isl_ast_build_expr.c 72.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
/*
 * Copyright 2012-2014 Ecole Normale Superieure
 * Copyright 2014      INRIA Rocquencourt
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege,
 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
 * B.P. 105 - 78153 Le Chesnay, France
 */

#include <isl/id.h>
#include <isl/space.h>
#include <isl/constraint.h>
#include <isl/ilp.h>
#include <isl/val.h>
#include <isl_ast_build_expr.h>
#include <isl_ast_private.h>
#include <isl_ast_build_private.h>
#include <isl_sort.h>

/* Compute the "opposite" of the (numerator of the) argument of a div
 * with denominator "d".
 *
 * In particular, compute
 *
 *	-aff + (d - 1)
 */
static __isl_give isl_aff *oppose_div_arg(__isl_take isl_aff *aff,
	__isl_take isl_val *d)
{
	aff = isl_aff_neg(aff);
	aff = isl_aff_add_constant_val(aff, d);
	aff = isl_aff_add_constant_si(aff, -1);

	return aff;
}

/* Internal data structure used inside isl_ast_expr_add_term.
 * The domain of "build" is used to simplify the expressions.
 * "build" needs to be set by the caller of isl_ast_expr_add_term.
 * "cst" is the constant term of the expression in which the added term
 * appears.  It may be modified by isl_ast_expr_add_term.
 *
 * "v" is the coefficient of the term that is being constructed and
 * is set internally by isl_ast_expr_add_term.
 */
struct isl_ast_add_term_data {
	isl_ast_build *build;
	isl_val *cst;
	isl_val *v;
};

/* Given the numerator "aff" of the argument of an integer division
 * with denominator "d", check if it can be made non-negative over
 * data->build->domain by stealing part of the constant term of
 * the expression in which the integer division appears.
 *
 * In particular, the outer expression is of the form
 *
 *	v * floor(aff/d) + cst
 *
 * We already know that "aff" itself may attain negative values.
 * Here we check if aff + d*floor(cst/v) is non-negative, such
 * that we could rewrite the expression to
 *
 *	v * floor((aff + d*floor(cst/v))/d) + cst - v*floor(cst/v)
 *
 * Note that aff + d*floor(cst/v) can only possibly be non-negative
 * if data->cst and data->v have the same sign.
 * Similarly, if floor(cst/v) is zero, then there is no point in
 * checking again.
 */
static int is_non_neg_after_stealing(__isl_keep isl_aff *aff,
	__isl_keep isl_val *d, struct isl_ast_add_term_data *data)
{
	isl_aff *shifted;
	isl_val *shift;
	int is_zero;
	int non_neg;

	if (isl_val_sgn(data->cst) != isl_val_sgn(data->v))
		return 0;

	shift = isl_val_div(isl_val_copy(data->cst), isl_val_copy(data->v));
	shift = isl_val_floor(shift);
	is_zero = isl_val_is_zero(shift);
	if (is_zero < 0 || is_zero) {
		isl_val_free(shift);
		return is_zero < 0 ? -1 : 0;
	}
	shift = isl_val_mul(shift, isl_val_copy(d));
	shifted = isl_aff_copy(aff);
	shifted = isl_aff_add_constant_val(shifted, shift);
	non_neg = isl_ast_build_aff_is_nonneg(data->build, shifted);
	isl_aff_free(shifted);

	return non_neg;
}

/* Given the numerator "aff' of the argument of an integer division
 * with denominator "d", steal part of the constant term of
 * the expression in which the integer division appears to make it
 * non-negative over data->build->domain.
 *
 * In particular, the outer expression is of the form
 *
 *	v * floor(aff/d) + cst
 *
 * We know that "aff" itself may attain negative values,
 * but that aff + d*floor(cst/v) is non-negative.
 * Find the minimal positive value that we need to add to "aff"
 * to make it positive and adjust data->cst accordingly.
 * That is, compute the minimal value "m" of "aff" over
 * data->build->domain and take
 *
 *	s = ceil(m/d)
 *
 * such that
 *
 *	aff + d * s >= 0
 *
 * and rewrite the expression to
 *
 *	v * floor((aff + s*d)/d) + (cst - v*s)
 */
static __isl_give isl_aff *steal_from_cst(__isl_take isl_aff *aff,
	__isl_keep isl_val *d, struct isl_ast_add_term_data *data)
{
	isl_set *domain;
	isl_val *shift, *t;

	domain = isl_ast_build_get_domain(data->build);
	shift = isl_set_min_val(domain, aff);
	isl_set_free(domain);

	shift = isl_val_neg(shift);
	shift = isl_val_div(shift, isl_val_copy(d));
	shift = isl_val_ceil(shift);

	t = isl_val_copy(shift);
	t = isl_val_mul(t, isl_val_copy(data->v));
	data->cst = isl_val_sub(data->cst, t);

	shift = isl_val_mul(shift, isl_val_copy(d));
	return isl_aff_add_constant_val(aff, shift);
}

/* Create an isl_ast_expr evaluating the div at position "pos" in "ls".
 * The result is simplified in terms of data->build->domain.
 * This function may change (the sign of) data->v.
 *
 * "ls" is known to be non-NULL.
 *
 * Let the div be of the form floor(e/d).
 * If the ast_build_prefer_pdiv option is set then we check if "e"
 * is non-negative, so that we can generate
 *
 *	(pdiv_q, expr(e), expr(d))
 *
 * instead of
 *
 *	(fdiv_q, expr(e), expr(d))
 *
 * If the ast_build_prefer_pdiv option is set and
 * if "e" is not non-negative, then we check if "-e + d - 1" is non-negative.
 * If so, we can rewrite
 *
 *	floor(e/d) = -ceil(-e/d) = -floor((-e + d - 1)/d)
 *
 * and still use pdiv_q, while changing the sign of data->v.
 *
 * Otherwise, we check if
 *
 *	e + d*floor(cst/v)
 *
 * is non-negative and if so, replace floor(e/d) by
 *
 *	floor((e + s*d)/d) - s
 *
 * with s the minimal shift that makes the argument non-negative.
 */
static __isl_give isl_ast_expr *var_div(struct isl_ast_add_term_data *data,
	__isl_keep isl_local_space *ls, int pos)
{
	isl_ctx *ctx = isl_local_space_get_ctx(ls);
	isl_aff *aff;
	isl_ast_expr *num, *den;
	isl_val *d;
	enum isl_ast_expr_op_type type;

	aff = isl_local_space_get_div(ls, pos);
	d = isl_aff_get_denominator_val(aff);
	aff = isl_aff_scale_val(aff, isl_val_copy(d));
	den = isl_ast_expr_from_val(isl_val_copy(d));

	type = isl_ast_expr_op_fdiv_q;
	if (isl_options_get_ast_build_prefer_pdiv(ctx)) {
		int non_neg = isl_ast_build_aff_is_nonneg(data->build, aff);
		if (non_neg >= 0 && !non_neg) {
			isl_aff *opp = oppose_div_arg(isl_aff_copy(aff),
							isl_val_copy(d));
			non_neg = isl_ast_build_aff_is_nonneg(data->build, opp);
			if (non_neg >= 0 && non_neg) {
				data->v = isl_val_neg(data->v);
				isl_aff_free(aff);
				aff = opp;
			} else
				isl_aff_free(opp);
		}
		if (non_neg >= 0 && !non_neg) {
			non_neg = is_non_neg_after_stealing(aff, d, data);
			if (non_neg >= 0 && non_neg)
				aff = steal_from_cst(aff, d, data);
		}
		if (non_neg < 0)
			aff = isl_aff_free(aff);
		else if (non_neg)
			type = isl_ast_expr_op_pdiv_q;
	}

	isl_val_free(d);
	num = isl_ast_expr_from_aff(aff, data->build);
	return isl_ast_expr_alloc_binary(type, num, den);
}

/* Create an isl_ast_expr evaluating the specified dimension of "ls".
 * The result is simplified in terms of data->build->domain.
 * This function may change (the sign of) data->v.
 *
 * The isl_ast_expr is constructed based on the type of the dimension.
 * - divs are constructed by var_div
 * - set variables are constructed from the iterator isl_ids in data->build
 * - parameters are constructed from the isl_ids in "ls"
 */
static __isl_give isl_ast_expr *var(struct isl_ast_add_term_data *data,
	__isl_keep isl_local_space *ls, enum isl_dim_type type, int pos)
{
	isl_ctx *ctx = isl_local_space_get_ctx(ls);
	isl_id *id;

	if (type == isl_dim_div)
		return var_div(data, ls, pos);

	if (type == isl_dim_set) {
		id = isl_ast_build_get_iterator_id(data->build, pos);
		return isl_ast_expr_from_id(id);
	}

	if (!isl_local_space_has_dim_id(ls, type, pos))
		isl_die(ctx, isl_error_internal, "unnamed dimension",
			return NULL);
	id = isl_local_space_get_dim_id(ls, type, pos);
	return isl_ast_expr_from_id(id);
}

/* Does "expr" represent the zero integer?
 */
static int ast_expr_is_zero(__isl_keep isl_ast_expr *expr)
{
	if (!expr)
		return -1;
	if (expr->type != isl_ast_expr_int)
		return 0;
	return isl_val_is_zero(expr->u.v);
}

/* Create an expression representing the sum of "expr1" and "expr2",
 * provided neither of the two expressions is identically zero.
 */
static __isl_give isl_ast_expr *ast_expr_add(__isl_take isl_ast_expr *expr1,
	__isl_take isl_ast_expr *expr2)
{
	if (!expr1 || !expr2)
		goto error;

	if (ast_expr_is_zero(expr1)) {
		isl_ast_expr_free(expr1);
		return expr2;
	}

	if (ast_expr_is_zero(expr2)) {
		isl_ast_expr_free(expr2);
		return expr1;
	}

	return isl_ast_expr_add(expr1, expr2);
error:
	isl_ast_expr_free(expr1);
	isl_ast_expr_free(expr2);
	return NULL;
}

/* Subtract expr2 from expr1.
 *
 * If expr2 is zero, we simply return expr1.
 * If expr1 is zero, we return
 *
 *	(isl_ast_expr_op_minus, expr2)
 *
 * Otherwise, we return
 *
 *	(isl_ast_expr_op_sub, expr1, expr2)
 */
static __isl_give isl_ast_expr *ast_expr_sub(__isl_take isl_ast_expr *expr1,
	__isl_take isl_ast_expr *expr2)
{
	if (!expr1 || !expr2)
		goto error;

	if (ast_expr_is_zero(expr2)) {
		isl_ast_expr_free(expr2);
		return expr1;
	}

	if (ast_expr_is_zero(expr1)) {
		isl_ast_expr_free(expr1);
		return isl_ast_expr_neg(expr2);
	}

	return isl_ast_expr_sub(expr1, expr2);
error:
	isl_ast_expr_free(expr1);
	isl_ast_expr_free(expr2);
	return NULL;
}

