gpu_group.c 54.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
/*
 * Copyright 2010-2011 INRIA Saclay
 * Copyright 2012-2014 Ecole Normale Superieure
 * Copyright 2015      Sven Verdoolaege
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
 * 91893 Orsay, France
 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
 */

#include <isl/constraint.h>
#include <isl/ilp.h>

#include "gpu_array_tile.h"
#include "gpu_group.h"
#include "gpu_tree.h"
#include "schedule.h"

/* Print the name of the local copy of a given group of array references.
 */
__isl_give isl_printer *gpu_array_ref_group_print_name(
	struct gpu_array_ref_group *group, __isl_take isl_printer *p)
{
	int global = 0;
	enum ppcg_group_access_type type;

	type = gpu_array_ref_group_type(group);
	if (type == ppcg_access_private)
		p = isl_printer_print_str(p, "private_");
	else if (type == ppcg_access_shared)
		p = isl_printer_print_str(p, "shared_");
	else
		global = 1;
	p = isl_printer_print_str(p, group->array->name);
	if (!global && group->local_array->n_group > 1) {
		p = isl_printer_print_str(p, "_");
		p = isl_printer_print_int(p, group->nr);
	}

	return p;
}

/* Return the union of all read (read = 1) and/or write (write = 1)
 * access relations in the group.
 */
__isl_give isl_union_map *gpu_array_ref_group_access_relation(
	struct gpu_array_ref_group *group, int read, int write)
{
	int i;
	isl_union_map *access;

	access = isl_union_map_empty(isl_map_get_space(group->access));
	for (i = 0; i < group->n_ref; ++i) {
		isl_map *map_i;

		if (!((read && group->refs[i]->read) ||
		     (write && group->refs[i]->write)))
			continue;
		map_i = isl_map_copy(group->refs[i]->access);
		access = isl_union_map_union(access,
					    isl_union_map_from_map(map_i));
	}

	return access;
}

/* Should this array reference group be mapped to private, shared or global
 * memory?
 * If we have computed both a private and a shared tile, then
 * the tile with the smallest depth is used.  If both have the same depth,
 * then the private tile is used.
 */
enum ppcg_group_access_type gpu_array_ref_group_type(
	struct gpu_array_ref_group *group)
{
	if (group->private_tile && group->shared_tile &&
	    group->shared_tile->depth < group->private_tile->depth)
		return ppcg_access_shared;
	if (group->private_tile)
		return ppcg_access_private;
	if (group->shared_tile)
		return ppcg_access_shared;
	return ppcg_access_global;
}


/* Return the effective gpu_array_tile associated to "group" or
 * NULL if there is no such gpu_array_tile.
 */
struct gpu_array_tile *gpu_array_ref_group_tile(
	struct gpu_array_ref_group *group)
{
	switch (gpu_array_ref_group_type(group)) {
	case ppcg_access_global:
		return NULL;
	case ppcg_access_shared:
		return group->shared_tile;
	case ppcg_access_private:
		return group->private_tile;
	}
}

/* Does the tile associated to "group" require unrolling of the schedule
 * dimensions mapped to threads?
 * Note that this can only happen for private tiles.
 */
int gpu_array_ref_group_requires_unroll(struct gpu_array_ref_group *group)
{
	struct gpu_array_tile *tile;

	tile = gpu_array_ref_group_tile(group);
	if (!tile)
		return 0;
	return tile->requires_unroll;
}

/* Given a constraint
 *
 *		a(p,i) + j = g f(e)
 *
 * or -a(p,i) - j = g f(e) if sign < 0,
 * store a(p,i) in bound->shift and g (stride) in bound->stride.
 * a(p,i) is assumed to be an expression in only the parameters
 * and the input dimensions.
 */
static void extract_stride(__isl_keep isl_constraint *c,
	struct gpu_array_bound *bound, __isl_keep isl_val *stride, int sign)
{
	int i;
	isl_val *v;
	isl_space *space;
	unsigned nparam;
	unsigned nvar;
	isl_aff *aff;

	isl_val_free(bound->stride);
	bound->stride = isl_val_copy(stride);

	space = isl_constraint_get_space(c);
	space = isl_space_domain(space);

	nparam = isl_space_dim(space, isl_dim_param);
	nvar = isl_space_dim(space, isl_dim_set);

	v = isl_constraint_get_constant_val(c);
	if (sign < 0)
		v = isl_val_neg(v);
	aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
	aff = isl_aff_set_constant_val(aff, v);

	for (i = 0; i < nparam; ++i) {
		if (!isl_constraint_involves_dims(c, isl_dim_param, i, 1))
			continue;
		v = isl_constraint_get_coefficient_val(c, isl_dim_param, i);
		if (sign < 0)
			v = isl_val_neg(v);
		aff = isl_aff_add_coefficient_val(aff, isl_dim_param, i, v);
	}

	for (i = 0; i < nvar; ++i) {
		if (!isl_constraint_involves_dims(c, isl_dim_in, i, 1))
			continue;
		v = isl_constraint_get_coefficient_val(c, isl_dim_in, i);
		if (sign < 0)
			v = isl_val_neg(v);
		aff = isl_aff_add_coefficient_val(aff, isl_dim_in, i, v);
	}

	bound->shift = aff;
}

/* Given an equality constraint of a map with a single output dimension j,
 * check if the constraint is of the form
 *
 *		a(p,i) + j = g f(e)
 *
 * with a(p,i) an expression in the parameters and input dimensions
 * and f(e) an expression in the existentially quantified variables.
 * If so, and if g is larger than any such g from a previously considered
 * constraint, then call extract_stride to record the stride information
 * in bound.
 */
static isl_stat check_stride_constraint(__isl_take isl_constraint *c,
	void *user)
{
	int i;
	isl_ctx *ctx;
	isl_val *v;
	unsigned n_div;
	struct gpu_array_bound *bound = user;

	ctx = isl_constraint_get_ctx(c);
	n_div = isl_constraint_dim(c, isl_dim_div);
	v = isl_constraint_get_coefficient_val(c, isl_dim_out, 0);

	if (n_div && (isl_val_is_one(v) || isl_val_is_negone(v))) {
		int s = isl_val_sgn(v);
		isl_val *stride = isl_val_zero(ctx);

		isl_val_free(v);
		for (i = 0; i < n_div; ++i) {
			v = isl_constraint_get_coefficient_val(c,
								isl_dim_div, i);
			stride = isl_val_gcd(stride, v);
		}
		if (!isl_val_is_zero(stride) &&
		    isl_val_gt(stride, bound->stride))
			extract_stride(c, bound, stride, s);

		isl_val_free(stride);
	} else
		isl_val_free(v);

	isl_constraint_free(c);
	return isl_stat_ok;
}

/* Given contraints on an array index i, check if we can find
 * a shift a(p) and a stride g such that
 *
 *	a(p) + i = 0 mod g
 *
 * If so, record the information in bound and apply the mapping
 * i -> (i + a(p))/g to the array index in bounds and return
 * the new constraints.
 * If not, simply return the original constraints.
 *
 * If bounds is a subset of the space
 *
 *	D -> i
 *
 * then the bound recorded in bound->shift is of the form
 *
 *	D -> s(D)
 *
 * with s(D) equal to a(p) above.
 * Next, we construct a mapping of the form
 *
 *	[D -> i] -> [D -> (i + S(D))/g]
 *
 * This mapping is computed as follows.
 * We first introduce "i" in the domain through precomposition
 * with [D -> i] -> D obtaining
 *
 *	[D -> i] -> s(D)
 *
 * Adding [D -> i] -> i produces
 *
 *	[D -> i] -> i + s(D)
 *
 * and the domain product with [D -> i] -> D yields
 *
 *	[D -> i] -> [D -> i + s(D)]
 *
 * Composition with [D -> i] -> [D -> i/g] gives the desired result.
 */
static __isl_give isl_basic_map *check_stride(struct gpu_array_bound *bound,
	__isl_take isl_basic_map *bounds)
{
	isl_space *space;
	isl_basic_map *hull;
	isl_basic_map *shift, *id, *bmap, *scale;
	isl_basic_set *bset;
	isl_aff *aff;

