python.cc 35.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
/*
 * Copyright 2011,2015 Sven Verdoolaege. All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 
 *    1. Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 * 
 *    2. Redistributions in binary form must reproduce the above
 *       copyright notice, this list of conditions and the following
 *       disclaimer in the documentation and/or other materials provided
 *       with the distribution.
 * 
 * THIS SOFTWARE IS PROVIDED BY SVEN VERDOOLAEGE ''AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SVEN VERDOOLAEGE OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 * 
 * The views and conclusions contained in the software and documentation
 * are those of the authors and should not be interpreted as
 * representing official policies, either expressed or implied, of
 * Sven Verdoolaege.
 */ 

#include "isl_config.h"

#include <stdarg.h>
#include <stdio.h>

#include <algorithm>
#include <iostream>
#include <map>
#include <vector>

#include "python.h"
#include "generator.h"

/* Argument format for Python methods with a fixed number of arguments.
 */
static const char *fixed_arg_fmt = "arg%d";
/* Argument format for Python methods with a variable number of arguments.
 */
static const char *var_arg_fmt = "args[%d]";

/* Drop the "isl_" initial part of the type name "name".
 */
static string type2python(string name)
{
	return name.substr(4);
}

/* Print the arguments of a method with "n_arg" arguments, starting at "first".
 */
void python_generator::print_method_arguments(int first, int n_arg)
{
	for (int i = first; i < n_arg; ++i) {
		if (i > first)
			printf(", ");
		printf("arg%d", i);
	}
}

/* Print the start of a definition for method "name"
 * (without specifying the arguments).
 * If "is_static" is set, then mark the python method as static.
 *
 * If the method is called "from", then rename it to "convert_from"
 * because "from" is a python keyword.
 */
static void print_method_def(bool is_static, const string &name)
{
	const char *s;

	if (is_static)
		printf("    @staticmethod\n");

	s = name.c_str();
	if (name == "from")
		s = "convert_from";

	printf("    def %s", s);
}

/* Print the header of the method "name" with "n_arg" arguments.
 * If "is_static" is set, then mark the python method as static.
 */
void python_generator::print_method_header(bool is_static, const string &name,
	int n_arg)
{
	print_method_def(is_static, name);
	printf("(");
	print_method_arguments(0, n_arg);
	printf("):\n");
}

/* Print formatted output with the given indentation.
 */
static void print_indent(int indent, const char *format, ...)
{
	va_list args;

	printf("%*s", indent, " ");
	va_start(args, format);
	vprintf(format, args);
	va_end(args);
}

/* Print a check that the argument in position "pos" is of type "type"
 * with the given indentation.
 * If this fails and if "upcast" is set, then convert the first
 * argument to "super" and call the method "name" on it, passing
 * the remaining of the "n" arguments.
 * If the check fails and "upcast" is not set, then simply raise
 * an exception.
 * If "upcast" is not set, then the "super", "name" and "n" arguments
 * to this function are ignored.
 * "fmt" is the format for printing Python method arguments.
 */
void python_generator::print_type_check(int indent, const string &type,
	const char *fmt, int pos, bool upcast, const string &super,
	const string &name, int n)
{
	print_indent(indent, "try:\n");
	print_indent(indent, "    if not ");
	printf(fmt, pos);
	printf(".__class__ is %s:\n", type.c_str());
	print_indent(indent, "        ");
	printf(fmt, pos);
	printf(" = %s(", type.c_str());
	printf(fmt, pos);
	printf(")\n");
	print_indent(indent, "except:\n");
	if (upcast) {
		print_indent(indent, "    return %s(",
			type2python(super).c_str());
		printf(fmt, 0);
		printf(").%s(", name.c_str());
		for (int i = 1; i < n; ++i) {
			if (i != 1)
				printf(", ");
			printf(fmt, i);
		}
		printf(")\n");
	} else
		print_indent(indent, "    raise\n");
}