/* Return an isl_ast_expr that represents
 *
 *	v * (aff mod d)
 *
 * v is assumed to be non-negative.
 * The result is simplified in terms of build->domain.
 */
static __isl_give isl_ast_expr *isl_ast_expr_mod(__isl_keep isl_val *v,
	__isl_keep isl_aff *aff, __isl_keep isl_val *d,
	__isl_keep isl_ast_build *build)
{
	isl_ast_expr *expr;
	isl_ast_expr *c;

	if (!aff)
		return NULL;

	expr = isl_ast_expr_from_aff(isl_aff_copy(aff), build);

	c = isl_ast_expr_from_val(isl_val_copy(d));
	expr = isl_ast_expr_alloc_binary(isl_ast_expr_op_pdiv_r, expr, c);

	if (!isl_val_is_one(v)) {
		c = isl_ast_expr_from_val(isl_val_copy(v));
		expr = isl_ast_expr_mul(c, expr);
	}

	return expr;
}

/* Create an isl_ast_expr that scales "expr" by "v".
 *
 * If v is 1, we simply return expr.
 * If v is -1, we return
 *
 *	(isl_ast_expr_op_minus, expr)
 *
 * Otherwise, we return
 *
 *	(isl_ast_expr_op_mul, expr(v), expr)
 */
static __isl_give isl_ast_expr *scale(__isl_take isl_ast_expr *expr,
	__isl_take isl_val *v)
{
	isl_ast_expr *c;

	if (!expr || !v)
		goto error;
	if (isl_val_is_one(v)) {
		isl_val_free(v);
		return expr;
	}

	if (isl_val_is_negone(v)) {
		isl_val_free(v);
		expr = isl_ast_expr_neg(expr);
	} else {
		c = isl_ast_expr_from_val(v);
		expr = isl_ast_expr_mul(c, expr);
	}

	return expr;
error:
	isl_val_free(v);
	isl_ast_expr_free(expr);
	return NULL;
}

/* Add an expression for "*v" times the specified dimension of "ls"
 * to expr.
 * If the dimension is an integer division, then this function
 * may modify data->cst in order to make the numerator non-negative.
 * The result is simplified in terms of data->build->domain.
 *
 * Let e be the expression for the specified dimension,
 * multiplied by the absolute value of "*v".
 * If "*v" is negative, we create
 *
 *	(isl_ast_expr_op_sub, expr, e)
 *
 * except when expr is trivially zero, in which case we create
 *
 *	(isl_ast_expr_op_minus, e)
 *
 * instead.
 *
 * If "*v" is positive, we simply create
 *
 *	(isl_ast_expr_op_add, expr, e)
 *
 */
static __isl_give isl_ast_expr *isl_ast_expr_add_term(
	__isl_take isl_ast_expr *expr,
	__isl_keep isl_local_space *ls, enum isl_dim_type type, int pos,
	__isl_take isl_val *v, struct isl_ast_add_term_data *data)
{
	isl_ast_expr *term;

	if (!expr)
		return NULL;

	data->v = v;
	term = var(data, ls, type, pos);
	v = data->v;

	if (isl_val_is_neg(v) && !ast_expr_is_zero(expr)) {
		v = isl_val_neg(v);
		term = scale(term, v);
		return ast_expr_sub(expr, term);
	} else {
		term = scale(term, v);
		return ast_expr_add(expr, term);
	}
}

/* Add an expression for "v" to expr.
 */
static __isl_give isl_ast_expr *isl_ast_expr_add_int(
	__isl_take isl_ast_expr *expr, __isl_take isl_val *v)
{
	isl_ast_expr *expr_int;

	if (!expr || !v)
		goto error;

	if (isl_val_is_zero(v)) {
		isl_val_free(v);
		return expr;
	}

	if (isl_val_is_neg(v) && !ast_expr_is_zero(expr)) {
		v = isl_val_neg(v);
		expr_int = isl_ast_expr_from_val(v);
		return ast_expr_sub(expr, expr_int);
	} else {
		expr_int = isl_ast_expr_from_val(v);
		return ast_expr_add(expr, expr_int);
	}
error:
	isl_ast_expr_free(expr);
	isl_val_free(v);
	return NULL;
}

/* Internal data structure used inside extract_modulos.
 *
 * If any modulo expressions are detected in "aff", then the
 * expression is removed from "aff" and added to either "pos" or "neg"
 * depending on the sign of the coefficient of the modulo expression
 * inside "aff".
 *
 * "add" is an expression that needs to be added to "aff" at the end of
 * the computation.  It is NULL as long as no modulos have been extracted.
 *
 * "i" is the position in "aff" of the div under investigation
 * "v" is the coefficient in "aff" of the div
 * "div" is the argument of the div, with the denominator removed
 * "d" is the original denominator of the argument of the div
 *
 * "nonneg" is an affine expression that is non-negative over "build"
 * and that can be used to extract a modulo expression from "div".
 * In particular, if "sign" is 1, then the coefficients of "nonneg"
 * are equal to those of "div" modulo "d".  If "sign" is -1, then
 * the coefficients of "nonneg" are opposite to those of "div" modulo "d".
 * If "sign" is 0, then no such affine expression has been found (yet).
 */
struct isl_extract_mod_data {
	isl_ast_build *build;
	isl_aff *aff;

	isl_ast_expr *pos;
	isl_ast_expr *neg;

	isl_aff *add;

	int i;
	isl_val *v;
	isl_val *d;
	isl_aff *div;

	isl_aff *nonneg;
	int sign;
};

/* Given that data->v * div_i in data->aff is equal to
 *
 *	f * (term - (arg mod d))
 *
 * with data->d * f = data->v, add
 *
 *	f * term
 *
 * to data->add and
 *
 *	abs(f) * (arg mod d)
 *
 * to data->neg or data->pos depending on the sign of -f.
 */
static int extract_term_and_mod(struct isl_extract_mod_data *data,
	__isl_take isl_aff *term, __isl_take isl_aff *arg)
{
	isl_ast_expr *expr;
	int s;

	data->v = isl_val_div(data->v, isl_val_copy(data->d));
	s = isl_val_sgn(data->v);
	data->v = isl_val_abs(data->v);
	expr = isl_ast_expr_mod(data->v, arg, data->d, data->build);
	isl_aff_free(arg);
	if (s > 0)
		data->neg = ast_expr_add(data->neg, expr);
	else
		data->pos = ast_expr_add(data->pos, expr);
	data->aff = isl_aff_set_coefficient_si(data->aff,
						isl_dim_div, data->i, 0);
	if (s < 0)
		data->v = isl_val_neg(data->v);
	term = isl_aff_scale_val(term, isl_val_copy(data->v));

	if (!data->add)
		data->add = term;
	else
		data->add = isl_aff_add(data->add, term);
	if (!data->add)
		return -1;

	return 0;
}

/* Given that data->v * div_i in data->aff is of the form
 *
 *	f * d * floor(div/d)
 *
 * with div nonnegative on data->build, rewrite it as
 *
 *	f * (div - (div mod d)) = f * div - f * (div mod d)
 *
 * and add
 *
 *	f * div
 *
 * to data->add and
 *
 *	abs(f) * (div mod d)
 *
 * to data->neg or data->pos depending on the sign of -f.
 */
static int extract_mod(struct isl_extract_mod_data *data)
{
	return extract_term_and_mod(data, isl_aff_copy(data->div),
			isl_aff_copy(data->div));
}

/* Given that data->v * div_i in data->aff is of the form
 *
 *	f * d * floor(div/d)					(1)
 *
 * check if div is non-negative on data->build and, if so,
 * extract the corresponding modulo from data->aff.
 * If not, then check if
 *
 *	-div + d - 1
 *
 * is non-negative on data->build.  If so, replace (1) by
 *
 *	-f * d * floor((-div + d - 1)/d)
 *
 * and extract the corresponding modulo from data->aff.
 *
 * This function may modify data->div.
 */
static int extract_nonneg_mod(struct isl_extract_mod_data *data)
{
	int mod;

	mod = isl_ast_build_aff_is_nonneg(data->build, data->div);
	if (mod < 0)
		goto error;
	if (mod)
		return extract_mod(data);

	data->div = oppose_div_arg(data->div, isl_val_copy(data->d));
	mod = isl_ast_build_aff_is_nonneg(data->build, data->div);
	if (mod < 0)
		goto error;
	if (mod) {
		data->v = isl_val_neg(data->v);
		return extract_mod(data);
	}

	return 0;
error:
	data->aff = isl_aff_free(data->aff);
	return -1;
}

/* Is the affine expression of constraint "c" "simpler" than data->nonneg
 * for use in extracting a modulo expression?
 *
 * We currently only consider the constant term of the affine expression.
 * In particular, we prefer the affine expression with the smallest constant
 * term.
 * This means that if there are two constraints, say x >= 0 and -x + 10 >= 0,
 * then we would pick x >= 0
 *
 * More detailed heuristics could be used if it turns out that there is a need.
 */
static int mod_constraint_is_simpler(struct isl_extract_mod_data *data,
	__isl_keep isl_constraint *c)
{
	isl_val *v1, *v2;
	int simpler;

	if (!data->nonneg)
		return 1;

	v1 = isl_val_abs(isl_constraint_get_constant_val(c));
	v2 = isl_val_abs(isl_aff_get_constant_val(data->nonneg));
	simpler = isl_val_lt(v1, v2);
	isl_val_free(v1);
	isl_val_free(v2);

	return simpler;
}

/* Check if the coefficients of "c" are either equal or opposite to those
 * of data->div modulo data->d.  If so, and if "c" is "simpler" than
 * data->nonneg, then replace data->nonneg by the affine expression of "c"
 * and set data->sign accordingly.
 *
 * Both "c" and data->div are assumed not to involve any integer divisions.
 *
 * Before we start the actual comparison, we first quickly check if
 * "c" and data->div have the same non-zero coefficients.
 * If not, then we assume that "c" is not of the desired form.
 * Note that while the coefficients of data->div can be reasonably expected
 * not to involve any coefficients that are multiples of d, "c" may
 * very well involve such coefficients.  This means that we may actually
 * miss some cases.
 *
 * If the constant term is "too large", then the constraint is rejected,
 * where "too large" is fairly arbitrarily set to 1 << 15.
 * We do this to avoid picking up constraints that bound a variable
 * by a very large number, say the largest or smallest possible
 * variable in the representation of some integer type.
 */
static isl_stat check_parallel_or_opposite(__isl_take isl_constraint *c,
	void *user)
{
	struct isl_extract_mod_data *data = user;
	enum isl_dim_type c_type[2] = { isl_dim_param, isl_dim_set };
	enum isl_dim_type a_type[2] = { isl_dim_param, isl_dim_in };
	int i, t;
	isl_size n[2];
	int parallel = 1, opposite = 1;