	bound->stride = NULL;

	hull = isl_basic_map_affine_hull(isl_basic_map_copy(bounds));

	isl_basic_map_foreach_constraint(hull, &check_stride_constraint, bound);

	isl_basic_map_free(hull);

	if (!bound->stride)
		return bounds;

	shift = isl_basic_map_from_aff(isl_aff_copy(bound->shift));
	space = isl_basic_map_get_space(bounds);
	bmap = isl_basic_map_domain_map(isl_basic_map_universe(space));
	shift = isl_basic_map_apply_range(bmap, shift);
	space = isl_basic_map_get_space(bounds);
	id = isl_basic_map_range_map(isl_basic_map_universe(space));
	shift = isl_basic_map_sum(id, shift);
	space = isl_basic_map_get_space(bounds);
	id = isl_basic_map_domain_map(isl_basic_map_universe(space));
	shift = isl_basic_map_range_product(id, shift);

	space = isl_space_domain(isl_basic_map_get_space(bounds));
	id = isl_basic_map_identity(isl_space_map_from_set(space));
	space = isl_space_range(isl_basic_map_get_space(bounds));
	aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
	aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
	aff = isl_aff_scale_down_val(aff, isl_val_copy(bound->stride));
	scale = isl_basic_map_from_aff(aff);
	scale = isl_basic_map_product(id, scale);

	bmap = isl_basic_map_apply_range(shift, scale);
	bset = isl_basic_set_apply(isl_basic_map_wrap(bounds), bmap);
	bounds = isl_basic_set_unwrap(bset);

	return bounds;
}

/* Data used in compute_array_dim_size and compute_size_in_direction.
 *
 * pos is the position of the variable representing the array index,
 * i.e., the variable for which want to compute the size.  This variable
 * is also the last variable in the set.
 */
struct gpu_size_info {
	isl_basic_set *bset;
	struct gpu_array_bound *bound;
	int pos;
};

/* Given a constraint from the basic set describing the bounds on
 * an array index, check if it is a lower bound, say m i >= b(x), and,
 * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
 * upper bound.  If so, and if this bound is smaller than any bound
 * derived from earlier constraints, set the size to this bound on
 * the expression and the lower bound to ceil(b(x)/m).
 */
static isl_stat compute_size_in_direction(__isl_take isl_constraint *c,
	void *user)
{
	struct gpu_size_info *size = user;
	unsigned nparam;
	unsigned n_div;
	isl_val *v;
	isl_aff *aff;
	isl_aff *lb;

	nparam = isl_basic_set_dim(size->bset, isl_dim_param);
	n_div = isl_constraint_dim(c, isl_dim_div);

	if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div) ||
	    !isl_constraint_is_lower_bound(c, isl_dim_set, size->pos)) {
		isl_constraint_free(c);
		return isl_stat_ok;
	}

	aff = isl_constraint_get_bound(c, isl_dim_set, size->pos);
	aff = isl_aff_ceil(aff);

	lb = isl_aff_copy(aff);

	aff = isl_aff_neg(aff);
	aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1);

	v = isl_basic_set_max_val(size->bset, aff);
	isl_aff_free(aff);

	if (isl_val_is_int(v)) {
		v = isl_val_add_ui(v, 1);
		if (!size->bound->size || isl_val_lt(v, size->bound->size)) {
			isl_val_free(size->bound->size);
			size->bound->size = isl_val_copy(v);
			lb = isl_aff_drop_dims(lb, isl_dim_in, size->pos, 1);
			isl_aff_free(size->bound->lb);
			size->bound->lb = isl_aff_copy(lb);
		}
	}
	isl_val_free(v);
	isl_aff_free(lb);

	isl_constraint_free(c);

	return isl_stat_ok;
}

/* Given a basic map "bounds" that maps parameters and input dimensions
 * to a single output dimension, look for an expression in the parameters
 * and input dimensions such that the range of the output dimension shifted
 * by this expression is a constant.
 *
 * In particular, we currently only consider lower bounds on the output
 * dimension as candidate expressions.
 */
static int compute_array_dim_size(struct gpu_array_bound *bound,
	__isl_take isl_basic_map *bounds)
{
	struct gpu_size_info size;

	bounds = isl_basic_map_detect_equalities(bounds);
	bounds = check_stride(bound, bounds);

	bound->size = NULL;
	bound->lb = NULL;

	size.bound = bound;
	size.pos = isl_basic_map_dim(bounds, isl_dim_in);
	size.bset = isl_basic_map_wrap(bounds);
	size.bset = isl_basic_set_flatten(size.bset);
	size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset));
	isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction,
					&size);
	isl_basic_set_free(size.bset);

	return bound->size ? 0 : -1;
}

/* Check if we can find a memory tile for the given array
 * based on the given accesses, and if so, put the results in "tile".
 *
 * We project the accesses on each index in turn and look for a parametric
 * offset such that the size is constant.
 *
 * tile->depth is initialized to the input dimension of the computed bounds.
 */
static int can_tile(__isl_keep isl_map *access, struct gpu_array_tile *tile)
{
	int i;

	tile->depth = isl_map_dim(access, isl_dim_in);

	for (i = 0; i < tile->n; ++i) {
		isl_map *access_i;
		isl_basic_map *hull;

		access_i = isl_map_copy(access);
		access_i = isl_map_project_out(access_i, isl_dim_out, 0, i);
		access_i = isl_map_project_out(access_i, isl_dim_out,
					    1, tile->n - (i + 1));
		access_i = isl_map_compute_divs(access_i);
		hull = isl_map_simple_hull(access_i);
		if (compute_array_dim_size(&tile->bound[i], hull) < 0)
			return 0;
	}

	return 1;
}

/* Internal data structure for gpu_group_references.
 *
 * scop represents the input scop.
 * kernel_depth is the schedule depth where the kernel launch will
 * be introduced, i.e., it is the depth of the band that is mapped
 * to blocks.
 * shared_depth is the schedule depth at which the copying to/from
 * shared memory is computed.  The copy operation may then
 * later be hoisted to a higher level.
 * thread_depth is the schedule depth where the thread mark is located,
 * i.e., it is the depth of the band that is mapped to threads and also
 * the schedule depth at which the copying to/from private memory
 * is computed.  The copy operation may then later be hoisted to
 * a higher level.
 * n_thread is the number of schedule dimensions in the band that
 * is mapped to threads.
 * privatization lives in the range of thread_sched (i.e., it is
 * of dimension thread_depth + n_thread) and encodes the mapping
 * to thread identifiers (as parameters).
 * host_sched contains the kernel_depth dimensions of the host schedule.
 * shared_sched contains the first shared_depth dimensions of the
 * kernel schedule.
 * copy_sched contains the first thread_depth dimensions of the
 * kernel schedule.
 * thread_sched contains the first (thread_depth + n_thread) dimensions
 * of the kernel schedule.
 * full_sched is a union_map representation of the entire kernel schedule.
 * The schedules are all formulated in terms of the original statement
 * instances, i.e., those that appear in the domains of the access
 * relations.
 */
struct gpu_group_data {
	struct ppcg_scop *scop;
	int kernel_depth;
	int shared_depth;
	int thread_depth;
	int n_thread;
	isl_set *privatization;
	isl_union_map *host_sched;
	isl_union_map *shared_sched;
	isl_union_map *copy_sched;
	isl_union_map *thread_sched;
	isl_union_map *full_sched;
};

