cpu.c 22.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
/*
 * Copyright 2012 INRIA Paris-Rocquencourt
 * Copyright 2012 Ecole Normale Superieure
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Tobias Grosser, INRIA Paris-Rocquencourt,
 * Domaine de Voluceau, Rocquenqourt, B.P. 105,
 * 78153 Le Chesnay Cedex France
 * and Sven Verdoolaege,
 * Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
 */

#include <limits.h>
#include <stdio.h>
#include <string.h>

#include <isl/aff.h>
#include <isl/ctx.h>
#include <isl/flow.h>
#include <isl/map.h>
#include <isl/ast_build.h>
#include <isl/schedule.h>
#include <isl/schedule_node.h>
#include <pet.h>

#include "ppcg.h"
#include "ppcg_options.h"
#include "cpu.h"
#include "print.h"
#include "schedule.h"
#include "util.h"

/* Representation of a statement inside a generated AST.
 *
 * "stmt" refers to the original statement.
 * "ref2expr" maps the reference identifier of each access in
 * the statement to an AST expression that should be printed
 * at the place of the access.
 */
struct ppcg_stmt {
	struct pet_stmt *stmt;

	isl_id_to_ast_expr *ref2expr;
};

static void ppcg_stmt_free(void *user)
{
	struct ppcg_stmt *stmt = user;

	if (!stmt)
		return;

	isl_id_to_ast_expr_free(stmt->ref2expr);

	free(stmt);
}

/* Derive the output file name from the input file name.
 * 'input' is the entire path of the input file. The output
 * is the file name plus the additional extension.
 *
 * We will basically replace everything after the last point
 * with '.ppcg.c'. This means file.c becomes file.ppcg.c
 */
static FILE *get_output_file(const char *input, const char *output)
{
	char name[PATH_MAX];
	const char *ext;
	const char ppcg_marker[] = ".ppcg";
	int len;
	FILE *file;

	len = ppcg_extract_base_name(name, input);

	strcpy(name + len, ppcg_marker);
	ext = strrchr(input, '.');
	strcpy(name + len + sizeof(ppcg_marker) - 1, ext ? ext : ".c");

	if (!output)
		output = name;

	file = fopen(output, "w");
	if (!file) {
		fprintf(stderr, "Unable to open '%s' for writing\n", output);
		return NULL;
	}

	return file;
}

/* Data used to annotate for nodes in the ast.
 */
struct ast_node_userinfo {
	/* The for node is an openmp parallel for node. */
	int is_openmp;
};

/* Information used while building the ast.
 */
struct ast_build_userinfo {
	/* The current ppcg scop. */
	struct ppcg_scop *scop;

	/* Are we currently in a parallel for loop? */
	int in_parallel_for;
};

/* Check if the current scheduling dimension is parallel.
 *
 * We check for parallelism by verifying that the loop does not carry any
 * dependences.
 * If the live_range_reordering option is set, then this currently
 * includes the order dependences.  In principle, non-zero order dependences
 * could be allowed, but this would require privatization and/or expansion.
 *
 * Parallelism test: if the distance is zero in all outer dimensions, then it
 * has to be zero in the current dimension as well.
 * Implementation: first, translate dependences into time space, then force
 * outer dimensions to be equal.  If the distance is zero in the current
 * dimension, then the loop is parallel.
 * The distance is zero in the current dimension if it is a subset of a map
 * with equal values for the current dimension.
 */
static int ast_schedule_dim_is_parallel(__isl_keep isl_ast_build *build,
	struct ppcg_scop *scop)
{
	isl_union_map *schedule, *deps;
	isl_map *schedule_deps, *test;
	isl_space *schedule_space;
	unsigned i, dimension, is_parallel;

	schedule = isl_ast_build_get_schedule(build);
	schedule_space = isl_ast_build_get_schedule_space(build);

	dimension = isl_space_dim(schedule_space, isl_dim_out) - 1;

	deps = isl_union_map_copy(scop->dep_flow);
	deps = isl_union_map_union(deps, isl_union_map_copy(scop->dep_false));
	if (scop->options->live_range_reordering) {
		isl_union_map *order = isl_union_map_copy(scop->dep_order);
		deps = isl_union_map_union(deps, order);
	}
	deps = isl_union_map_apply_range(deps, isl_union_map_copy(schedule));
	deps = isl_union_map_apply_domain(deps, schedule);