	for (t = 0; t < 2; ++t) {
		n[t] = isl_constraint_dim(c, c_type[t]);
		if (n[t] < 0)
			return isl_stat_error;
		for (i = 0; i < n[t]; ++i) {
			int a, b;

			a = isl_constraint_involves_dims(c, c_type[t], i, 1);
			b = isl_aff_involves_dims(data->div, a_type[t], i, 1);
			if (a != b)
				parallel = opposite = 0;
		}
	}

	if (parallel || opposite) {
		isl_val *v;

		v = isl_val_abs(isl_constraint_get_constant_val(c));
		if (isl_val_cmp_si(v, 1 << 15) > 0)
			parallel = opposite = 0;
		isl_val_free(v);
	}

	for (t = 0; t < 2; ++t) {
		for (i = 0; i < n[t]; ++i) {
			isl_val *v1, *v2;

			if (!parallel && !opposite)
				break;
			v1 = isl_constraint_get_coefficient_val(c,
								c_type[t], i);
			v2 = isl_aff_get_coefficient_val(data->div,
								a_type[t], i);
			if (parallel) {
				v1 = isl_val_sub(v1, isl_val_copy(v2));
				parallel = isl_val_is_divisible_by(v1, data->d);
				v1 = isl_val_add(v1, isl_val_copy(v2));
			}
			if (opposite) {
				v1 = isl_val_add(v1, isl_val_copy(v2));
				opposite = isl_val_is_divisible_by(v1, data->d);
			}
			isl_val_free(v1);
			isl_val_free(v2);
		}
	}

	if ((parallel || opposite) && mod_constraint_is_simpler(data, c)) {
		isl_aff_free(data->nonneg);
		data->nonneg = isl_constraint_get_aff(c);
		data->sign = parallel ? 1 : -1;
	}

	isl_constraint_free(c);

	if (data->sign != 0 && data->nonneg == NULL)
		return isl_stat_error;

	return isl_stat_ok;
}

/* Given that data->v * div_i in data->aff is of the form
 *
 *	f * d * floor(div/d)					(1)
 *
 * see if we can find an expression div' that is non-negative over data->build
 * and that is related to div through
 *
 *	div' = div + d * e
 *
 * or
 *
 *	div' = -div + d - 1 + d * e
 *
 * with e some affine expression.
 * If so, we write (1) as
 *
 *	f * div + f * (div' mod d)
 *
 * or
 *
 *	-f * (-div + d - 1) - f * (div' mod d)
 *
 * exploiting (in the second case) the fact that
 *
 *	f * d * floor(div/d) =	-f * d * floor((-div + d - 1)/d)
 *
 *
 * We first try to find an appropriate expression for div'
 * from the constraints of data->build->domain (which is therefore
 * guaranteed to be non-negative on data->build), where we remove
 * any integer divisions from the constraints and skip this step
 * if "div" itself involves any integer divisions.
 * If we cannot find an appropriate expression this way, then
 * we pass control to extract_nonneg_mod where check
 * if div or "-div + d -1" themselves happen to be
 * non-negative on data->build.
 *
 * While looking for an appropriate constraint in data->build->domain,
 * we ignore the constant term, so after finding such a constraint,
 * we still need to fix up the constant term.
 * In particular, if a is the constant term of "div"
 * (or d - 1 - the constant term of "div" if data->sign < 0)
 * and b is the constant term of the constraint, then we need to find
 * a non-negative constant c such that
 *
 *	b + c \equiv a	mod d
 *
 * We therefore take
 *
 *	c = (a - b) mod d
 *
 * and add it to b to obtain the constant term of div'.
 * If this constant term is "too negative", then we add an appropriate
 * multiple of d to make it positive.
 *
 *
 * Note that the above is a only a very simple heuristic for finding an
 * appropriate expression.  We could try a bit harder by also considering
 * sums of constraints that involve disjoint sets of variables or
 * we could consider arbitrary linear combinations of constraints,
 * although that could potentially be much more expensive as it involves
 * the solution of an LP problem.
 *
 * In particular, if v_i is a column vector representing constraint i,
 * w represents div and e_i is the i-th unit vector, then we are looking
 * for a solution of the constraints
 *
 *	\sum_i lambda_i v_i = w + \sum_i alpha_i d e_i
 *
 * with \lambda_i >= 0 and alpha_i of unrestricted sign.
 * If we are not just interested in a non-negative expression, but
 * also in one with a minimal range, then we don't just want
 * c = \sum_i lambda_i v_i to be non-negative over the domain,
 * but also beta - c = \sum_i mu_i v_i, where beta is a scalar
 * that we want to minimize and we now also have to take into account
 * the constant terms of the constraints.
 * Alternatively, we could first compute the dual of the domain
 * and plug in the constraints on the coefficients.
 */
static int try_extract_mod(struct isl_extract_mod_data *data)
{
	isl_basic_set *hull;
	isl_val *v1, *v2;
	isl_stat r;
	isl_size n;

	if (!data->build)
		goto error;

	n = isl_aff_dim(data->div, isl_dim_div);
	if (n < 0)
		goto error;

	if (isl_aff_involves_dims(data->div, isl_dim_div, 0, n))
		return extract_nonneg_mod(data);

	hull = isl_set_simple_hull(isl_set_copy(data->build->domain));
	hull = isl_basic_set_remove_divs(hull);
	data->sign = 0;
	data->nonneg = NULL;
	r = isl_basic_set_foreach_constraint(hull, &check_parallel_or_opposite,
					data);
	isl_basic_set_free(hull);

	if (!data->sign || r < 0) {
		isl_aff_free(data->nonneg);
		if (r < 0)
			goto error;
		return extract_nonneg_mod(data);
	}

	v1 = isl_aff_get_constant_val(data->div);
	v2 = isl_aff_get_constant_val(data->nonneg);
	if (data->sign < 0) {
		v1 = isl_val_neg(v1);
		v1 = isl_val_add(v1, isl_val_copy(data->d));
		v1 = isl_val_sub_ui(v1, 1);
	}
	v1 = isl_val_sub(v1, isl_val_copy(v2));
	v1 = isl_val_mod(v1, isl_val_copy(data->d));
	v1 = isl_val_add(v1, v2);
	v2 = isl_val_div(isl_val_copy(v1), isl_val_copy(data->d));
	v2 = isl_val_ceil(v2);
	if (isl_val_is_neg(v2)) {
		v2 = isl_val_mul(v2, isl_val_copy(data->d));
		v1 = isl_val_sub(v1, isl_val_copy(v2));
	}
	data->nonneg = isl_aff_set_constant_val(data->nonneg, v1);
	isl_val_free(v2);

	if (data->sign < 0) {
		data->div = oppose_div_arg(data->div, isl_val_copy(data->d));
		data->v = isl_val_neg(data->v);
	}

	return extract_term_and_mod(data,
				    isl_aff_copy(data->div), data->nonneg);
error:
	data->aff = isl_aff_free(data->aff);
	return -1;
}

/* Check if "data->aff" involves any (implicit) modulo computations based
 * on div "data->i".
 * If so, remove them from aff and add expressions corresponding
 * to those modulo computations to data->pos and/or data->neg.
 *
 * "aff" is assumed to be an integer affine expression.
 *
 * In particular, check if (v * div_j) is of the form
 *
 *	f * m * floor(a / m)
 *
 * and, if so, rewrite it as
 *
 *	f * (a - (a mod m)) = f * a - f * (a mod m)
 *
 * and extract out -f * (a mod m).
 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
 * If f < 0, we add ((-f) * (a mod m)) to *pos.
 *
 * Note that in order to represent "a mod m" as
 *
 *	(isl_ast_expr_op_pdiv_r, a, m)
 *
 * we need to make sure that a is non-negative.
 * If not, we check if "-a + m - 1" is non-negative.
 * If so, we can rewrite
 *
 *	floor(a/m) = -ceil(-a/m) = -floor((-a + m - 1)/m)
 *
 * and still extract a modulo.
 */
static int extract_modulo(struct isl_extract_mod_data *data)
{
	data->div = isl_aff_get_div(data->aff, data->i);
	data->d = isl_aff_get_denominator_val(data->div);
	if (isl_val_is_divisible_by(data->v, data->d)) {
		data->div = isl_aff_scale_val(data->div, isl_val_copy(data->d));
		if (try_extract_mod(data) < 0)
			data->aff = isl_aff_free(data->aff);
	}
	isl_aff_free(data->div);
	isl_val_free(data->d);
	return 0;
}

/* Check if "aff" involves any (implicit) modulo computations.
 * If so, remove them from aff and add expressions corresponding
 * to those modulo computations to *pos and/or *neg.
 * We only do this if the option ast_build_prefer_pdiv is set.
 *
 * "aff" is assumed to be an integer affine expression.
 *
 * A modulo expression is of the form
 *
 *	a mod m = a - m * floor(a / m)
 *
 * To detect them in aff, we look for terms of the form
 *
 *	f * m * floor(a / m)
 *
 * rewrite them as
 *
 *	f * (a - (a mod m)) = f * a - f * (a mod m)
 *
 * and extract out -f * (a mod m).
 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
 * If f < 0, we add ((-f) * (a mod m)) to *pos.
 */
static __isl_give isl_aff *extract_modulos(__isl_take isl_aff *aff,
	__isl_keep isl_ast_expr **pos, __isl_keep isl_ast_expr **neg,
	__isl_keep isl_ast_build *build)
{
	struct isl_extract_mod_data data = { build, aff, *pos, *neg };
	isl_ctx *ctx;
	isl_size n;

	if (!aff)
		return NULL;

	ctx = isl_aff_get_ctx(aff);
	if (!isl_options_get_ast_build_prefer_pdiv(ctx))
		return aff;

	n = isl_aff_dim(data.aff, isl_dim_div);
	if (n < 0)
		return isl_aff_free(aff);
	for (data.i = 0; data.i < n; ++data.i) {
		data.v = isl_aff_get_coefficient_val(data.aff,
							isl_dim_div, data.i);
		if (!data.v)
			return isl_aff_free(aff);
		if (isl_val_is_zero(data.v) ||
		    isl_val_is_one(data.v) || isl_val_is_negone(data.v)) {
			isl_val_free(data.v);
			continue;
		}
		if (extract_modulo(&data) < 0)
			data.aff = isl_aff_free(data.aff);
		isl_val_free(data.v);
		if (!data.aff)
			break;
	}

	if (data.add)
		data.aff = isl_aff_add(data.aff, data.add);

