = gpu_array_ref_group_print_name(group, p);
local_name = isl_printer_get_str(p);
isl_printer_free(p);
tiling = isl_multi_aff_set_tuple_name(tiling, isl_dim_out, local_name);
free(local_name);
tile->tiling = tiling;
}