	if (isl_union_map_is_empty(deps)) {
		isl_union_map_free(deps);
		isl_space_free(schedule_space);
		return 1;
	}

	schedule_deps = isl_map_from_union_map(deps);

	for (i = 0; i < dimension; i++)
		schedule_deps = isl_map_equate(schedule_deps, isl_dim_out, i,
					       isl_dim_in, i);

	test = isl_map_universe(isl_map_get_space(schedule_deps));
	test = isl_map_equate(test, isl_dim_out, dimension, isl_dim_in,
			      dimension);
	is_parallel = isl_map_is_subset(schedule_deps, test);

	isl_space_free(schedule_space);
	isl_map_free(test);
	isl_map_free(schedule_deps);

	return is_parallel;
}

/* Mark a for node openmp parallel, if it is the outermost parallel for node.
 */
static void mark_openmp_parallel(__isl_keep isl_ast_build *build,
	struct ast_build_userinfo *build_info,
	struct ast_node_userinfo *node_info)
{
	if (build_info->in_parallel_for)
		return;

	if (ast_schedule_dim_is_parallel(build, build_info->scop)) {
		build_info->in_parallel_for = 1;
		node_info->is_openmp = 1;
	}
}

/* Allocate an ast_node_info structure and initialize it with default values.
 */
static struct ast_node_userinfo *allocate_ast_node_userinfo()
{
	struct ast_node_userinfo *node_info;
	node_info = (struct ast_node_userinfo *)
		malloc(sizeof(struct ast_node_userinfo));
	node_info->is_openmp = 0;
	return node_info;
}

/* Free an ast_node_info structure.
 */
static void free_ast_node_userinfo(void *ptr)
{
	struct ast_node_userinfo *info;
	info = (struct ast_node_userinfo *) ptr;
	free(info);
}

/* This method is executed before the construction of a for node. It creates
 * an isl_id that is used to annotate the subsequently generated ast for nodes.
 *
 * In this function we also run the following analyses:
 *
 * 	- Detection of openmp parallel loops
 */
static __isl_give isl_id *ast_build_before_for(
	__isl_keep isl_ast_build *build, void *user)
{
	isl_id *id;
	struct ast_build_userinfo *build_info;
	struct ast_node_userinfo *node_info;

	build_info = (struct ast_build_userinfo *) user;
	node_info = allocate_ast_node_userinfo();
	id = isl_id_alloc(isl_ast_build_get_ctx(build), "", node_info);
	id = isl_id_set_free_user(id, free_ast_node_userinfo);

	mark_openmp_parallel(build, build_info, node_info);

	return id;
}

/* This method is executed after the construction of a for node.
 *
 * It performs the following actions:
 *
 * 	- Reset the 'in_parallel_for' flag, as soon as we leave a for node,
 * 	  that is marked as openmp parallel.
 *
 */
static __isl_give isl_ast_node *ast_build_after_for(
	__isl_take isl_ast_node *node, __isl_keep isl_ast_build *build,
	void *user)
{
	isl_id *id;
	struct ast_build_userinfo *build_info;
	struct ast_node_userinfo *info;

	id = isl_ast_node_get_annotation(node);
	info = isl_id_get_user(id);

	if (info && info->is_openmp) {
		build_info = (struct ast_build_userinfo *) user;
		build_info->in_parallel_for = 0;
	}

	isl_id_free(id);

	return node;
}

/* Find the element in scop->stmts that has the given "id".
 */
static struct pet_stmt *find_stmt(struct ppcg_scop *scop, __isl_keep isl_id *id)
{
	int i;

	for (i = 0; i < scop->pet->n_stmt; ++i) {
		struct pet_stmt *stmt = scop->pet->stmts[i];
		isl_id *id_i;

		id_i = isl_set_get_tuple_id(stmt->domain);
		isl_id_free(id_i);

		if (id_i == id)
			return stmt;
	}

	isl_die(isl_id_get_ctx(id), isl_error_internal,
		"statement not found", return NULL);
}