/* Construct a map from domain_space to domain_space that increments
 * the dimension at position "pos" and leaves all other dimensions
 * constant.
 */
static __isl_give isl_map *next(__isl_take isl_space *domain_space, int pos)
{
	isl_space *space;
	isl_aff *aff;
	isl_multi_aff *next;

	space = isl_space_map_from_set(domain_space);
	next = isl_multi_aff_identity(space);
	aff = isl_multi_aff_get_aff(next, pos);
	aff = isl_aff_add_constant_si(aff, 1);
	next = isl_multi_aff_set_aff(next, pos, aff);

	return isl_map_from_multi_aff(next);
}

/* Check if the given access is coalesced (or if there is no point
 * in trying to coalesce the access by mapping the array to shared memory).
 * That is, check whether incrementing the dimension that will get
 * wrapped over the last thread index results in incrementing
 * the last array index.
 *
 * If no two consecutive array elements are ever accessed by "access",
 * then mapping the corresponding array to shared memory will not
 * improve coalescing.  In fact, the copying will likely be performed
 * by a single thread.  Consider the access as coalesced such that
 * the caller will not try and map the array to shared memory just
 * to improve coalescing.
 *
 * This function is only called for access relations without reuse and
 * kernels with at least one thread identifier.
 */
static int access_is_coalesced(struct gpu_group_data *data,
	__isl_keep isl_union_map *access)
{
	int dim;
	isl_space *space;
	isl_set *accessed;
	isl_map *access_map;
	isl_map *next_thread_x;
	isl_map *next_element;
	isl_map *map;
	int coalesced, empty;

	access = isl_union_map_copy(access);
	access = isl_union_map_apply_domain(access,
				isl_union_map_copy(data->full_sched));
	access_map = isl_map_from_union_map(access);

	space = isl_map_get_space(access_map);
	space = isl_space_range(space);
	dim = isl_space_dim(space, isl_dim_set);
	if (dim == 0)
		next_element = isl_map_empty(isl_space_map_from_set(space));
	else
		next_element = next(space, dim - 1);

	accessed = isl_map_range(isl_map_copy(access_map));
	map = isl_map_copy(next_element);
	map = isl_map_intersect_domain(map, isl_set_copy(accessed));
	map = isl_map_intersect_range(map, accessed);
	empty = isl_map_is_empty(map);
	isl_map_free(map);

	if (empty < 0 || empty) {
		isl_map_free(next_element);
		isl_map_free(access_map);
		return empty;
	}

	space = isl_map_get_space(access_map);
	space = isl_space_domain(space);
	next_thread_x = next(space, data->thread_depth + data->n_thread - 1);

	map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
	map = isl_map_apply_range(map, access_map);

	coalesced = isl_map_is_subset(map, next_element);

	isl_map_free(next_element);
	isl_map_free(map);

	return coalesced;
}

/* Replace the host schedule dimensions in the access relation "access"
 * by parameters, so that they are treated as fixed when checking for reuse
 * (within a kernel) or whether two consecutive elements are accessed
 * (within a kernel).
 */
static __isl_give isl_union_map *localize_access(struct gpu_group_data *data,
	__isl_take isl_union_map *access)
{
	int n;
	isl_space *space;
	isl_set *param;
	isl_union_map *umap;
	isl_id_list *ids;

	umap = isl_union_map_copy(data->host_sched);
	space = isl_union_map_get_space(umap);
	n = data->kernel_depth;
	ids = ppcg_scop_generate_names(data->scop, n, "__ppcg_host_");
	param = parametrization(space, n, 0, ids);
	isl_id_list_free(ids);
	umap = isl_union_map_intersect_range(umap,
						isl_union_set_from_set(param));
	access = isl_union_map_intersect_domain(access,
						isl_union_map_domain(umap));

	return access;
}

/* Given an access relation in terms of at least data->thread_depth initial
 * dimensions of the computed schedule, check if it is bijective for
 * fixed values of the first data->thread_depth dimensions.
 * We perform this check by equating these dimensions to parameters.
 */
static int access_is_bijective(struct gpu_group_data *data,
	__isl_keep isl_map *access)
{
	int res;
	int dim;
	isl_set *par;
	isl_space *space;
	isl_id_list *ids;

	access = isl_map_copy(access);
	space = isl_space_params(isl_map_get_space(access));
	ids = ppcg_scop_generate_names(data->scop, data->thread_depth, "s");
	dim = isl_map_dim(access, isl_dim_in);
	par = parametrization(space, dim, 0, ids);
	isl_id_list_free(ids);
	access = isl_map_intersect_domain(access, par);
	res = isl_map_is_bijective(access);
	isl_map_free(access);

	return res;
}

/* Compute the number of outer schedule tile dimensions that affect
 * the offset of "tile".
 * If there is no such dimension, then return the index
 * of the first kernel dimension, i.e., data->kernel_depth.
 */
static int compute_tile_depth(struct gpu_group_data *data,
	struct gpu_array_tile *tile)
{
	int i, j;

	for (j = tile->depth - 1; j >= data->kernel_depth; --j) {
		for (i = 0; i < tile->n; ++i) {
			isl_aff *lb;
			isl_aff *shift;

			lb = tile->bound[i].lb;
			if (isl_aff_involves_dims(lb, isl_dim_in, j, 1))
				break;

			shift = tile->bound[i].shift;
			if (!shift)
				continue;
			if (isl_aff_involves_dims(shift, isl_dim_in, j, 1))
				break;
		}
		if (i < tile->n)
			break;
	}

	return ++j;
}

/* Return the lowest depth between data->kernel_depth and data->thread_depth
 * at which every array element accessed through "acc" is accessed
 * by a single thread.  The input dimension of "acc" is
 * data->thread_depth + data->n_thread, where the final data->n_thread
 * dimensions are those that will be mapped to threads.
 * If the values for these dimensions are uniquely determined
 * by the array index and a given number of outer dimensions, then
 * there is only one thread accessing that array element within those
 * outer dimensions.
 *
 * The input space of "acc" is first split up, such that it has the form
 *
 *	[O -> T] -> A
 *
 * with O the outer dimensions, T the dimensions that will be mapped to threads
 * and A the array index.
 *
 * Then the positions of T and A are interchanged to simplify the test
 * whether T uniquely depends on O and A.
 * In particular, the above access relation is first combined with
 *
 *	[O -> T] -> T
 *
 * to form
 *
 *	[O -> T] -> [A -> T]
 *
 * from which
 *
 *	O -> [A -> T]
 *
 * is extracted, which is then uncurried to
 *
 *	[O -> A] -> T
 *
 * Finally, the final dimensions of O are projected out one by one
 * until T is no longer uniquely determined by A and the remaining
 * dimensions in O.  The value returned is that of the last dimension
 * that was successfully projected out.
 * Note that there is no need to test whether [O -> A] -> T itself
 * is single-valued as that was already tested in access_is_bijective.
 */
static int compute_accessed_by_single_thread_depth(struct gpu_group_data *data,
	__isl_keep isl_map *acc)
{
	int i;
	isl_space *space;
	isl_map *map;
	isl_bool sv;