	*pos = data.pos;
	*neg = data.neg;
	return data.aff;
}

/* Check if aff involves any non-integer coefficients.
 * If so, split aff into
 *
 *	aff = aff1 + (aff2 / d)
 *
 * with both aff1 and aff2 having only integer coefficients.
 * Return aff1 and add (aff2 / d) to *expr.
 */
static __isl_give isl_aff *extract_rational(__isl_take isl_aff *aff,
	__isl_keep isl_ast_expr **expr, __isl_keep isl_ast_build *build)
{
	int i, j;
	isl_size n;
	isl_aff *rat = NULL;
	isl_local_space *ls = NULL;
	isl_ast_expr *rat_expr;
	isl_val *v, *d;
	enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
	enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };

	if (!aff)
		return NULL;
	d = isl_aff_get_denominator_val(aff);
	if (!d)
		goto error;
	if (isl_val_is_one(d)) {
		isl_val_free(d);
		return aff;
	}

	aff = isl_aff_scale_val(aff, isl_val_copy(d));

	ls = isl_aff_get_domain_local_space(aff);
	rat = isl_aff_zero_on_domain(isl_local_space_copy(ls));

	for (i = 0; i < 3; ++i) {
		n = isl_aff_dim(aff, t[i]);
		if (n < 0)
			goto error;
		for (j = 0; j < n; ++j) {
			isl_aff *rat_j;

			v = isl_aff_get_coefficient_val(aff, t[i], j);
			if (!v)
				goto error;
			if (isl_val_is_divisible_by(v, d)) {
				isl_val_free(v);
				continue;
			}
			rat_j = isl_aff_var_on_domain(isl_local_space_copy(ls),
							l[i], j);
			rat_j = isl_aff_scale_val(rat_j, v);
			rat = isl_aff_add(rat, rat_j);
		}
	}

	v = isl_aff_get_constant_val(aff);
	if (isl_val_is_divisible_by(v, d)) {
		isl_val_free(v);
	} else {
		isl_aff *rat_0;

		rat_0 = isl_aff_val_on_domain(isl_local_space_copy(ls), v);
		rat = isl_aff_add(rat, rat_0);
	}

	isl_local_space_free(ls);

	aff = isl_aff_sub(aff, isl_aff_copy(rat));
	aff = isl_aff_scale_down_val(aff, isl_val_copy(d));

	rat_expr = isl_ast_expr_from_aff(rat, build);
	rat_expr = isl_ast_expr_div(rat_expr, isl_ast_expr_from_val(d));
	*expr = ast_expr_add(*expr, rat_expr);

	return aff;
error:
	isl_aff_free(rat);
	isl_local_space_free(ls);
	isl_aff_free(aff);
	isl_val_free(d);
	return NULL;
}

/* Construct an isl_ast_expr that evaluates the affine expression "aff",
 * The result is simplified in terms of build->domain.
 *
 * We first extract hidden modulo computations from the affine expression
 * and then add terms for each variable with a non-zero coefficient.
 * Finally, if the affine expression has a non-trivial denominator,
 * we divide the resulting isl_ast_expr by this denominator.
 */
__isl_give isl_ast_expr *isl_ast_expr_from_aff(__isl_take isl_aff *aff,
	__isl_keep isl_ast_build *build)
{
	int i, j;
	isl_size n;
	isl_val *v;
	isl_ctx *ctx = isl_aff_get_ctx(aff);
	isl_ast_expr *expr, *expr_neg;
	enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
	enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
	isl_local_space *ls;
	struct isl_ast_add_term_data data;

	if (!aff)
		return NULL;

	expr = isl_ast_expr_alloc_int_si(ctx, 0);
	expr_neg = isl_ast_expr_alloc_int_si(ctx, 0);

	aff = extract_rational(aff, &expr, build);

	aff = extract_modulos(aff, &expr, &expr_neg, build);
	expr = ast_expr_sub(expr, expr_neg);

	ls = isl_aff_get_domain_local_space(aff);

	data.build = build;
	data.cst = isl_aff_get_constant_val(aff);
	for (i = 0; i < 3; ++i) {
		n = isl_aff_dim(aff, t[i]);
		if (n < 0)
			expr = isl_ast_expr_free(expr);
		for (j = 0; j < n; ++j) {
			v = isl_aff_get_coefficient_val(aff, t[i], j);
			if (!v)
				expr = isl_ast_expr_free(expr);
			if (isl_val_is_zero(v)) {
				isl_val_free(v);
				continue;
			}
			expr = isl_ast_expr_add_term(expr,
							ls, l[i], j, v, &data);
		}
	}

	expr = isl_ast_expr_add_int(expr, data.cst);

	isl_local_space_free(ls);
	isl_aff_free(aff);
	return expr;
}

/* Add terms to "expr" for each variable in "aff" with a coefficient
 * with sign equal to "sign".
 * The result is simplified in terms of data->build->domain.
 */
static __isl_give isl_ast_expr *add_signed_terms(__isl_take isl_ast_expr *expr,
	__isl_keep isl_aff *aff, int sign, struct isl_ast_add_term_data *data)
{
	int i, j;
	isl_val *v;
	enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
	enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
	isl_local_space *ls;

	ls = isl_aff_get_domain_local_space(aff);

	for (i = 0; i < 3; ++i) {
		isl_size n = isl_aff_dim(aff, t[i]);
		if (n < 0)
			expr = isl_ast_expr_free(expr);
		for (j = 0; j < n; ++j) {
			v = isl_aff_get_coefficient_val(aff, t[i], j);
			if (sign * isl_val_sgn(v) <= 0) {
				isl_val_free(v);
				continue;
			}
			v = isl_val_abs(v);
			expr = isl_ast_expr_add_term(expr,
						ls, l[i], j, v, data);
		}
	}

	isl_local_space_free(ls);

	return expr;
}

/* Should the constant term "v" be considered positive?
 *
 * A positive constant will be added to "pos" by the caller,
 * while a negative constant will be added to "neg".
 * If either "pos" or "neg" is exactly zero, then we prefer
 * to add the constant "v" to that side, irrespective of the sign of "v".
 * This results in slightly shorter expressions and may reduce the risk
 * of overflows.
 */
static int constant_is_considered_positive(__isl_keep isl_val *v,
	__isl_keep isl_ast_expr *pos, __isl_keep isl_ast_expr *neg)
{
	if (ast_expr_is_zero(pos))
		return 1;
	if (ast_expr_is_zero(neg))
		return 0;
	return isl_val_is_pos(v);
}

/* Check if the equality
 *
 *	aff = 0
 *
 * represents a stride constraint on the integer division "pos".
 *
 * In particular, if the integer division "pos" is equal to
 *
 *	floor(e/d)
 *
 * then check if aff is equal to
 *
 *	e - d floor(e/d)
 *
 * or its opposite.
 *
 * If so, the equality is exactly
 *
 *	e mod d = 0
 *
 * Note that in principle we could also accept
 *
 *	e - d floor(e'/d)
 *
 * where e and e' differ by a constant.
 */
static int is_stride_constraint(__isl_keep isl_aff *aff, int pos)
{
	isl_aff *div;
	isl_val *c, *d;
	int eq;

	div = isl_aff_get_div(aff, pos);
	c = isl_aff_get_coefficient_val(aff, isl_dim_div, pos);
	d = isl_aff_get_denominator_val(div);
	eq = isl_val_abs_eq(c, d);
	if (eq >= 0 && eq) {
		aff = isl_aff_copy(aff);
		aff = isl_aff_set_coefficient_si(aff, isl_dim_div, pos, 0);
		div = isl_aff_scale_val(div, d);
		if (isl_val_is_pos(c))
			div = isl_aff_neg(div);
		eq = isl_aff_plain_is_equal(div, aff);
		isl_aff_free(aff);
	} else
		isl_val_free(d);
	isl_val_free(c);
	isl_aff_free(div);

	return eq;
}

/* Are all coefficients of "aff" (zero or) negative?
 */
static isl_bool all_negative_coefficients(__isl_keep isl_aff *aff)
{
	int i;
	isl_size n;

	n = isl_aff_dim(aff, isl_dim_param);
	if (n < 0)
		return isl_bool_error;
	for (i = 0; i < n; ++i)
		if (isl_aff_coefficient_sgn(aff, isl_dim_param, i) > 0)
			return isl_bool_false;

	n = isl_aff_dim(aff, isl_dim_in);
	if (n < 0)
		return isl_bool_error;
	for (i = 0; i < n; ++i)
		if (isl_aff_coefficient_sgn(aff, isl_dim_in, i) > 0)
			return isl_bool_false;

	return isl_bool_true;
}

/* Give an equality of the form
 *
 *	aff = e - d floor(e/d) = 0
 *
 * or
 *
 *	aff = -e + d floor(e/d) = 0
 *
 * with the integer division "pos" equal to floor(e/d),
 * construct the AST expression
 *
 *	(isl_ast_expr_op_eq,
 *		(isl_ast_expr_op_zdiv_r, expr(e), expr(d)), expr(0))
 *
 * If e only has negative coefficients, then construct
 *
 *	(isl_ast_expr_op_eq,
 *		(isl_ast_expr_op_zdiv_r, expr(-e), expr(d)), expr(0))
 *
 * instead.
 */
static __isl_give isl_ast_expr *extract_stride_constraint(
	__isl_take isl_aff *aff, int pos, __isl_keep isl_ast_build *build)
{
	isl_bool all_neg;
	isl_ctx *ctx;
	isl_val *c;
	isl_ast_expr *expr, *cst;

	if (!aff)
		return NULL;

	ctx = isl_aff_get_ctx(aff);

	c = isl_aff_get_coefficient_val(aff, isl_dim_div, pos);
	aff = isl_aff_set_coefficient_si(aff, isl_dim_div, pos, 0);

	all_neg = all_negative_coefficients(aff);
	if (all_neg < 0)
		aff = isl_aff_free(aff);
	else if (all_neg)
		aff = isl_aff_neg(aff);

	cst = isl_ast_expr_from_val(isl_val_abs(c));
	expr = isl_ast_expr_from_aff(aff, build);

	expr = isl_ast_expr_alloc_binary(isl_ast_expr_op_zdiv_r, expr, cst);
	cst = isl_ast_expr_alloc_int_si(ctx, 0);
	expr = isl_ast_expr_alloc_binary(isl_ast_expr_op_eq, expr, cst);