/* Print a user statement in the generated AST.
 * The ppcg_stmt has been attached to the node in at_each_domain.
 */
static __isl_give isl_printer *print_user(__isl_take isl_printer *p,
	__isl_take isl_ast_print_options *print_options,
	__isl_keep isl_ast_node *node, void *user)
{
	struct ppcg_stmt *stmt;
	isl_id *id;

	id = isl_ast_node_get_annotation(node);
	stmt = isl_id_get_user(id);
	isl_id_free(id);

	p = pet_stmt_print_body(stmt->stmt, p, stmt->ref2expr);

	isl_ast_print_options_free(print_options);

	return p;
}


/* Print a for loop node as an openmp parallel loop.
 *
 * To print an openmp parallel loop we print a normal for loop, but add
 * "#pragma openmp parallel for" in front.
 *
 * Variables that are declared within the body of this for loop are
 * automatically openmp 'private'. Iterators declared outside of the
 * for loop are automatically openmp 'shared'. As ppcg declares all iterators
 * at the position where they are assigned, there is no need to explicitly mark
 * variables. Their automatically assigned type is already correct.
 *
 * This function only generates valid OpenMP code, if the ast was generated
 * with the 'atomic-bounds' option enabled.
 *
 */
static __isl_give isl_printer *print_for_with_openmp(
	__isl_keep isl_ast_node *node, __isl_take isl_printer *p,
	__isl_take isl_ast_print_options *print_options)
{
	p = isl_printer_start_line(p);
	p = isl_printer_print_str(p, "#pragma omp parallel for");
	p = isl_printer_end_line(p);

	p = isl_ast_node_for_print(node, p, print_options);

	return p;
}

/* Print a for node.
 *
 * Depending on how the node is annotated, we either print a normal
 * for node or an openmp parallel for node.
 */
static __isl_give isl_printer *print_for(__isl_take isl_printer *p,
	__isl_take isl_ast_print_options *print_options,
	__isl_keep isl_ast_node *node, void *user)
{
	isl_id *id;
	int openmp;

	openmp = 0;
	id = isl_ast_node_get_annotation(node);

	if (id) {
		struct ast_node_userinfo *info;

		info = (struct ast_node_userinfo *) isl_id_get_user(id);
		if (info && info->is_openmp)
			openmp = 1;
	}

	if (openmp)
		p = print_for_with_openmp(node, p, print_options);
	else
		p = isl_ast_node_for_print(node, p, print_options);

	isl_id_free(id);

	return p;
}

/* Index transformation callback for pet_stmt_build_ast_exprs.
 *
 * "index" expresses the array indices in terms of statement iterators
 * "iterator_map" expresses the statement iterators in terms of
 * AST loop iterators.
 *
 * The result expresses the array indices in terms of
 * AST loop iterators.
 */
static __isl_give isl_multi_pw_aff *pullback_index(
	__isl_take isl_multi_pw_aff *index, __isl_keep isl_id *id, void *user)
{
	isl_pw_multi_aff *iterator_map = user;

	iterator_map = isl_pw_multi_aff_copy(iterator_map);
	return isl_multi_pw_aff_pullback_pw_multi_aff(index, iterator_map);
}

/* Transform the accesses in the statement associated to the domain
 * called by "node" to refer to the AST loop iterators, construct
 * corresponding AST expressions using "build",
 * collect them in a ppcg_stmt and annotate the node with the ppcg_stmt.
 */
static __isl_give isl_ast_node *at_each_domain(__isl_take isl_ast_node *node,
	__isl_keep isl_ast_build *build, void *user)
{
	struct ppcg_scop *scop = user;
	isl_ast_expr *expr, *arg;
	isl_ctx *ctx;
	isl_id *id;
	isl_map *map;
	isl_pw_multi_aff *iterator_map;
	struct ppcg_stmt *stmt;

	ctx = isl_ast_node_get_ctx(node);
	stmt = isl_calloc_type(ctx, struct ppcg_stmt);
	if (!stmt)
		goto error;

	expr = isl_ast_node_user_get_expr(node);
	arg = isl_ast_expr_get_op_arg(expr, 0);
	isl_ast_expr_free(expr);
	id = isl_ast_expr_get_id(arg);
	isl_ast_expr_free(arg);
	stmt->stmt = find_stmt(scop, id);
	isl_id_free(id);
	if (!stmt->stmt)
		goto error;

	map = isl_map_from_union_map(isl_ast_build_get_schedule(build));
	map = isl_map_reverse(map);
	iterator_map = isl_pw_multi_aff_from_map(map);
	stmt->ref2expr = pet_stmt_build_ast_exprs(stmt->stmt, build,
				    &pullback_index, iterator_map, NULL, NULL);
	isl_pw_multi_aff_free(iterator_map);

	id = isl_id_alloc(isl_ast_node_get_ctx(node), NULL, stmt);
	id = isl_id_set_free_user(id, &ppcg_stmt_free);
	return isl_ast_node_set_annotation(node, id);
error:
	ppcg_stmt_free(stmt);
	return isl_ast_node_free(node);
}