	if (data->thread_depth == data->kernel_depth)
		return data->thread_depth;

	acc = isl_map_copy(acc);

	space = isl_map_get_space(acc);
	space = isl_space_params(space);
	space = isl_space_set_from_params(space);
	space = isl_space_add_dims(space, isl_dim_set, data->thread_depth);
	space = isl_space_from_domain(space);
	space = isl_space_add_dims(space, isl_dim_out, data->n_thread);
	space = isl_space_wrap(space);
	map = isl_set_flatten_map(isl_set_universe(space));
	acc = isl_map_apply_range(map, acc);

	space = isl_space_domain(isl_map_get_space(acc));
	map = isl_map_range_map(isl_map_universe(isl_space_unwrap(space)));
	acc = isl_map_range_product(acc, map);
	acc = isl_map_domain_factor_domain(acc);
	acc = isl_map_uncurry(acc);

	for (i = data->thread_depth - 1; i >= data->kernel_depth; --i) {
		acc = isl_map_project_out(acc, isl_dim_in, i, 1);
		sv = isl_map_is_single_valued(acc);
		if (sv < 0)
			return -1;
		if (!sv)
			break;
	}

	isl_map_free(acc);

	return ++i;
}

/* Adjust the fields of "tile" to reflect the new input dimension "depth".
 * The dimension beyond "depth" are assumed not to affect the tile,
 * so they can simply be dropped.
 */
static int tile_adjust_depth(struct gpu_array_tile *tile, int depth)
{
	int i;

	if (tile->depth == depth)
		return 0;

	for (i = 0; i < tile->n; ++i) {
		tile->bound[i].lb = isl_aff_drop_dims(tile->bound[i].lb,
					isl_dim_in, depth, tile->depth - depth);
		if (!tile->bound[i].lb)
			return -1;
		if (!tile->bound[i].shift)
			continue;
		tile->bound[i].shift = isl_aff_drop_dims(tile->bound[i].shift,
					isl_dim_in, depth, tile->depth - depth);
		if (!tile->bound[i].shift)
			return -1;
	}

	tile->depth = depth;

	return 0;
}

/* Determine the number of schedule dimensions that affect the offset of the
 * shared or private tile "tile" and store the result in tile->depth, with
 * a lower bound of data->kernel_depth.
 * Also adjust the fields of the tile to only refer to the tile->depth
 * outer schedule dimensions.
 */
static isl_stat tile_set_depth(struct gpu_group_data *data,
	struct gpu_array_tile *tile)
{
	if (tile_adjust_depth(tile, compute_tile_depth(data, tile)) < 0)
		return isl_stat_error;

	return isl_stat_ok;
}

/* Determine the number of schedule dimensions that affect the offset of the
 * shared tile and store the minimum of the private and shared tile depth
 * in group->min_depth, with a lower bound of data->kernel_depth.
 * If there is no tile defined on the array reference group,
 * then set group->min_depth to data->thread_depth.
 */
static int set_depth(struct gpu_group_data *data,
	struct gpu_array_ref_group *group)
{
	group->min_depth = data->thread_depth;

	if (group->private_tile) {
		if (group->private_tile->depth < group->min_depth)
			group->min_depth = group->private_tile->depth;
	}
	if (group->shared_tile) {
		if (tile_set_depth(data, group->shared_tile) < 0)
			return -1;
		if (group->shared_tile->depth < group->min_depth)
			group->min_depth = group->shared_tile->depth;
	}

	return 0;
}

/* Fill up the groups array with singleton groups, i.e., one group
 * per reference, initializing the array, access, write, n_ref and refs fields.
 * In particular the access field is initialized to the scheduled
 * access relation of the array reference.
 *
 * Return the number of elements initialized, i.e., the number of
 * active references in the current kernel.
 */
static int populate_array_references(struct gpu_local_array_info *local,
	struct gpu_array_ref_group **groups, struct gpu_group_data *data)
{
	int i;
	int n;
	isl_ctx *ctx = isl_union_map_get_ctx(data->copy_sched);

	n = 0;
	for (i = 0; i < local->array->n_ref; ++i) {
		isl_union_map *umap;
		isl_map *map;
		struct gpu_array_ref_group *group;
		struct gpu_stmt_access *access = local->array->refs[i];

		map = isl_map_copy(access->access);
		umap = isl_union_map_from_map(map);
		umap = isl_union_map_apply_domain(umap,
				isl_union_map_copy(data->copy_sched));

		if (isl_union_map_is_empty(umap)) {
			isl_union_map_free(umap);
			continue;
		}

		map = isl_map_from_union_map(umap);
		map = isl_map_detect_equalities(map);

		group = isl_calloc_type(ctx, struct gpu_array_ref_group);
		if (!group)
			return -1;
		group->local_array = local;
		group->array = local->array;
		group->access = map;
		group->write = access->write;
		group->exact_write = access->exact_write;
		group->slice = access->n_index < local->array->n_index;
		group->refs = &local->array->refs[i];
		group->n_ref = 1;

		groups[n++] = group;
	}

	return n;
}

/* If group->n_ref == 1, then group->refs was set by
 * populate_array_references to point directly into
 * group->array->refs and should not be freed.
 * If group->n_ref > 1, then group->refs was set by join_groups
 * to point to a newly allocated array.
 */
struct gpu_array_ref_group *gpu_array_ref_group_free(
	struct gpu_array_ref_group *group)
{
	if (!group)
		return NULL;
	gpu_array_tile_free(group->shared_tile);
	gpu_array_tile_free(group->private_tile);
	isl_map_free(group->access);
	if (group->n_ref > 1)
		free(group->refs);
	free(group);
	return NULL;
}

/* Check if the access relations of group1 and group2 overlap within
 * copy_sched.
 */
static int accesses_overlap(struct gpu_array_ref_group *group1,
	struct gpu_array_ref_group *group2)
{
	int disjoint;

	disjoint = isl_map_is_disjoint(group1->access, group2->access);
	if (disjoint < 0)
		return -1;

	return !disjoint;
}

/* Combine the given two groups into a single group, containing
 * the references of both groups.
 */
static struct gpu_array_ref_group *join_groups(
	struct gpu_array_ref_group *group1,
	struct gpu_array_ref_group *group2)
{
	int i;
	isl_ctx *ctx;
	struct gpu_array_ref_group *group;

	if (!group1 || !group2)
		return NULL;

	ctx = isl_map_get_ctx(group1->access);
	group = isl_calloc_type(ctx, struct gpu_array_ref_group);
	if (!group)
		return NULL;
	group->local_array = group1->local_array;
	group->array = group1->array;
	group->access = isl_map_union(isl_map_copy(group1->access),
					isl_map_copy(group2->access));
	group->write = group1->write || group2->write;
	group->exact_write = group1->exact_write && group2->exact_write;
	group->slice = group1->slice || group2->slice;
	group->n_ref = group1->n_ref + group2->n_ref;
	group->refs = isl_alloc_array(ctx, struct gpu_stmt_access *,
					group->n_ref);
	if (!group->refs)
		return gpu_array_ref_group_free(group);
	for (i = 0; i < group1->n_ref; ++i)
		group->refs[i] = group1->refs[i];
	for (i = 0; i < group2->n_ref; ++i)
		group->refs[group1->n_ref + i] = group2->refs[i];

	return group;
}

/* Combine the given two groups into a single group and free
 * the original two groups.
 */
static struct gpu_array_ref_group *join_groups_and_free(
	struct gpu_array_ref_group *group1,
	struct gpu_array_ref_group *group2)
{
	struct gpu_array_ref_group *group;

	group = join_groups(group1, group2);
	gpu_array_ref_group_free(group1);
	gpu_array_ref_group_free(group2);
	return group;
}