	return expr;
}

/* Construct an isl_ast_expr that evaluates the condition "constraint",
 * The result is simplified in terms of build->domain.
 *
 * We first check if the constraint is an equality of the form
 *
 *	e - d floor(e/d) = 0
 *
 * i.e.,
 *
 *	e mod d = 0
 *
 * If so, we convert it to
 *
 *	(isl_ast_expr_op_eq,
 *		(isl_ast_expr_op_zdiv_r, expr(e), expr(d)), expr(0))
 *
 * Otherwise, let the constraint by either "a >= 0" or "a == 0".
 * We first extract hidden modulo computations from "a"
 * and then collect all the terms with a positive coefficient in cons_pos
 * and the terms with a negative coefficient in cons_neg.
 *
 * The result is then of the form
 *
 *	(isl_ast_expr_op_ge, expr(pos), expr(-neg)))
 *
 * or
 *
 *	(isl_ast_expr_op_eq, expr(pos), expr(-neg)))
 *
 * However, if the first expression is an integer constant (and the second
 * is not), then we swap the two expressions.  This ensures that we construct,
 * e.g., "i <= 5" rather than "5 >= i".
 *
 * Furthermore, is there are no terms with positive coefficients (or no terms
 * with negative coefficients), then the constant term is added to "pos"
 * (or "neg"), ignoring the sign of the constant term.
 */
static __isl_give isl_ast_expr *isl_ast_expr_from_constraint(
	__isl_take isl_constraint *constraint, __isl_keep isl_ast_build *build)
{
	int i;
	isl_size n;
	isl_ctx *ctx;
	isl_ast_expr *expr_pos;
	isl_ast_expr *expr_neg;
	isl_ast_expr *expr;
	isl_aff *aff;
	int eq;
	enum isl_ast_expr_op_type type;
	struct isl_ast_add_term_data data;

	if (!constraint)
		return NULL;

	aff = isl_constraint_get_aff(constraint);
	eq = isl_constraint_is_equality(constraint);
	isl_constraint_free(constraint);

	n = isl_aff_dim(aff, isl_dim_div);
	if (n < 0)
		aff = isl_aff_free(aff);
	if (eq && n > 0)
		for (i = 0; i < n; ++i) {
			int is_stride;
			is_stride = is_stride_constraint(aff, i);
			if (is_stride < 0)
				goto error;
			if (is_stride)
				return extract_stride_constraint(aff, i, build);
		}

	ctx = isl_aff_get_ctx(aff);
	expr_pos = isl_ast_expr_alloc_int_si(ctx, 0);
	expr_neg = isl_ast_expr_alloc_int_si(ctx, 0);

	aff = extract_modulos(aff, &expr_pos, &expr_neg, build);

	data.build = build;
	data.cst = isl_aff_get_constant_val(aff);
	expr_pos = add_signed_terms(expr_pos, aff, 1, &data);
	data.cst = isl_val_neg(data.cst);
	expr_neg = add_signed_terms(expr_neg, aff, -1, &data);
	data.cst = isl_val_neg(data.cst);

	if (constant_is_considered_positive(data.cst, expr_pos, expr_neg)) {
		expr_pos = isl_ast_expr_add_int(expr_pos, data.cst);
	} else {
		data.cst = isl_val_neg(data.cst);
		expr_neg = isl_ast_expr_add_int(expr_neg, data.cst);
	}

	if (isl_ast_expr_get_type(expr_pos) == isl_ast_expr_int &&
	    isl_ast_expr_get_type(expr_neg) != isl_ast_expr_int) {
		type = eq ? isl_ast_expr_op_eq : isl_ast_expr_op_le;
		expr = isl_ast_expr_alloc_binary(type, expr_neg, expr_pos);
	} else {
		type = eq ? isl_ast_expr_op_eq : isl_ast_expr_op_ge;
		expr = isl_ast_expr_alloc_binary(type, expr_pos, expr_neg);
	}

	isl_aff_free(aff);
	return expr;
error:
	isl_aff_free(aff);
	return NULL;
}

/* Wrapper around isl_constraint_cmp_last_non_zero for use
 * as a callback to isl_constraint_list_sort.
 * If isl_constraint_cmp_last_non_zero cannot tell the constraints
 * apart, then use isl_constraint_plain_cmp instead.
 */
static int cmp_constraint(__isl_keep isl_constraint *a,
	__isl_keep isl_constraint *b, void *user)
{
	int cmp;

	cmp = isl_constraint_cmp_last_non_zero(a, b);
	if (cmp != 0)
		return cmp;
	return isl_constraint_plain_cmp(a, b);
}

/* Construct an isl_ast_expr that evaluates the conditions defining "bset".
 * The result is simplified in terms of build->domain.
 *
 * If "bset" is not bounded by any constraint, then we construct
 * the expression "1", i.e., "true".
 *
 * Otherwise, we sort the constraints, putting constraints that involve
 * integer divisions after those that do not, and construct an "and"
 * of the ast expressions of the individual constraints.
 *
 * Each constraint is added to the generated constraints of the build
 * after it has been converted to an AST expression so that it can be used
 * to simplify the following constraints.  This may change the truth value
 * of subsequent constraints that do not satisfy the earlier constraints,
 * but this does not affect the outcome of the conjunction as it is
 * only true if all the conjuncts are true (no matter in what order
 * they are evaluated).  In particular, the constraints that do not
 * involve integer divisions may serve to simplify some constraints
 * that do involve integer divisions.
 */
__isl_give isl_ast_expr *isl_ast_build_expr_from_basic_set(
	 __isl_keep isl_ast_build *build, __isl_take isl_basic_set *bset)
{
	int i;
	isl_size n;
	isl_constraint *c;
	isl_constraint_list *list;
	isl_ast_expr *res;
	isl_set *set;

	list = isl_basic_set_get_constraint_list(bset);
	isl_basic_set_free(bset);
	list = isl_constraint_list_sort(list, &cmp_constraint, NULL);
	n = isl_constraint_list_n_constraint(list);
	if (n < 0)
		build = NULL;
	if (n == 0) {
		isl_ctx *ctx = isl_constraint_list_get_ctx(list);
		isl_constraint_list_free(list);
		return isl_ast_expr_alloc_int_si(ctx, 1);
	}

	build = isl_ast_build_copy(build);

	c = isl_constraint_list_get_constraint(list, 0);
	bset = isl_basic_set_from_constraint(isl_constraint_copy(c));
	set = isl_set_from_basic_set(bset);
	res = isl_ast_expr_from_constraint(c, build);
	build = isl_ast_build_restrict_generated(build, set);

	for (i = 1; i < n; ++i) {
		isl_ast_expr *expr;

		c = isl_constraint_list_get_constraint(list, i);
		bset = isl_basic_set_from_constraint(isl_constraint_copy(c));
		set = isl_set_from_basic_set(bset);
		expr = isl_ast_expr_from_constraint(c, build);
		build = isl_ast_build_restrict_generated(build, set);
		res = isl_ast_expr_and(res, expr);
	}

	isl_constraint_list_free(list);
	isl_ast_build_free(build);
	return res;
}

/* Construct an isl_ast_expr that evaluates the conditions defining "set".
 * The result is simplified in terms of build->domain.
 *
 * If "set" is an (obviously) empty set, then return the expression "0".
 *
 * If there are multiple disjuncts in the description of the set,
 * then subsequent disjuncts are simplified in a context where
 * the previous disjuncts have been removed from build->domain.
 * In particular, constraints that ensure that there is no overlap
 * with these previous disjuncts, can be removed.
 * This is mostly useful for disjuncts that are only defined by
 * a single constraint (relative to the build domain) as the opposite
 * of that single constraint can then be removed from the other disjuncts.
 * In order not to increase the number of disjuncts in the build domain
 * after subtracting the previous disjuncts of "set", the simple hull
 * is computed after taking the difference with each of these disjuncts.
 * This means that constraints that prevent overlap with a union
 * of multiple previous disjuncts are not removed.
 *
 * "set" lives in the internal schedule space.
 */
__isl_give isl_ast_expr *isl_ast_build_expr_from_set_internal(
	__isl_keep isl_ast_build *build, __isl_take isl_set *set)
{
	int i;
	isl_size n;
	isl_basic_set *bset;
	isl_basic_set_list *list;
	isl_set *domain;
	isl_ast_expr *res;

	list = isl_set_get_basic_set_list(set);
	isl_set_free(set);

	n = isl_basic_set_list_n_basic_set(list);
	if (n < 0)
		build = NULL;
	if (n == 0) {
		isl_ctx *ctx = isl_ast_build_get_ctx(build);
		isl_basic_set_list_free(list);
		return isl_ast_expr_from_val(isl_val_zero(ctx));
	}

	domain = isl_ast_build_get_domain(build);

	bset = isl_basic_set_list_get_basic_set(list, 0);
	set = isl_set_from_basic_set(isl_basic_set_copy(bset));
	res = isl_ast_build_expr_from_basic_set(build, bset);

	for (i = 1; i < n; ++i) {
		isl_ast_expr *expr;
		isl_set *rest;

		rest = isl_set_subtract(isl_set_copy(domain), set);
		rest = isl_set_from_basic_set(isl_set_simple_hull(rest));
		domain = isl_set_intersect(domain, rest);
		bset = isl_basic_set_list_get_basic_set(list, i);
		set = isl_set_from_basic_set(isl_basic_set_copy(bset));
		bset = isl_basic_set_gist(bset,
				isl_set_simple_hull(isl_set_copy(domain)));
		expr = isl_ast_build_expr_from_basic_set(build, bset);
		res = isl_ast_expr_or(res, expr);
	}

	isl_set_free(domain);
	isl_set_free(set);
	isl_basic_set_list_free(list);
	return res;
}

/* Construct an isl_ast_expr that evaluates the conditions defining "set".
 * The result is simplified in terms of build->domain.
 *
 * If "set" is an (obviously) empty set, then return the expression "0".
 *
 * "set" lives in the external schedule space.
 *
 * The internal AST expression generation assumes that there are
 * no unknown divs, so make sure an explicit representation is available.
 * Since the set comes from the outside, it may have constraints that
 * are redundant with respect to the build domain.  Remove them first.
 */
__isl_give isl_ast_expr *isl_ast_build_expr_from_set(
	__isl_keep isl_ast_build *build, __isl_take isl_set *set)
{
	isl_bool needs_map;

	needs_map = isl_ast_build_need_schedule_map(build);
	if (needs_map < 0) {
		set = isl_set_free(set);
	} else if (needs_map) {
		isl_multi_aff *ma;
		ma = isl_ast_build_get_schedule_map_multi_aff(build);
		set = isl_set_preimage_multi_aff(set, ma);
	}

	set = isl_set_compute_divs(set);
	set = isl_ast_build_compute_gist(build, set);
	return isl_ast_build_expr_from_set_internal(build, set);
}

/* State of data about previous pieces in
 * isl_ast_build_expr_from_pw_aff_internal.
 *
 * isl_state_none: no data about previous pieces
 * isl_state_single: data about a single previous piece
 * isl_state_min: data represents minimum of several pieces
 * isl_state_max: data represents maximum of several pieces
 */
enum isl_from_pw_aff_state {
	isl_state_none,
	isl_state_single,
	isl_state_min,
	isl_state_max
};