/* Set *depth (initialized to 0 by the caller) to the maximum
 * of the schedule depths of the leaf nodes for which this function is called.
 */
static isl_bool update_depth(__isl_keep isl_schedule_node *node, void *user)
{
	int *depth = user;
	int node_depth;

	if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf)
		return isl_bool_true;
	node_depth = isl_schedule_node_get_schedule_depth(node);
	if (node_depth > *depth)
		*depth = node_depth;

	return isl_bool_false;
}

/* This function is called for each node in a CPU AST.
 * In case of a user node, print the macro definitions required
 * for printing the AST expressions in the annotation, if any.
 * For other nodes, return true such that descendants are also
 * visited.
 *
 * In particular, print the macro definitions needed for the substitutions
 * of the original user statements.
 */
static isl_bool at_node(__isl_keep isl_ast_node *node, void *user)
{
	struct ppcg_stmt *stmt;
	isl_id *id;
	isl_printer **p = user;

	if (isl_ast_node_get_type(node) != isl_ast_node_user)
		return isl_bool_true;

	id = isl_ast_node_get_annotation(node);
	stmt = isl_id_get_user(id);
	isl_id_free(id);

	if (!stmt)
		return isl_bool_error;

	*p = ppcg_print_body_macros(*p, stmt->ref2expr);
	if (!*p)
		return isl_bool_error;

	return isl_bool_false;
}

/* Print the required macros for the CPU AST "node" to "p",
 * including those needed for the user statements inside the AST.
 */
static __isl_give isl_printer *cpu_print_macros(__isl_take isl_printer *p,
	__isl_keep isl_ast_node *node)
{
	if (isl_ast_node_foreach_descendant_top_down(node, &at_node, &p) < 0)
		return isl_printer_free(p);
	p = ppcg_print_macros(p, node);
	return p;
}

/* Code generate the scop 'scop' using "schedule"
 * and print the corresponding C code to 'p'.
 */
static __isl_give isl_printer *print_scop(struct ppcg_scop *scop,
	__isl_take isl_schedule *schedule, __isl_take isl_printer *p,
	struct ppcg_options *options)
{
	isl_ctx *ctx = isl_printer_get_ctx(p);
	isl_ast_build *build;
	isl_ast_print_options *print_options;
	isl_ast_node *tree;
	isl_id_list *iterators;
	struct ast_build_userinfo build_info;
	int depth;

	depth = 0;
	if (isl_schedule_foreach_schedule_node_top_down(schedule, &update_depth,
						&depth) < 0)
		goto error;

	build = isl_ast_build_alloc(ctx);
	iterators = ppcg_scop_generate_names(scop, depth, "c");
	build = isl_ast_build_set_iterators(build, iterators);
	build = isl_ast_build_set_at_each_domain(build, &at_each_domain, scop);

	if (options->openmp) {
		build_info.scop = scop;
		build_info.in_parallel_for = 0;

		build = isl_ast_build_set_before_each_for(build,
							&ast_build_before_for,
							&build_info);
		build = isl_ast_build_set_after_each_for(build,
							&ast_build_after_for,
							&build_info);
	}

	tree = isl_ast_build_node_from_schedule(build, schedule);
	isl_ast_build_free(build);

	print_options = isl_ast_print_options_alloc(ctx);
	print_options = isl_ast_print_options_set_print_user(print_options,
							&print_user, NULL);

	print_options = isl_ast_print_options_set_print_for(print_options,
							&print_for, NULL);

	p = cpu_print_macros(p, tree);
	p = isl_ast_node_print(tree, p, print_options);

	isl_ast_node_free(tree);

	return p;
error:
	isl_schedule_free(schedule);
	isl_printer_free(p);
	return NULL;
}