/* Report that the array reference group with the given access relation
 * is not mapped to shared memory in the given kernel because
 * it does not exhibit any reuse and is considered to be coalesced.
 */
static void report_no_reuse_and_coalesced(struct ppcg_kernel *kernel,
	__isl_keep isl_union_map *access)
{
	isl_ctx *ctx;
	isl_printer *p;

	ctx = isl_union_map_get_ctx(access);
	p = isl_printer_to_file(ctx, stdout);
	p = isl_printer_print_str(p, "Array reference group ");
	p = isl_printer_print_union_map(p, access);
	p = isl_printer_print_str(p,
	    " not considered for mapping to shared memory in kernel");
	p = isl_printer_print_int(p, kernel->id);
	p = isl_printer_print_str(p,
	    " because it exhibits no reuse and is considered to be coalesced");
	p = isl_printer_end_line(p);
	isl_printer_free(p);
}

/* Given an access relation in terms of the data->thread_depth initial
 * dimensions of the computed schedule and the thread identifiers
 * (as parameters), check if the use of the corresponding private tile
 * requires unrolling.
 *
 * If we are creating a private tile because we are forced to,
 * then no unrolling is required.
 * Otherwise we check if "access" is bijective and unrolling
 * is required if it is not.  Note that the access relation
 * has already been determined to be bijective before the introduction
 * of the thread identifiers and the removal of the schedule dimensions
 * that are mapped to these threads.  If the access relation is no longer
 * bijective, then this means that more than one value of one of those
 * schedule dimensions is mapped to the same thread and therefore
 * unrolling is required.
 */
static int check_requires_unroll(struct gpu_group_data *data,
	__isl_keep isl_map *access, int force_private)
{
	int bijective;

	if (force_private)
		return 0;
	bijective = access_is_bijective(data, access);
	if (bijective < 0)
		return -1;
	return !bijective;
}

/* Map the domain of "access" to the outer data->shared_depth
 * schedule dimensions.  When data->shared_depth is equal to
 * data->thread_depth, this result is already available in group->access.
 */
static __isl_give isl_map *shared_access(struct gpu_array_ref_group *group,
	__isl_keep isl_union_map *access, struct gpu_group_data *data)
{
	isl_union_map *shared;

	if (data->shared_depth == data->thread_depth)
		return isl_map_copy(group->access);

	shared = isl_union_map_copy(access);
	shared = isl_union_map_apply_domain(shared,
			isl_union_map_copy(data->shared_sched));
	return isl_map_from_union_map(shared);
}

/* Compute the private and/or shared memory tiles for the array
 * reference group "group" of array "array".
 * Return 0 on success and -1 on error.
 *
 * If the array is a read-only scalar or if the user requested
 * not to use shared or private memory, then we do not need to do anything.
 *
 * If any reference in the reference group accesses more than one element,
 * then we would have to make sure that the layout in shared memory
 * is the same as that in global memory.  Since we do not handle this yet
 * (and it may not even be possible), we refuse to map to private or
 * shared memory in such cases.
 *
 * If the array group involves any may writes (that are not must writes),
 * then we would have to make sure that we load the data into shared/private
 * memory first in case the data is not written by the kernel
 * (but still written back out to global memory).
 * Since we don't have any such mechanism at the moment, we don't
 * compute shared/private tiles for groups involving may writes.
 *
 * We only try to compute a shared memory tile if there is any reuse
 * or if the access is not coalesced.
 * Reuse and coalescing are checked within the given kernel.
 *
 * For computing a private memory tile, we also require that there is
 * some reuse.  Moreover, we require that the access is private
 * to the thread.  That is, we check that any given array element
 * is only accessed by a single thread.
 * We compute an access relation that maps the outer
 * data->thread_depth + data->n_thread schedule dimensions.
 * The latter data->n_thread will be mapped to thread identifiers.
 * We actually check that those iterators that will be wrapped
 * partition the array space.  This check is stricter than necessary
 * since several iterations may be mapped onto the same thread
 * and then they could be allowed to access the same memory elements,
 * but our check does not allow this situation.
 *
 * For private memory tiles, the number of schedule dimensions that
 * affect the offset is computed and stored in tile->depth, with
 * a lower bound of data->kernel_depth.  If this depth is smaller
 * than the minimal depth that still ensures that every element
 * is accessed by a single thread, then the depth is raised
 * to this minimal depth.
 * The fields of the tile are then adjusted to only refer to the tile->depth
 * outer schedule dimensions.
 *
 * We also check that the index expression only depends on parallel
 * loops.  That way, we can move those loops innermost and unroll them.
 * Again, we use a test that is stricter than necessary.
 * We actually check whether the index expression only depends
 * on the iterators that are wrapped over the threads.
 * These are necessarily parallel, but there may be more parallel loops.
 *
 * Combining the injectivity of the first test with the single-valuedness
 * of the second test, we simply test for bijectivity.
 *
 * If the use of the private tile requires unrolling, but some
 * of the other arrays are forcibly mapped to private memory,
 * then we do not allow the use of this private tile since
 * we cannot move the schedule dimensions that need to be unrolled down
 * without performing some kind of expansion on those arrays
 * that are forcibly mapped to private memory.
 *
 * If the array is marked force_private, then we bypass all checks
 * and assume we can (and should) use registers only.
 *
 * If it turns out we can (or have to) use registers, we compute
 * the private memory tile size using can_tile, after introducing a dependence
 * on the thread indices.
 */
static int compute_group_bounds_core(struct ppcg_kernel *kernel,
	struct gpu_array_ref_group *group, struct gpu_group_data *data)
{
	isl_ctx *ctx = isl_space_get_ctx(group->array->space);
	isl_union_map *access, *local;
	int n_index = group->array->n_index;
	int no_reuse, coalesced;
	isl_map *acc;
	int force_private = group->local_array->force_private;
	int use_shared = !force_private && kernel->options->use_shared_memory &&
				data->n_thread > 0;
	int use_private = force_private || kernel->options->use_private_memory;
	int r = 0;
	int requires_unroll;
	int unique_depth;

	if (!use_shared && !use_private)
		return 0;
	if (gpu_array_is_read_only_scalar(group->array))
		return 0;
	if (!force_private && !group->exact_write)
		return 0;
	if (group->slice)
		return 0;

	access = gpu_array_ref_group_access_relation(group, 1, 1);
	local = localize_access(data, isl_union_map_copy(access));
	no_reuse = isl_union_map_is_injective(local);
	if (no_reuse < 0)
		r = -1;
	if (use_shared && no_reuse)
		coalesced = access_is_coalesced(data, local);
	isl_union_map_free(local);

	if (r >= 0 && kernel->options->debug->verbose &&
	    use_shared && no_reuse && coalesced)
		report_no_reuse_and_coalesced(kernel, access);

	if (use_shared && (!no_reuse || !coalesced)) {
		group->shared_tile = gpu_array_tile_create(ctx,
							group->array->n_index);
		acc = shared_access(group, access, data);
		if (!group->shared_tile)
			r = -1;
		else if (!can_tile(acc, group->shared_tile))
			group->shared_tile =
					gpu_array_tile_free(group->shared_tile);
		isl_map_free(acc);
	}

	if (r < 0 || (!force_private && (!use_private || no_reuse))) {
		isl_union_map_free(access);
		return r;
	}