/* For each of the "n" initial arguments of the function "method"
 * that refer to an isl structure,
 * including the object on which the method is called,
 * check if the corresponding actual argument is of the right type.
 * If not, try and convert it to the right type.
 * If that doesn't work and if "super" contains at least one element,
 * try and convert self to the type of the first superclass in "super" and
 * call the corresponding method.
 * If "first_is_ctx" is set, then the first argument is skipped.
 */
void python_generator::print_type_checks(const string &cname,
	FunctionDecl *method, bool first_is_ctx, int n,
	const vector<string> &super)
{
	for (int i = first_is_ctx; i < n; ++i) {
		ParmVarDecl *param = method->getParamDecl(i);
		string type;

		if (!is_isl_type(param->getOriginalType()))
			continue;
		type = type2python(extract_type(param->getOriginalType()));
		if (!first_is_ctx && i > 0 && super.size() > 0)
			print_type_check(8, type, fixed_arg_fmt,
					i - first_is_ctx, true,
					super[0], cname, n);
		else
			print_type_check(8, type, fixed_arg_fmt,
					i - first_is_ctx, false, "", cname, -1);
	}
}

/* Print a call to the *_copy function corresponding to "type".
 */
void python_generator::print_copy(QualType type)
{
	string type_s = extract_type(type);

	printf("isl.%s_copy", type_s.c_str());
}

/* Construct a wrapper for callback argument "param" (at position "arg").
 * Assign the wrapper to "cb".  We assume here that a function call
 * has at most one callback argument.
 *
 * The wrapper converts the arguments of the callback to python types,
 * taking a copy if the C callback does not take its arguments.
 * If any exception is thrown, the wrapper keeps track of it in exc_info[0]
 * and returns a value indicating an error.  Otherwise the wrapper
 * returns a value indicating success.
 * In case the C callback is expected to return an isl_stat,
 * the error value is -1 and the success value is 0.
 * In case the C callback is expected to return an isl_bool,
 * the error value is -1 and the success value is 1 or 0 depending
 * on the result of the Python callback.
 * Otherwise, None is returned to indicate an error and
 * a copy of the object in case of success.
 */
void python_generator::print_callback(ParmVarDecl *param, int arg)
{
	QualType type = param->getOriginalType();
	const FunctionProtoType *fn = extract_prototype(type);
	QualType return_type = fn->getReturnType();
	unsigned n_arg = fn->getNumArgs();

	printf("        exc_info = [None]\n");
	printf("        fn = CFUNCTYPE(");
	if (is_isl_stat(return_type) || is_isl_bool(return_type))
		printf("c_int");
	else
		printf("c_void_p");
	for (unsigned i = 0; i < n_arg - 1; ++i) {
		if (!is_isl_type(fn->getArgType(i)))
			die("Argument has non-isl type");
		printf(", c_void_p");
	}
	printf(", c_void_p)\n");
	printf("        def cb_func(");
	for (unsigned i = 0; i < n_arg; ++i) {
		if (i)
			printf(", ");
		printf("cb_arg%d", i);
	}
	printf("):\n");
	for (unsigned i = 0; i < n_arg - 1; ++i) {
		string arg_type;
		arg_type = type2python(extract_type(fn->getArgType(i)));
		printf("            cb_arg%d = %s(ctx=arg0.ctx, ptr=",
			i, arg_type.c_str());
		if (!callback_takes_argument(param, i))
			print_copy(fn->getArgType(i));
		printf("(cb_arg%d))\n", i);
	}
	printf("            try:\n");
	if (is_isl_stat(return_type))
		printf("                arg%d(", arg);
	else
		printf("                res = arg%d(", arg);
	for (unsigned i = 0; i < n_arg - 1; ++i) {
		if (i)
			printf(", ");
		printf("cb_arg%d", i);
	}
	printf(")\n");
	printf("            except:\n");
	printf("                import sys\n");
	printf("                exc_info[0] = sys.exc_info()\n");
	if (is_isl_stat(return_type) || is_isl_bool(return_type))
		printf("                return -1\n");
	else
		printf("                return None\n");
	if (is_isl_stat(return_type)) {
		printf("            return 0\n");
	} else if (is_isl_bool(return_type)) {
		printf("            return 1 if res else 0\n");
	} else {
		printf("            return ");
		print_copy(return_type);
		printf("(res.ptr)\n");
	}
	printf("        cb = fn(cb_func)\n");
}