/* Tile the band node "node" with tile sizes "sizes" and
 * mark all members of the resulting tile node as "atomic".
 */
static __isl_give isl_schedule_node *tile(__isl_take isl_schedule_node *node,
	__isl_take isl_multi_val *sizes)
{
	node = isl_schedule_node_band_tile(node, sizes);
	node = ppcg_set_schedule_node_type(node, isl_ast_loop_atomic);

	return node;
}

/* Tile "node", if it is a band node with at least 2 members.
 * The tile sizes are set from the "tile_size" option.
 */
static __isl_give isl_schedule_node *tile_band(
	__isl_take isl_schedule_node *node, void *user)
{
	struct ppcg_scop *scop = user;
	int n;
	isl_space *space;
	isl_multi_val *sizes;

	if (isl_schedule_node_get_type(node) != isl_schedule_node_band)
		return node;

	n = isl_schedule_node_band_n_member(node);
	if (n <= 1)
		return node;

	space = isl_schedule_node_band_get_space(node);
	sizes = ppcg_multi_val_from_int(space, scop->options->tile_size);

	return tile(node, sizes);
}

/* Construct schedule constraints from the dependences in ps
 * for the purpose of computing a schedule for a CPU.
 *
 * The proximity constraints are set to the flow dependences.
 *
 * If live-range reordering is allowed then the conditional validity
 * constraints are set to the order dependences with the flow dependences
 * as condition.  That is, a live-range (flow dependence) will be either
 * local to an iteration of a band or all adjacent order dependences
 * will be respected by the band.
 * The validity constraints are set to the union of the flow dependences
 * and the forced dependences, while the coincidence constraints
 * are set to the union of the flow dependences, the forced dependences and
 * the order dependences.
 *
 * If live-range reordering is not allowed, then both the validity
 * and the coincidence constraints are set to the union of the flow
 * dependences and the false dependences.
 *
 * Note that the coincidence constraints are only set when the "openmp"
 * options is set.  Even though the way openmp pragmas are introduced
 * does not rely on the coincident property of the schedule band members,
 * the coincidence constraints do affect the way the schedule is constructed,
 * such that more schedule dimensions should be detected as parallel
 * by ast_schedule_dim_is_parallel.
 * Since the order dependences are also taken into account by
 * ast_schedule_dim_is_parallel, they are also added to
 * the coincidence constraints.  If the openmp handling learns
 * how to privatize some memory, then the corresponding order
 * dependences can be removed from the coincidence constraints.
 */
static __isl_give isl_schedule_constraints *construct_cpu_schedule_constraints(
	struct ppcg_scop *ps)
{
	isl_schedule_constraints *sc;
	isl_union_map *validity, *coincidence;

	sc = isl_schedule_constraints_on_domain(isl_union_set_copy(ps->domain));
	if (ps->options->live_range_reordering) {
		sc = isl_schedule_constraints_set_conditional_validity(sc,
				isl_union_map_copy(ps->tagged_dep_flow),
				isl_union_map_copy(ps->tagged_dep_order));
		validity = isl_union_map_copy(ps->dep_flow);
		validity = isl_union_map_union(validity,
				isl_union_map_copy(ps->dep_forced));
		if (ps->options->openmp) {
			coincidence = isl_union_map_copy(validity);
			coincidence = isl_union_map_union(coincidence,
					isl_union_map_copy(ps->dep_order));
		}
	} else {
		validity = isl_union_map_copy(ps->dep_flow);
		validity = isl_union_map_union(validity,
				isl_union_map_copy(ps->dep_false));
		if (ps->options->openmp)
			coincidence = isl_union_map_copy(validity);
	}
	if (ps->options->openmp)
		sc = isl_schedule_constraints_set_coincidence(sc, coincidence);
	sc = isl_schedule_constraints_set_validity(sc, validity);
	sc = isl_schedule_constraints_set_proximity(sc,
					isl_union_map_copy(ps->dep_flow));

	return sc;
}

/* Compute a schedule for the scop "ps".
 *
 * First derive the appropriate schedule constraints from the dependences
 * in "ps" and then compute a schedule from those schedule constraints,
 * possibly grouping statement instances based on the input schedule.
 */
static __isl_give isl_schedule *compute_cpu_schedule(struct ppcg_scop *ps)
{
	isl_schedule_constraints *sc;
	isl_schedule *schedule;