	access = isl_union_map_apply_domain(access,
					isl_union_map_copy(data->thread_sched));

	acc = isl_map_from_union_map(access);

	if (!force_private && !access_is_bijective(data, acc)) {
		isl_map_free(acc);
		return 0;
	}

	unique_depth = compute_accessed_by_single_thread_depth(data, acc);

	acc = isl_map_intersect_domain(acc, isl_set_copy(data->privatization));
	acc = isl_map_project_out(acc, isl_dim_in, data->thread_depth,
								data->n_thread);
	requires_unroll = check_requires_unroll(data, acc, force_private);
	if (unique_depth < 0 || requires_unroll < 0 ||
	    (requires_unroll && kernel->any_force_private)) {
		isl_map_free(acc);
		return requires_unroll < 0 ? -1 : 0;
	}

	group->private_tile = gpu_array_tile_create(ctx, n_index);
	if (!group->private_tile) {
		isl_map_free(acc);
		return -1;
	}
	group->private_tile->requires_unroll = requires_unroll;
	if (!can_tile(acc, group->private_tile))
		group->private_tile = gpu_array_tile_free(group->private_tile);

	isl_map_free(acc);

	if (group->private_tile) {
		struct gpu_array_tile *tile = group->private_tile;
		int tile_depth = compute_tile_depth(data, tile);
		if (tile_depth < unique_depth)
			tile_depth = unique_depth;
		if (tile_adjust_depth(tile, tile_depth) < 0)
			return -1;
	}

	if (force_private && !group->private_tile)
		isl_die(ctx, isl_error_internal,
			"unable to map array reference group to registers",
			return -1);

	return 0;
}

/* Compute the private and/or shared memory tiles for the array
 * reference group "group" of array "array" and set the tile depth.
 * Return 0 on success and -1 on error.
 */
static int compute_group_bounds(struct ppcg_kernel *kernel,
	struct gpu_array_ref_group *group, struct gpu_group_data *data)
{
	if (!group)
		return -1;
	if (compute_group_bounds_core(kernel, group, data) < 0)
		return -1;
	if (set_depth(data, group) < 0)
		return -1;

	return 0;
}

/* If two groups have overlapping access relations (as determined by
 * the "overlap" function) and if one of them involves a write,
 * then merge the two groups into one.
 * If "compute_bounds" is set, then call compute_group_bounds
 * on the merged groups.
 *
 * Return the updated number of groups.
 * Return -1 on error.
 */
static int group_writes(struct ppcg_kernel *kernel,
	int n, struct gpu_array_ref_group **groups,
	int (*overlap)(struct gpu_array_ref_group *group1,
		struct gpu_array_ref_group *group2), int compute_bounds,
	struct gpu_group_data *data)
{
	int i, j;

	for (i = 0; i < n; ++i) {
		for (j = n - 1; j > i; --j) {
			if (!groups[i]->write && !groups[j]->write)
				continue;

			if (!overlap(groups[i], groups[j]))
				continue;

			groups[i] = join_groups_and_free(groups[i], groups[j]);
			if (j != n - 1)
				groups[j] = groups[n - 1];
			groups[n - 1] = NULL;
			n--;

			if (!groups[i])
				return -1;
			if (compute_bounds &&
			    compute_group_bounds(kernel, groups[i], data) < 0)
				return -1;
		}
	}

	return n;
}

/* If two groups have overlapping access relations (within the innermost
 * loop) and if one of them involves a write, then merge the two groups
 * into one.
 *
 * Return the updated number of groups.
 */
static int group_overlapping_writes(struct ppcg_kernel *kernel,
	int n, struct gpu_array_ref_group **groups,
	struct gpu_group_data *data)
{
	return group_writes(kernel, n, groups, &accesses_overlap, 0, data);
}

/* Check if the access relations of group1 and group2 overlap within
 * the outermost min(group1->min_depth, group2->min_depth) loops.
 */
static int depth_accesses_overlap(struct gpu_array_ref_group *group1,
	struct gpu_array_ref_group *group2)
{
	int depth;
	int dim;
	int empty;
	isl_map *map_i, *map_j, *map;

	depth = group1->min_depth;
	if (group2->min_depth < depth)
		depth = group2->min_depth;
	map_i = isl_map_copy(group1->access);
	dim = isl_map_dim(map_i, isl_dim_in);
	map_i = isl_map_eliminate(map_i, isl_dim_in, depth, dim - depth);
	map_j = isl_map_copy(group2->access);
	map_j = isl_map_eliminate(map_j, isl_dim_in, depth, dim - depth);
	map = isl_map_intersect(map_i, map_j);
	empty = isl_map_is_empty(map);
	isl_map_free(map);

	return !empty;
}

/* If two groups have overlapping access relations (within the outer
 * depth loops) and if one of them involves a write,
 * then merge the two groups into one.
 *
 * Return the updated number of groups.
 */
static int group_depth_overlapping_writes(struct ppcg_kernel *kernel,
	int n, struct gpu_array_ref_group **groups, struct gpu_group_data *data)
{
	return group_writes(kernel, n, groups, &depth_accesses_overlap, 1,
				data);
}

/* Is the size of the tile specified by "tile" smaller than the sum of
 * the sizes of the tiles specified by "tile1" and "tile2"?
 */
static int smaller_tile(struct gpu_array_tile *tile,
	struct gpu_array_tile *tile1, struct gpu_array_tile *tile2)
{
	int smaller;
	isl_val *size, *size1, *size2;

	size = gpu_array_tile_size(tile);
	size1 = gpu_array_tile_size(tile1);
	size2 = gpu_array_tile_size(tile2);

	size = isl_val_sub(size, size1);
	size = isl_val_sub(size, size2);
	smaller = isl_val_is_neg(size);

	isl_val_free(size);

	return smaller;
}

/* Given an initial grouping of array references and shared memory tiles
 * for each group that allows for a shared memory tile, merge two groups
 * if both have a shared memory tile, the merged group also has
 * a shared memory tile and the size of the tile for the merge group
 * is smaller than the sum of the tile sizes of the individual groups.
 *
 * If merging two groups decreases the depth of the tile of
 * one or both of the two groups, then we need to check for overlapping
 * writes again.
 *
 * Return the number of groups after merging.
 * Return -1 on error.
 */
static int group_common_shared_memory_tile(struct ppcg_kernel *kernel,
	struct gpu_array_info *array, int n,
	struct gpu_array_ref_group **groups, struct gpu_group_data *data)
{
	int i, j;
	int recompute_overlap = 0;

	for (i = 0; i < n; ++i) {
		if (!groups[i]->shared_tile)
			continue;
		for (j = n - 1; j > i; --j) {
			struct gpu_array_ref_group *group;

			if (!groups[j]->shared_tile)
				continue;

			if (!depth_accesses_overlap(groups[i], groups[j]))
				continue;

			group = join_groups(groups[i], groups[j]);
			if (compute_group_bounds(kernel, group, data) < 0) {
				gpu_array_ref_group_free(group);
				return -1;
			}
			if (!group->shared_tile ||
			    !smaller_tile(group->shared_tile,
					groups[i]->shared_tile,
					groups[j]->shared_tile)) {
				gpu_array_ref_group_free(group);
				continue;
			}

			if (group->min_depth < groups[i]->min_depth ||
			    group->min_depth < groups[j]->min_depth)
				recompute_overlap = 1;
			gpu_array_ref_group_free(groups[i]);
			gpu_array_ref_group_free(groups[j]);
			groups[i] = group;
			if (j != n - 1)
				groups[j] = groups[n - 1];
			n--;
		}
	}

	if (recompute_overlap)
		n = group_depth_overlapping_writes(kernel, n, groups, data);
	return n;
}