/* Internal date structure representing a single piece in the input of
 * isl_ast_build_expr_from_pw_aff_internal.
 *
 * If "state" is isl_state_none, then "set_list" and "aff_list" are not used.
 * If "state" is isl_state_single, then "set_list" and "aff_list" contain the
 * single previous subpiece.
 * If "state" is isl_state_min, then "set_list" and "aff_list" contain
 * a sequence of several previous subpieces that are equal to the minimum
 * of the entries in "aff_list" over the union of "set_list"
 * If "state" is isl_state_max, then "set_list" and "aff_list" contain
 * a sequence of several previous subpieces that are equal to the maximum
 * of the entries in "aff_list" over the union of "set_list"
 *
 * During the construction of the pieces, "set" is NULL.
 * After the construction, "set" is set to the union of the elements
 * in "set_list", at which point "set_list" is set to NULL.
 */
struct isl_from_pw_aff_piece {
	enum isl_from_pw_aff_state state;
	isl_set *set;
	isl_set_list *set_list;
	isl_aff_list *aff_list;
};

/* Internal data structure for isl_ast_build_expr_from_pw_aff_internal.
 *
 * "build" specifies the domain against which the result is simplified.
 * "dom" is the domain of the entire isl_pw_aff.
 *
 * "n" is the number of pieces constructed already.
 * In particular, during the construction of the pieces, "n" points to
 * the piece that is being constructed.  After the construction of the
 * pieces, "n" is set to the total number of pieces.
 * "max" is the total number of allocated entries.
 * "p" contains the individual pieces.
 */
struct isl_from_pw_aff_data {
	isl_ast_build *build;
	isl_set *dom;

	int n;
	int max;
	struct isl_from_pw_aff_piece *p;
};

/* Initialize "data" based on "build" and "pa".
 */
static isl_stat isl_from_pw_aff_data_init(struct isl_from_pw_aff_data *data,
	__isl_keep isl_ast_build *build, __isl_keep isl_pw_aff *pa)
{
	isl_size n;
	isl_ctx *ctx;

	ctx = isl_pw_aff_get_ctx(pa);
	n = isl_pw_aff_n_piece(pa);
	if (n < 0)
		return isl_stat_error;
	if (n == 0)
		isl_die(ctx, isl_error_invalid,
			"cannot handle void expression", return isl_stat_error);
	data->max = n;
	data->p = isl_calloc_array(ctx, struct isl_from_pw_aff_piece, n);
	if (!data->p)
		return isl_stat_error;
	data->build = build;
	data->dom = isl_pw_aff_domain(isl_pw_aff_copy(pa));
	data->n = 0;

	return isl_stat_ok;
}

/* Free all memory allocated for "data".
 */
static void isl_from_pw_aff_data_clear(struct isl_from_pw_aff_data *data)
{
	int i;

	isl_set_free(data->dom);
	if (!data->p)
		return;

	for (i = 0; i < data->max; ++i) {
		isl_set_free(data->p[i].set);
		isl_set_list_free(data->p[i].set_list);
		isl_aff_list_free(data->p[i].aff_list);
	}
	free(data->p);
}

/* Initialize the current entry of "data" to an unused piece.
 */
static void set_none(struct isl_from_pw_aff_data *data)
{
	data->p[data->n].state = isl_state_none;
	data->p[data->n].set_list = NULL;
	data->p[data->n].aff_list = NULL;
}

/* Store "set" and "aff" in the current entry of "data" as a single subpiece.
 */
static void set_single(struct isl_from_pw_aff_data *data,
	__isl_take isl_set *set, __isl_take isl_aff *aff)
{
	data->p[data->n].state = isl_state_single;
	data->p[data->n].set_list = isl_set_list_from_set(set);
	data->p[data->n].aff_list = isl_aff_list_from_aff(aff);
}

/* Extend the current entry of "data" with "set" and "aff"
 * as a minimum expression.
 */
static isl_stat extend_min(struct isl_from_pw_aff_data *data,
	__isl_take isl_set *set, __isl_take isl_aff *aff)
{
	int n = data->n;
	data->p[n].state = isl_state_min;
	data->p[n].set_list = isl_set_list_add(data->p[n].set_list, set);
	data->p[n].aff_list = isl_aff_list_add(data->p[n].aff_list, aff);

	if (!data->p[n].set_list || !data->p[n].aff_list)
		return isl_stat_error;
	return isl_stat_ok;
}

/* Extend the current entry of "data" with "set" and "aff"
 * as a maximum expression.
 */
static isl_stat extend_max(struct isl_from_pw_aff_data *data,
	__isl_take isl_set *set, __isl_take isl_aff *aff)
{
	int n = data->n;
	data->p[n].state = isl_state_max;
	data->p[n].set_list = isl_set_list_add(data->p[n].set_list, set);
	data->p[n].aff_list = isl_aff_list_add(data->p[n].aff_list, aff);

	if (!data->p[n].set_list || !data->p[n].aff_list)
		return isl_stat_error;
	return isl_stat_ok;
}

/* Extend the domain of the current entry of "data", which is assumed
 * to contain a single subpiece, with "set".  If "replace" is set,
 * then also replace the affine function by "aff".  Otherwise,
 * simply free "aff".
 */
static isl_stat extend_domain(struct isl_from_pw_aff_data *data,
	__isl_take isl_set *set, __isl_take isl_aff *aff, int replace)
{
	int n = data->n;
	isl_set *set_n;

	set_n = isl_set_list_get_set(data->p[n].set_list, 0);
	set_n = isl_set_union(set_n, set);
	data->p[n].set_list =
		isl_set_list_set_set(data->p[n].set_list, 0, set_n);

	if (replace)
		data->p[n].aff_list =
			isl_aff_list_set_aff(data->p[n].aff_list, 0, aff);
	else
		isl_aff_free(aff);

	if (!data->p[n].set_list || !data->p[n].aff_list)
		return isl_stat_error;
	return isl_stat_ok;
}

/* Construct an isl_ast_expr from "list" within "build".
 * If "state" is isl_state_single, then "list" contains a single entry and
 * an isl_ast_expr is constructed for that entry.
 * Otherwise a min or max expression is constructed from "list"
 * depending on "state".
 */
static __isl_give isl_ast_expr *ast_expr_from_aff_list(
	__isl_take isl_aff_list *list, enum isl_from_pw_aff_state state,
	__isl_keep isl_ast_build *build)
{
	int i;
	isl_size n;
	isl_aff *aff;
	isl_ast_expr *expr = NULL;
	enum isl_ast_expr_op_type op_type;

	if (state == isl_state_single) {
		aff = isl_aff_list_get_aff(list, 0);
		isl_aff_list_free(list);
		return isl_ast_expr_from_aff(aff, build);
	}
	n = isl_aff_list_n_aff(list);
	if (n < 0)
		goto error;
	op_type = state == isl_state_min ? isl_ast_expr_op_min
					 : isl_ast_expr_op_max;
	expr = isl_ast_expr_alloc_op(isl_ast_build_get_ctx(build), op_type, n);
	if (!expr)
		goto error;

	for (i = 0; i < n; ++i) {
		isl_ast_expr *expr_i;

		aff = isl_aff_list_get_aff(list, i);
		expr_i = isl_ast_expr_from_aff(aff, build);
		if (!expr_i)
			goto error;
		expr->u.op.args[i] = expr_i;
	}

	isl_aff_list_free(list);
	return expr;
error:
	isl_aff_list_free(list);
	isl_ast_expr_free(expr);
	return NULL;
}

/* Extend the expression in "next" to take into account
 * the piece at position "pos" in "data", allowing for a further extension
 * for the next piece(s).
 * In particular, "next" is set to a select operation that selects
 * an isl_ast_expr corresponding to data->aff_list on data->set and
 * to an expression that will be filled in by later calls.
 * Return a pointer to this location.
 * Afterwards, the state of "data" is set to isl_state_none.
 *
 * The constraints of data->set are added to the generated
 * constraints of the build such that they can be exploited to simplify
 * the AST expression constructed from data->aff_list.
 */
static isl_ast_expr **add_intermediate_piece(struct isl_from_pw_aff_data *data,
	int pos, isl_ast_expr **next)
{
	isl_ctx *ctx;
	isl_ast_build *build;
	isl_ast_expr *ternary, *arg;
	isl_set *set, *gist;

	set = data->p[pos].set;
	data->p[pos].set = NULL;
	ctx = isl_ast_build_get_ctx(data->build);
	ternary = isl_ast_expr_alloc_op(ctx, isl_ast_expr_op_select, 3);
	gist = isl_set_gist(isl_set_copy(set), isl_set_copy(data->dom));
	arg = isl_ast_build_expr_from_set_internal(data->build, gist);
	ternary = isl_ast_expr_set_op_arg(ternary, 0, arg);
	build = isl_ast_build_copy(data->build);
	build = isl_ast_build_restrict_generated(build, set);
	arg = ast_expr_from_aff_list(data->p[pos].aff_list,
					data->p[pos].state, build);
	data->p[pos].aff_list = NULL;
	isl_ast_build_free(build);
	ternary = isl_ast_expr_set_op_arg(ternary, 1, arg);
	data->p[pos].state = isl_state_none;
	if (!ternary)
		return NULL;

	*next = ternary;
	return &ternary->u.op.args[2];
}

/* Extend the expression in "next" to take into account
 * the final piece, located at position "pos" in "data".
 * In particular, "next" is set to evaluate data->aff_list
 * and the domain is ignored.
 * Return isl_stat_ok on success and isl_stat_error on failure.
 *
 * The constraints of data->set are however added to the generated
 * constraints of the build such that they can be exploited to simplify
 * the AST expression constructed from data->aff_list.
 */
static isl_stat add_last_piece(struct isl_from_pw_aff_data *data,
	int pos, isl_ast_expr **next)
{
	isl_ast_build *build;

	if (data->p[pos].state == isl_state_none)
		isl_die(isl_ast_build_get_ctx(data->build), isl_error_invalid,
			"cannot handle void expression", return isl_stat_error);

	build = isl_ast_build_copy(data->build);
	build = isl_ast_build_restrict_generated(build, data->p[pos].set);
	data->p[pos].set = NULL;
	*next = ast_expr_from_aff_list(data->p[pos].aff_list,
						data->p[pos].state, build);
	data->p[pos].aff_list = NULL;
	isl_ast_build_free(build);
	data->p[pos].state = isl_state_none;
	if (!*next)
		return isl_stat_error;

	return isl_stat_ok;
}

/* Return -1 if the piece "p1" should be sorted before "p2"
 * and 1 if it should be sorted after "p2".
 * Return 0 if they do not need to be sorted in a specific order.
 *
 * Pieces are sorted according to the number of disjuncts
 * in their domains.
 */
static int sort_pieces_cmp(const void *p1, const void *p2, void *arg)
{
	const struct isl_from_pw_aff_piece *piece1 = p1;
	const struct isl_from_pw_aff_piece *piece2 = p2;
	isl_size n1, n2;