	if (!ps)
		return NULL;

	sc = construct_cpu_schedule_constraints(ps);

	if (ps->options->debug->dump_schedule_constraints)
		isl_schedule_constraints_dump(sc);
	schedule = ppcg_compute_schedule(sc, ps->schedule, ps->options);

	return schedule;
}

/* Compute a new schedule to the scop "ps" if the reschedule option is set.
 * Otherwise, return a copy of the original schedule.
 */
static __isl_give isl_schedule *optionally_compute_schedule(void *user)
{
	struct ppcg_scop *ps = user;

	if (!ps)
		return NULL;
	if (!ps->options->reschedule)
		return isl_schedule_copy(ps->schedule);
	return compute_cpu_schedule(ps);
}

/* Compute a schedule based on the dependences in "ps" and
 * tile it if requested by the user.
 */
static __isl_give isl_schedule *get_schedule(struct ppcg_scop *ps,
	struct ppcg_options *options)
{
	isl_ctx *ctx;
	isl_schedule *schedule;

	if (!ps)
		return NULL;

	ctx = isl_union_set_get_ctx(ps->domain);
	schedule = ppcg_get_schedule(ctx, options,
				    &optionally_compute_schedule, ps);
	if (ps->options->tile)
		schedule = isl_schedule_map_schedule_node_bottom_up(schedule,
							&tile_band, ps);

	return schedule;
}

/* Generate CPU code for the scop "ps" using "schedule" and
 * print the corresponding C code to "p", including variable declarations.
 */
static __isl_give isl_printer *print_cpu_with_schedule(
	__isl_take isl_printer *p, struct ppcg_scop *ps,
	__isl_take isl_schedule *schedule, struct ppcg_options *options)
{
	int hidden;
	isl_set *context;

	p = isl_printer_start_line(p);
	p = isl_printer_print_str(p, "/* ppcg generated CPU code */");
	p = isl_printer_end_line(p);

	p = isl_printer_start_line(p);
	p = isl_printer_end_line(p);

	p = ppcg_set_macro_names(p);
	p = ppcg_print_exposed_declarations(p, ps);
	hidden = ppcg_scop_any_hidden_declarations(ps);
	if (hidden) {
		p = ppcg_start_block(p);
		p = ppcg_print_hidden_declarations(p, ps);
	}

	context = isl_set_copy(ps->context);
	context = isl_set_from_params(context);
	schedule = isl_schedule_insert_context(schedule, context);
	if (options->debug->dump_final_schedule)
		isl_schedule_dump(schedule);
	p = print_scop(ps, schedule, p, options);
	if (hidden)
		p = ppcg_end_block(p);

	return p;
}

/* Generate CPU code for the scop "ps" and print the corresponding C code
 * to "p", including variable declarations.
 */
__isl_give isl_printer *print_cpu(__isl_take isl_printer *p,
	struct ppcg_scop *ps, struct ppcg_options *options)
{
	isl_schedule *schedule;

	schedule = isl_schedule_copy(ps->schedule);
	return print_cpu_with_schedule(p, ps, schedule, options);
}

/* Generate CPU code for "scop" and print it to "p".
 *
 * First obtain a schedule for "scop" and then print code for "scop"
 * using that schedule.
 */
static __isl_give isl_printer *generate(__isl_take isl_printer *p,
	struct ppcg_scop *scop, struct ppcg_options *options)
{
	isl_schedule *schedule;

	schedule = get_schedule(scop, options);

	return print_cpu_with_schedule(p, scop, schedule, options);
}

/* Wrapper around generate for use as a ppcg_transform callback.
 */
static __isl_give isl_printer *print_cpu_wrap(__isl_take isl_printer *p,
	struct ppcg_scop *scop, void *user)
{
	struct ppcg_options *options = user;

	return generate(p, scop, options);
}

/* Transform the code in the file called "input" by replacing
 * all scops by corresponding CPU code and write the results to a file
 * called "output".
 */
int generate_cpu(isl_ctx *ctx, struct ppcg_options *options,
	const char *input, const char *output)
{
	FILE *output_file;
	int r;

	output_file = get_output_file(input, output);
	if (!output_file)
		return -1;

	r = ppcg_transform(ctx, input, output_file, options,
					&print_cpu_wrap, options);

	fclose(output_file);

	return r;
}