/* Set array->n_group and array->groups to n and groups.
 *
 * Additionally, set the "nr" field of each group.
 */
static void set_array_groups(struct gpu_local_array_info *array,
	int n, struct gpu_array_ref_group **groups)
{
	int i;

	array->n_group = n;
	array->groups = groups;

	for (i = 0; i < n; ++i)
		groups[i]->nr = i;
}

/* Combine all groups in "groups" into a single group and return
 * the new number of groups (1 or 0 if there were no groups to start with).
 */
static int join_all_groups(int n, struct gpu_array_ref_group **groups)
{
	int i;

	for (i = n - 1; i > 0; --i) {
		groups[0] = join_groups_and_free(groups[0], groups[i]);
		groups[i] = NULL;
		n--;
	}

	return n;
}

/* Group array references that should be considered together when
 * deciding whether to access them from private, shared or global memory.
 * Return -1 on error.
 *
 * In particular, if two array references overlap and if one of them
 * is a write, then the two references are grouped together.
 * We first perform an initial grouping based only on the access relation.
 * After computing shared and private memory tiles, we check for
 * overlapping writes again, but this time taking into account
 * the depth of the effective tile.
 *
 * Furthermore, if two groups admit a shared memory tile and if the
 * combination of the two also admits a shared memory tile, we merge
 * the two groups.
 *
 * If the array contains structures, then we compute a single
 * reference group without trying to find any tiles
 * since we do not map such arrays to private or shared
 * memory.  The only exception is when those arrays of structures
 * are required to be mapped to private memory.
 */
static int group_array_references(struct ppcg_kernel *kernel,
	struct gpu_local_array_info *local, struct gpu_group_data *data)
{
	int i;
	int n;
	isl_ctx *ctx = isl_union_map_get_ctx(data->shared_sched);
	struct gpu_array_ref_group **groups;

	groups = isl_calloc_array(ctx, struct gpu_array_ref_group *,
					local->array->n_ref);
	if (!groups)
		return -1;

	n = populate_array_references(local, groups, data);

	if (local->array->has_compound_element && !local->force_private) {
		n = join_all_groups(n, groups);
		set_array_groups(local, n, groups);
		return 0;
	}

	n = group_overlapping_writes(kernel, n, groups, data);

	for (i = 0; i < n; ++i)
		if (compute_group_bounds(kernel, groups[i], data) < 0)
			n = -1;

	n = group_depth_overlapping_writes(kernel, n, groups, data);

	n = group_common_shared_memory_tile(kernel, local->array,
					    n, groups, data);

	set_array_groups(local, n, groups);

	if (n >= 0)
		return 0;

	for (i = 0; i < local->array->n_ref; ++i)
		gpu_array_ref_group_free(groups[i]);
	return -1;
}

/* For each array in the input program that can be mapped to private memory,
 * check if there are any order dependences active inside the current kernel,
 * within the same iteration of the host schedule, i.e., the prefix
 * schedule at "node".
 * If so, mark the array as force_private so that its reference groups will be
 * mapped to a registers.
 *
 * Note that the arrays that cannot be mapped to private memory have
 * had their order dependences added to prog->array_order and
 * subsequently to the coincidence constraints.
 */
static void check_can_be_private_live_ranges(struct ppcg_kernel *kernel,
	__isl_keep isl_schedule_node *node)
{
	int i;
	isl_union_set *domain;
	isl_multi_union_pw_aff *prefix;
	isl_union_pw_multi_aff *contraction;

	if (!kernel->options->live_range_reordering)
		return;

	kernel->any_force_private = 0;

	prefix = isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node);
	contraction = isl_union_pw_multi_aff_copy(kernel->contraction);
	prefix = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(prefix,
								contraction);
	domain = isl_union_set_copy(kernel->expanded_domain);
	domain = isl_union_set_universe(domain);

	for (i = 0; i < kernel->n_array; ++i) {
		struct gpu_local_array_info *local = &kernel->array[i];
		isl_union_map *order;

		local->force_private = 0;
		if (!gpu_array_can_be_private(local->array))
			continue;
		order = isl_union_map_copy(local->array->dep_order);
		order = isl_union_map_intersect_domain(order,
						    isl_union_set_copy(domain));
		order = isl_union_map_intersect_range(order,
						    isl_union_set_copy(domain));
		order = isl_union_map_eq_at_multi_union_pw_aff(order,
					isl_multi_union_pw_aff_copy(prefix));
		if (!isl_union_map_is_empty(order)) {
			local->force_private = 1;
			kernel->any_force_private = 1;
		}
		isl_union_map_free(order);
	}

	isl_multi_union_pw_aff_free(prefix);
	isl_union_set_free(domain);
}

/* Expand the domain of the schedule "s" by plugging in
 * the contraction "contraction" and return the result.
 */
static __isl_give isl_union_map *expand(__isl_take isl_union_map *s,
	__isl_keep isl_union_pw_multi_aff *contraction)
{
	contraction = isl_union_pw_multi_aff_copy(contraction);
	s = isl_union_map_preimage_domain_union_pw_multi_aff(s, contraction);
	return s;
}

/* Create a set of dimension data->thread_depth + data->n_thread
 * that equates the residue of the final data->n_thread dimensions
 * modulo the kernel->block_dim sizes to the thread identifiers.
 * Store the computed set in data->privatization.
 *
 * The construction starts with the space of kernel->thread_filter,
 * which is known to reference all thread identifiers.
 */
static void compute_privatization(struct gpu_group_data *data,
	struct ppcg_kernel *kernel)
{
	int i;
	isl_ctx *ctx;
	isl_space *space;
	isl_local_space *ls;
	isl_set *set;

	ctx = isl_union_map_get_ctx(data->shared_sched);
	space = isl_union_set_get_space(kernel->thread_filter);
	space = isl_space_set_from_params(space);
	space = isl_space_add_dims(space, isl_dim_set,
				    data->thread_depth + data->n_thread);
	set = isl_set_universe(space);
	space = isl_set_get_space(set);
	ls = isl_local_space_from_space(space);

	for (i = 0; i < data->n_thread; ++i) {
		isl_aff *aff, *aff2;
		isl_constraint *c;
		isl_val *v;
		isl_id *id;
		int pos;

		aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
					isl_dim_set, data->thread_depth + i);
		v = isl_val_int_from_si(ctx, kernel->block_dim[i]);
		aff = isl_aff_mod_val(aff, v);
		id = isl_id_list_get_id(kernel->thread_ids, i);
		pos = isl_set_find_dim_by_id(set, isl_dim_param, id);
		isl_id_free(id);
		aff2 = isl_aff_var_on_domain(isl_local_space_copy(ls),
					isl_dim_param, pos);
		aff = isl_aff_sub(aff, aff2);
		c = isl_equality_from_aff(aff);
		set = isl_set_add_constraint(set, c);
	}

	isl_local_space_free(ls);
	data->privatization = set;
}

/* Return the prefix schedule at "node" as a relation
 * between domain elements and schedule dimensions after detecting
 * equalities in this relation.
 */
static __isl_give isl_union_map *prefix_with_equalities(
	__isl_keep isl_schedule_node *node)
{
	isl_union_map *schedule;

	schedule = isl_schedule_node_get_prefix_schedule_relation(node);
	schedule = isl_union_map_detect_equalities(schedule);