	n1 = isl_set_n_basic_set(piece1->set);
	n2 = isl_set_n_basic_set(piece2->set);

	return n1 - n2;
}

/* Construct an isl_ast_expr from the pieces in "data".
 * Return the result or NULL on failure.
 *
 * When this function is called, data->n points to the current piece.
 * If this is an effective piece, then first increment data->n such
 * that data->n contains the number of pieces.
 * The "set_list" fields are subsequently replaced by the corresponding
 * "set" fields, after which the pieces are sorted according to
 * the number of disjuncts in these "set" fields.
 *
 * Construct intermediate AST expressions for the initial pieces and
 * finish off with the final pieces.
 */
static isl_ast_expr *build_pieces(struct isl_from_pw_aff_data *data)
{
	int i;
	isl_ast_expr *res = NULL;
	isl_ast_expr **next = &res;

	if (data->p[data->n].state != isl_state_none)
		data->n++;
	if (data->n == 0)
		isl_die(isl_ast_build_get_ctx(data->build), isl_error_invalid,
			"cannot handle void expression", return NULL);

	for (i = 0; i < data->n; ++i) {
		data->p[i].set = isl_set_list_union(data->p[i].set_list);
		if (data->p[i].state != isl_state_single)
			data->p[i].set = isl_set_coalesce(data->p[i].set);
		data->p[i].set_list = NULL;
	}

	if (isl_sort(data->p, data->n, sizeof(data->p[0]),
			&sort_pieces_cmp, NULL) < 0)
		return isl_ast_expr_free(res);

	for (i = 0; i + 1 < data->n; ++i) {
		next = add_intermediate_piece(data, i, next);
		if (!next)
			return isl_ast_expr_free(res);
	}

	if (add_last_piece(data, data->n - 1, next) < 0)
		return isl_ast_expr_free(res);

	return res;
}

/* Is the domain of the current entry of "data", which is assumed
 * to contain a single subpiece, a subset of "set"?
 */
static isl_bool single_is_subset(struct isl_from_pw_aff_data *data,
	__isl_keep isl_set *set)
{
	isl_bool subset;
	isl_set *set_n;

	set_n = isl_set_list_get_set(data->p[data->n].set_list, 0);
	subset = isl_set_is_subset(set_n, set);
	isl_set_free(set_n);

	return subset;
}

/* Is "aff" a rational expression, i.e., does it have a denominator
 * different from one?
 */
static isl_bool aff_is_rational(__isl_keep isl_aff *aff)
{
	isl_bool rational;
	isl_val *den;

	den = isl_aff_get_denominator_val(aff);
	rational = isl_bool_not(isl_val_is_one(den));
	isl_val_free(den);

	return rational;
}

/* Does "list" consist of a single rational affine expression?
 */
static isl_bool is_single_rational_aff(__isl_keep isl_aff_list *list)
{
	isl_size n;
	isl_bool rational;
	isl_aff *aff;

	n = isl_aff_list_n_aff(list);
	if (n < 0)
		return isl_bool_error;
	if (n != 1)
		return isl_bool_false;
	aff = isl_aff_list_get_aff(list, 0);
	rational = aff_is_rational(aff);
	isl_aff_free(aff);

	return rational;
}

/* Can the list of subpieces in the last piece of "data" be extended with
 * "set" and "aff" based on "test"?
 * In particular, is it the case for each entry (set_i, aff_i) that
 *
 *	test(aff, aff_i) holds on set_i, and
 *	test(aff_i, aff) holds on set?
 *
 * "test" returns the set of elements where the tests holds, meaning
 * that test(aff_i, aff) holds on set if set is a subset of test(aff_i, aff).
 *
 * This function is used to detect min/max expressions.
 * If the ast_build_detect_min_max option is turned off, then
 * do not even try and perform any detection and return false instead.
 *
 * Rational affine expressions are not considered for min/max expressions
 * since the combined expression will be defined on the union of the domains,
 * while a rational expression may only yield integer values
 * on its own definition domain.
 */
static isl_bool extends(struct isl_from_pw_aff_data *data,
	__isl_keep isl_set *set, __isl_keep isl_aff *aff,
	__isl_give isl_basic_set *(*test)(__isl_take isl_aff *aff1,
		__isl_take isl_aff *aff2))
{
	int i;
	isl_size n;
	isl_bool is_rational;
	isl_ctx *ctx;
	isl_set *dom;

	is_rational = aff_is_rational(aff);
	if (is_rational >= 0 && !is_rational)
		is_rational = is_single_rational_aff(data->p[data->n].aff_list);
	if (is_rational < 0 || is_rational)
		return isl_bool_not(is_rational);

	ctx = isl_ast_build_get_ctx(data->build);
	if (!isl_options_get_ast_build_detect_min_max(ctx))
		return isl_bool_false;

	n = isl_set_list_n_set(data->p[data->n].set_list);
	if (n < 0)
		return isl_bool_error;

	dom = isl_ast_build_get_domain(data->build);
	set = isl_set_intersect(dom, isl_set_copy(set));

	for (i = 0; i < n ; ++i) {
		isl_aff *aff_i;
		isl_set *valid;
		isl_set *dom, *required;
		isl_bool is_valid;

		aff_i = isl_aff_list_get_aff(data->p[data->n].aff_list, i);
		valid = isl_set_from_basic_set(test(isl_aff_copy(aff), aff_i));
		required = isl_set_list_get_set(data->p[data->n].set_list, i);
		dom = isl_ast_build_get_domain(data->build);
		required = isl_set_intersect(dom, required);
		is_valid = isl_set_is_subset(required, valid);
		isl_set_free(required);
		isl_set_free(valid);
		if (is_valid < 0 || !is_valid) {
			isl_set_free(set);
			return is_valid;
		}

		aff_i = isl_aff_list_get_aff(data->p[data->n].aff_list, i);
		valid = isl_set_from_basic_set(test(aff_i, isl_aff_copy(aff)));
		is_valid = isl_set_is_subset(set, valid);
		isl_set_free(valid);
		if (is_valid < 0 || !is_valid) {
			isl_set_free(set);
			return is_valid;
		}
	}

	isl_set_free(set);
	return isl_bool_true;
}

/* Can the list of pieces in "data" be extended with "set" and "aff"
 * to form/preserve a minimum expression?
 * In particular, is it the case for each entry (set_i, aff_i) that
 *
 *	aff >= aff_i on set_i, and
 *	aff_i >= aff on set?
 */
static isl_bool extends_min(struct isl_from_pw_aff_data *data,
	__isl_keep isl_set *set,  __isl_keep isl_aff *aff)
{
	return extends(data, set, aff, &isl_aff_ge_basic_set);
}

/* Can the list of pieces in "data" be extended with "set" and "aff"
 * to form/preserve a maximum expression?
 * In particular, is it the case for each entry (set_i, aff_i) that
 *
 *	aff <= aff_i on set_i, and
 *	aff_i <= aff on set?
 */
static isl_bool extends_max(struct isl_from_pw_aff_data *data,
	__isl_keep isl_set *set,  __isl_keep isl_aff *aff)
{
	return extends(data, set, aff, &isl_aff_le_basic_set);
}

/* This function is called during the construction of an isl_ast_expr
 * that evaluates an isl_pw_aff.
 * If the last piece of "data" contains a single subpiece and
 * if its affine function is equal to "aff" on a part of the domain
 * that includes either "set" or the domain of that single subpiece,
 * then extend the domain of that single subpiece with "set".
 * If it was the original domain of the single subpiece where
 * the two affine functions are equal, then also replace
 * the affine function of the single subpiece by "aff".
 * If the last piece of "data" contains either a single subpiece
 * or a minimum, then check if this minimum expression can be extended
 * with (set, aff).
 * If so, extend the sequence and return.
 * Perform the same operation for maximum expressions.
 * If no such extension can be performed, then move to the next piece
 * in "data" (if the current piece contains any data), and then store
 * the current subpiece in the current piece of "data" for later handling.
 */
static isl_stat ast_expr_from_pw_aff(__isl_take isl_set *set,
	__isl_take isl_aff *aff, void *user)
{
	struct isl_from_pw_aff_data *data = user;
	isl_bool test;
	enum isl_from_pw_aff_state state;

	state = data->p[data->n].state;
	if (state == isl_state_single) {
		isl_aff *aff0;
		isl_set *eq;
		isl_bool subset1, subset2 = isl_bool_false;
		aff0 = isl_aff_list_get_aff(data->p[data->n].aff_list, 0);
		eq = isl_aff_eq_set(isl_aff_copy(aff), aff0);
		subset1 = isl_set_is_subset(set, eq);
		if (subset1 >= 0 && !subset1)
			subset2 = single_is_subset(data, eq);
		isl_set_free(eq);
		if (subset1 < 0 || subset2 < 0)
			goto error;
		if (subset1)
			return extend_domain(data, set, aff, 0);
		if (subset2)
			return extend_domain(data, set, aff, 1);
	}
	if (state == isl_state_single || state == isl_state_min) {
		test = extends_min(data, set, aff);
		if (test < 0)
			goto error;
		if (test)
			return extend_min(data, set, aff);
	}
	if (state == isl_state_single || state == isl_state_max) {
		test = extends_max(data, set, aff);
		if (test < 0)
			goto error;
		if (test)
			return extend_max(data, set, aff);
	}
	if (state != isl_state_none)
		data->n++;
	set_single(data, set, aff);

	return isl_stat_ok;
error:
	isl_set_free(set);
	isl_aff_free(aff);
	return isl_stat_error;
}

/* Construct an isl_ast_expr that evaluates "pa".
 * The result is simplified in terms of build->domain.
 *
 * The domain of "pa" lives in the internal schedule space.
 */
__isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff_internal(
	__isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa)
{
	struct isl_from_pw_aff_data data = { NULL };
	isl_ast_expr *res = NULL;

	pa = isl_ast_build_compute_gist_pw_aff(build, pa);
	pa = isl_pw_aff_coalesce(pa);
	if (!pa)
		return NULL;

	if (isl_from_pw_aff_data_init(&data, build, pa) < 0)
		goto error;
	set_none(&data);

	if (isl_pw_aff_foreach_piece(pa, &ast_expr_from_pw_aff, &data) >= 0)
		res = build_pieces(&data);

	isl_pw_aff_free(pa);
	isl_from_pw_aff_data_clear(&data);
	return res;
error:
	isl_pw_aff_free(pa);
	isl_from_pw_aff_data_clear(&data);
	return NULL;
}