	return schedule;
}

/* Group references of all arrays in "kernel".
 * "node" points to the kernel mark.
 * The mapping to shared memory in computed at the "shared" mark.
 *
 * We first extract all required schedule information into
 * a gpu_group_data structure and then consider each array
 * in turn.
 */
int gpu_group_references(struct ppcg_kernel *kernel,
	__isl_keep isl_schedule_node *node)
{
	int i;
	int r = 0;
	isl_union_pw_multi_aff *contraction;
	struct gpu_group_data data;

	check_can_be_private_live_ranges(kernel, node);

	data.scop = kernel->prog->scop;

	data.kernel_depth = isl_schedule_node_get_schedule_depth(node);
	data.host_sched = isl_schedule_node_get_prefix_schedule_relation(node);

	node = isl_schedule_node_copy(node);
	node = gpu_tree_move_down_to_shared(node, kernel->core);
	data.shared_depth = isl_schedule_node_get_schedule_depth(node);
	data.shared_sched = prefix_with_equalities(node);

	node = gpu_tree_move_down_to_thread(node, kernel->core);
	node = isl_schedule_node_child(node, 0);
	data.thread_depth = isl_schedule_node_get_schedule_depth(node);
	data.n_thread = isl_schedule_node_band_n_member(node);
	if (data.thread_depth == data.shared_depth)
		data.copy_sched = isl_union_map_copy(data.shared_sched);
	else
		data.copy_sched = prefix_with_equalities(node);
	data.thread_sched = isl_union_map_copy(data.copy_sched);
	data.thread_sched = isl_union_map_flat_range_product(data.thread_sched,
		isl_schedule_node_band_get_partial_schedule_union_map(node));
	data.thread_sched = isl_union_map_detect_equalities(data.thread_sched);

	contraction = isl_union_pw_multi_aff_copy(kernel->contraction);
	data.host_sched = expand(data.host_sched, contraction);
	data.shared_sched = expand(data.shared_sched, contraction);
	if (data.thread_depth == data.shared_depth) {
		isl_union_map_free(data.copy_sched);
		data.copy_sched = isl_union_map_copy(data.shared_sched);
	} else {
		data.copy_sched = expand(data.copy_sched, contraction);
	}
	data.thread_sched = expand(data.thread_sched, contraction);
	isl_union_pw_multi_aff_free(contraction);

	node = isl_schedule_node_child(node, 0);
	data.full_sched = isl_union_map_copy(data.thread_sched);
	data.full_sched = isl_union_map_flat_range_product(data.full_sched,
		isl_schedule_node_get_subtree_schedule_union_map(node));
	isl_schedule_node_free(node);

	compute_privatization(&data, kernel);

	for (i = 0; i < kernel->n_array; ++i) {
		r = group_array_references(kernel, &kernel->array[i], &data);
		if (r < 0)
			break;
	}

	isl_union_map_free(data.host_sched);
	isl_union_map_free(data.shared_sched);
	isl_union_map_free(data.copy_sched);
	isl_union_map_free(data.thread_sched);
	isl_union_map_free(data.full_sched);
	isl_set_free(data.privatization);

	return r;
}

/* Given a description of an array tile "tile" and the "space"
 *
 *	{ D -> A }
 *
 * where D represents the first tile->depth schedule dimensions
 * and A represents the array, construct an isl_multi_aff
 *
 *	{ [D[i] -> A[a]] -> A'[a'] }
 *
 * with A' a scaled down copy of A according to the shifts and strides
 * in "tile".  In particular,
 *
 *	a' = (a + shift(i))/stride
 *
 * "insert_array" represents
 *
 *	{ [D -> A] -> D }
 *
 * and is used to insert A into the domain of functions that only
 * reference D.
 */
static __isl_give isl_multi_aff *strided_tile(
	struct gpu_array_tile *tile, __isl_keep isl_space *space,
	__isl_keep isl_multi_aff *insert_array)
{
	int i;
	isl_ctx *ctx;
	isl_multi_aff *shift;
	isl_multi_val *stride;
	isl_space *space2;
	isl_local_space *ls;
	isl_multi_aff *tiling;

	ctx = isl_space_get_ctx(space);
	space2 = isl_space_domain(isl_space_copy(space));
	ls = isl_local_space_from_space(space2);
	space2 = isl_space_range(isl_space_copy(space));
	stride = isl_multi_val_zero(space2);
	shift = isl_multi_aff_zero(isl_space_copy(space));

	for (i = 0; i < tile->n; ++i) {
		struct gpu_array_bound *bound = &tile->bound[i];
		isl_val *stride_i;
		isl_aff *shift_i;

		if (tile->bound[i].shift) {
			stride_i = isl_val_copy(bound->stride);
			shift_i = isl_aff_copy(bound->shift);
		} else {
			stride_i = isl_val_one(ctx);
			shift_i = isl_aff_zero_on_domain(
					isl_local_space_copy(ls));
		}

		stride = isl_multi_val_set_val(stride, i, stride_i);
		shift = isl_multi_aff_set_aff(shift, i, shift_i);
	}
	isl_local_space_free(ls);

	shift = isl_multi_aff_pullback_multi_aff(shift,
				    isl_multi_aff_copy(insert_array));

	tiling = isl_multi_aff_range_map(isl_space_copy(space));
	tiling = isl_multi_aff_add(tiling, shift);
	tiling = isl_multi_aff_scale_down_multi_val(tiling, stride);

	return tiling;
}

/* Compute a tiling for the array reference group "group".
 *
 * The tiling is of the form
 *
 *	{ [D[i] -> A[a]] -> T[t] }
 *
 * where D represents the first tile->depth schedule dimensions,
 * A represents the global array and T represents the shared or
 * private memory tile.  The name of T is the name of the local
 * array.
 *
 * If there is any stride in the accesses, then the mapping is
 *
 *	t = (a + shift(i))/stride - lb(i)
 *
 * otherwise, it is simply
 *
 *	t = a - lb(i)
 */
void gpu_array_ref_group_compute_tiling(struct gpu_array_ref_group *group)
{
	int i;
	struct gpu_array_tile *tile;
	isl_space *space;
	isl_multi_aff *tiling, *lb, *insert_array;
	isl_printer *p;
	char *local_name;

	tile = gpu_array_ref_group_tile(group);
	if (!tile)
		return;

	space = isl_map_get_space(group->access);
	space = isl_space_from_range(isl_space_range(space));
	space = isl_space_add_dims(space, isl_dim_in, tile->depth);
	insert_array = isl_multi_aff_domain_map(isl_space_copy(space));

	for (i = 0; i < tile->n; ++i)
		if (tile->bound[i].shift)
			break;

	if (i < tile->n)
		tiling = strided_tile(tile, space, insert_array);
	else
		tiling = isl_multi_aff_range_map(isl_space_copy(space));

	lb = isl_multi_aff_zero(space);
	for (i = 0; i < tile->n; ++i) {
		isl_aff *lb_i = isl_aff_copy(tile->bound[i].lb);
		lb = isl_multi_aff_set_aff(lb, i, lb_i);
	}
	lb = isl_multi_aff_pullback_multi_aff(lb, insert_array);

	tiling = isl_multi_aff_sub(tiling, lb);

	p = isl_printer_to_str(isl_multi_aff_get_ctx(tiling));
	p = gpu_array_ref_group_print_name(group, p);
	local_name = isl_printer_get_str(p);
	isl_printer_free(p);
	tiling = isl_multi_aff_set_tuple_name(tiling, isl_dim_out, local_name);
	free(local_name);

	tile->tiling = tiling;
}