/* Construct an isl_ast_expr that evaluates "pa".
 * The result is simplified in terms of build->domain.
 *
 * The domain of "pa" lives in the external schedule space.
 */
__isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff(
	__isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa)
{
	isl_ast_expr *expr;
	isl_bool needs_map;

	needs_map = isl_ast_build_need_schedule_map(build);
	if (needs_map < 0) {
		pa = isl_pw_aff_free(pa);
	} else if (needs_map) {
		isl_multi_aff *ma;
		ma = isl_ast_build_get_schedule_map_multi_aff(build);
		pa = isl_pw_aff_pullback_multi_aff(pa, ma);
	}
	expr = isl_ast_build_expr_from_pw_aff_internal(build, pa);
	return expr;
}

/* Set the ids of the input dimensions of "mpa" to the iterator ids
 * of "build".
 *
 * The domain of "mpa" is assumed to live in the internal schedule domain.
 */
static __isl_give isl_multi_pw_aff *set_iterator_names(
	__isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
{
	int i;
	isl_size n;

	n = isl_multi_pw_aff_dim(mpa, isl_dim_in);
	if (n < 0)
		return isl_multi_pw_aff_free(mpa);
	for (i = 0; i < n; ++i) {
		isl_id *id;

		id = isl_ast_build_get_iterator_id(build, i);
		mpa = isl_multi_pw_aff_set_dim_id(mpa, isl_dim_in, i, id);
	}

	return mpa;
}

/* Construct an isl_ast_expr of type "type" with as first argument "arg0" and
 * the remaining arguments derived from "mpa".
 * That is, construct a call or access expression that calls/accesses "arg0"
 * with arguments/indices specified by "mpa".
 */
static __isl_give isl_ast_expr *isl_ast_build_with_arguments(
	__isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
	__isl_take isl_ast_expr *arg0, __isl_take isl_multi_pw_aff *mpa)
{
	int i;
	isl_size n;
	isl_ctx *ctx;
	isl_ast_expr *expr;

	ctx = isl_ast_build_get_ctx(build);

	n = isl_multi_pw_aff_dim(mpa, isl_dim_out);
	expr = n >= 0 ? isl_ast_expr_alloc_op(ctx, type, 1 + n) : NULL;
	expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
	for (i = 0; i < n; ++i) {
		isl_pw_aff *pa;
		isl_ast_expr *arg;

		pa = isl_multi_pw_aff_get_pw_aff(mpa, i);
		arg = isl_ast_build_expr_from_pw_aff_internal(build, pa);
		expr = isl_ast_expr_set_op_arg(expr, 1 + i, arg);
	}

	isl_multi_pw_aff_free(mpa);
	return expr;
}

static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_internal(
	__isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
	__isl_take isl_multi_pw_aff *mpa);

/* Construct an isl_ast_expr that accesses the member specified by "mpa".
 * The range of "mpa" is assumed to be wrapped relation.
 * The domain of this wrapped relation specifies the structure being
 * accessed, while the range of this wrapped relation spacifies the
 * member of the structure being accessed.
 *
 * The domain of "mpa" is assumed to live in the internal schedule domain.
 */
static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_member(
	__isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
{
	isl_id *id;
	isl_multi_pw_aff *domain;
	isl_ast_expr *domain_expr, *expr;
	enum isl_ast_expr_op_type type = isl_ast_expr_op_access;

	domain = isl_multi_pw_aff_copy(mpa);
	domain = isl_multi_pw_aff_range_factor_domain(domain);
	domain_expr = isl_ast_build_from_multi_pw_aff_internal(build,
								type, domain);
	mpa = isl_multi_pw_aff_range_factor_range(mpa);
	if (!isl_multi_pw_aff_has_tuple_id(mpa, isl_dim_out))
		isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
			"missing field name", goto error);
	id = isl_multi_pw_aff_get_tuple_id(mpa, isl_dim_out);
	expr = isl_ast_expr_from_id(id);
	expr = isl_ast_expr_alloc_binary(isl_ast_expr_op_member,
					domain_expr, expr);
	return isl_ast_build_with_arguments(build, type, expr, mpa);
error:
	isl_multi_pw_aff_free(mpa);
	return NULL;
}

/* Construct an isl_ast_expr of type "type" that calls or accesses
 * the element specified by "mpa".
 * The first argument is obtained from the output tuple name.
 * The remaining arguments are given by the piecewise affine expressions.
 *
 * If the range of "mpa" is a mapped relation, then we assume it
 * represents an access to a member of a structure.
 *
 * The domain of "mpa" is assumed to live in the internal schedule domain.
 */
static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_internal(
	__isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
	__isl_take isl_multi_pw_aff *mpa)
{
	isl_ctx *ctx;
	isl_id *id;
	isl_ast_expr *expr;

	if (!mpa)
		goto error;

	if (type == isl_ast_expr_op_access &&
	    isl_multi_pw_aff_range_is_wrapping(mpa))
		return isl_ast_build_from_multi_pw_aff_member(build, mpa);

	mpa = set_iterator_names(build, mpa);
	if (!build || !mpa)
		goto error;

	ctx = isl_ast_build_get_ctx(build);

	if (isl_multi_pw_aff_has_tuple_id(mpa, isl_dim_out))
		id = isl_multi_pw_aff_get_tuple_id(mpa, isl_dim_out);
	else
		id = isl_id_alloc(ctx, "", NULL);

	expr = isl_ast_expr_from_id(id);
	return isl_ast_build_with_arguments(build, type, expr, mpa);
error:
	isl_multi_pw_aff_free(mpa);
	return NULL;
}

/* Construct an isl_ast_expr of type "type" that calls or accesses
 * the element specified by "pma".
 * The first argument is obtained from the output tuple name.
 * The remaining arguments are given by the piecewise affine expressions.
 *
 * The domain of "pma" is assumed to live in the internal schedule domain.
 */
static __isl_give isl_ast_expr *isl_ast_build_from_pw_multi_aff_internal(
	__isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
	__isl_take isl_pw_multi_aff *pma)
{
	isl_multi_pw_aff *mpa;

	mpa = isl_multi_pw_aff_from_pw_multi_aff(pma);
	return isl_ast_build_from_multi_pw_aff_internal(build, type, mpa);
}

/* Construct an isl_ast_expr of type "type" that calls or accesses
 * the element specified by "mpa".
 * The first argument is obtained from the output tuple name.
 * The remaining arguments are given by the piecewise affine expressions.
 *
 * The domain of "mpa" is assumed to live in the external schedule domain.
 */
static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff(
	__isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
	__isl_take isl_multi_pw_aff *mpa)
{
	isl_bool is_domain;
	isl_bool needs_map;
	isl_ast_expr *expr;
	isl_space *space_build, *space_mpa;

	space_build = isl_ast_build_get_space(build, 0);
	space_mpa = isl_multi_pw_aff_get_space(mpa);
	is_domain = isl_space_tuple_is_equal(space_build, isl_dim_set,
					space_mpa, isl_dim_in);
	isl_space_free(space_build);
	isl_space_free(space_mpa);
	if (is_domain < 0)
		goto error;
	if (!is_domain)
		isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
			"spaces don't match", goto error);

	needs_map = isl_ast_build_need_schedule_map(build);
	if (needs_map < 0)
		goto error;
	if (needs_map) {
		isl_multi_aff *ma;
		ma = isl_ast_build_get_schedule_map_multi_aff(build);
		mpa = isl_multi_pw_aff_pullback_multi_aff(mpa, ma);
	}

	expr = isl_ast_build_from_multi_pw_aff_internal(build, type, mpa);
	return expr;
error:
	isl_multi_pw_aff_free(mpa);
	return NULL;
}

/* Construct an isl_ast_expr that calls the domain element specified by "mpa".
 * The name of the function is obtained from the output tuple name.
 * The arguments are given by the piecewise affine expressions.
 *
 * The domain of "mpa" is assumed to live in the external schedule domain.
 */
__isl_give isl_ast_expr *isl_ast_build_call_from_multi_pw_aff(
	__isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
{
	return isl_ast_build_from_multi_pw_aff(build,
						isl_ast_expr_op_call, mpa);
}

/* Construct an isl_ast_expr that accesses the array element specified by "mpa".
 * The name of the array is obtained from the output tuple name.
 * The index expressions are given by the piecewise affine expressions.
 *
 * The domain of "mpa" is assumed to live in the external schedule domain.
 */
__isl_give isl_ast_expr *isl_ast_build_access_from_multi_pw_aff(
	__isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
{
	return isl_ast_build_from_multi_pw_aff(build,
						isl_ast_expr_op_access, mpa);
}

/* Construct an isl_ast_expr of type "type" that calls or accesses
 * the element specified by "pma".
 * The first argument is obtained from the output tuple name.
 * The remaining arguments are given by the piecewise affine expressions.
 *
 * The domain of "pma" is assumed to live in the external schedule domain.
 */
static __isl_give isl_ast_expr *isl_ast_build_from_pw_multi_aff(
	__isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
	__isl_take isl_pw_multi_aff *pma)
{
	isl_multi_pw_aff *mpa;

	mpa = isl_multi_pw_aff_from_pw_multi_aff(pma);
	return isl_ast_build_from_multi_pw_aff(build, type, mpa);
}

/* Construct an isl_ast_expr that calls the domain element specified by "pma".
 * The name of the function is obtained from the output tuple name.
 * The arguments are given by the piecewise affine expressions.
 *
 * The domain of "pma" is assumed to live in the external schedule domain.
 */
__isl_give isl_ast_expr *isl_ast_build_call_from_pw_multi_aff(
	__isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma)
{
	return isl_ast_build_from_pw_multi_aff(build,
						isl_ast_expr_op_call, pma);
}

/* Construct an isl_ast_expr that accesses the array element specified by "pma".
 * The name of the array is obtained from the output tuple name.
 * The index expressions are given by the piecewise affine expressions.
 *
 * The domain of "pma" is assumed to live in the external schedule domain.
 */
__isl_give isl_ast_expr *isl_ast_build_access_from_pw_multi_aff(
	__isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma)
{
	return isl_ast_build_from_pw_multi_aff(build,
						isl_ast_expr_op_access, pma);
}

/* Construct an isl_ast_expr that calls the domain element
 * specified by "executed".
 *
 * "executed" is assumed to be single-valued, with a domain that lives
 * in the internal schedule space.
 */
__isl_give isl_ast_node *isl_ast_build_call_from_executed(
	__isl_keep isl_ast_build *build, __isl_take isl_map *executed)
{
	isl_pw_multi_aff *iteration;
	isl_ast_expr *expr;

	iteration = isl_pw_multi_aff_from_map(executed);
	iteration = isl_ast_build_compute_gist_pw_multi_aff(build, iteration);
	iteration = isl_pw_multi_aff_intersect_domain(iteration,
					isl_ast_build_get_domain(build));
	expr = isl_ast_build_from_pw_multi_aff_internal(build,
					isl_ast_expr_op_call, iteration);
	return isl_ast_node_alloc_user(expr);
}