/* Print the argument at position "arg" in call to "fd".
 * "fmt" is the format for printing Python method arguments.
 * "skip" is the number of initial arguments of "fd" that are
 * skipped in the Python method.
 *
 * If the (first) argument is an isl_ctx, then print "ctx",
 * assuming that the caller has made the context available
 * in a "ctx" variable.
 * Otherwise, if the argument is a callback, then print a reference to
 * the callback wrapper "cb".
 * Otherwise, if the argument is marked as consuming a reference,
 * then pass a copy of the pointer stored in the corresponding
 * argument passed to the Python method.
 * Otherwise, if the argument is a string, then the python string is first
 * encoded as a byte sequence, using 'ascii' as encoding.  This assumes
 * that all strings passed to isl can be converted to 'ascii'.
 * Otherwise, if the argument is a pointer, then pass this pointer itself.
 * Otherwise, pass the argument directly.
 */
void python_generator::print_arg_in_call(FunctionDecl *fd, const char *fmt,
	int arg, int skip)
{
	ParmVarDecl *param = fd->getParamDecl(arg);
	QualType type = param->getOriginalType();
	if (is_isl_ctx(type)) {
		printf("ctx");
	} else if (is_callback(type)) {
		printf("cb");
	} else if (takes(param)) {
		print_copy(type);
		printf("(");
		printf(fmt, arg - skip);
		printf(".ptr)");
	} else if (is_string(type)) {
		printf(fmt, arg - skip);
		printf(".encode('ascii')");
	} else if (type->isPointerType()) {
		printf(fmt, arg - skip);
		printf(".ptr");
	} else {
		printf(fmt, arg - skip);
	}
}

/* Generate code that raises the exception captured in "exc_info", if any,
 * with the given indentation.
 */
static void print_rethrow(int indent, const char *exc_info)
{
	print_indent(indent, "if %s != None:\n", exc_info);
	print_indent(indent, "    raise (%s[0], %s[1], %s[2])\n",
		exc_info, exc_info, exc_info);
}

/* Print code with the given indentation that checks
 * whether any of the persistent callbacks of "clazz"
 * is set and if it failed with an exception.  If so, the 'exc_info'
 * field contains the exception and is raised again.
 * The field is cleared because the callback and its data may get reused.
 * "fmt" is the format for printing Python method arguments.
 */
static void print_persistent_callback_failure_check(int indent,
	const isl_class &clazz, const char *fmt)
{
	const set<FunctionDecl *> &callbacks = clazz.persistent_callbacks;
	set<FunctionDecl *>::const_iterator in;

	for (in = callbacks.begin(); in != callbacks.end(); ++in) {
		string callback_name = clazz.persistent_callback_name(*in);

		print_indent(indent, "if hasattr(");
		printf(fmt, 0);
		printf(", '%s') and ", callback_name.c_str());
		printf(fmt, 0);
		printf(".%s['exc_info'] != None:\n", callback_name.c_str());
		print_indent(indent, "    exc_info = ");
		printf(fmt, 0);
		printf(".%s['exc_info'][0]\n", callback_name.c_str());
		print_indent(indent, "    ");
		printf(fmt, 0);
		printf(".%s['exc_info'][0] = None\n", callback_name.c_str());
		print_rethrow(indent + 4, "exc_info");
	}
}

/* Print the return statement of the python method corresponding
 * to the C function "method" with the given indentation.
 * If the object on which the method was called
 * may have a persistent callback, then first check if any of those failed.
 * "fmt" is the format for printing Python method arguments.
 *
 * If the method returns a new instance of the same object type and
 * if the class has any persistent callbacks, then the data
 * for these callbacks are copied from the original to the new object.
 * If the method it itself setting a persistent callback,
 * then keep track of the constructed C callback (such that it doesn't
 * get destroyed) and the data structure that holds the captured exception
 * (such that it can be raised again).
 *
 * If the return type is a (const) char *, then convert the result
 * to a Python string, raising an error on NULL and freeing
 * the C string if needed.  For python 3 compatibility, the string returned
 * by isl is explicitly decoded as an 'ascii' string.  This is correct
 * as all strings returned by isl are expected to be 'ascii'.
 *
 * If the return type is isl_stat, isl_bool or isl_size, then
 * raise an error on isl_stat_error, isl_bool_error or isl_size_error.
 * In case of isl_bool, the result is converted to
 * a Python boolean.
 * In case of isl_size, the result is converted to a Python int.
 */
void python_generator::print_method_return(int indent, const isl_class &clazz,
	FunctionDecl *method, const char *fmt)
{
	QualType return_type = method->getReturnType();

	if (!is_static(clazz, method))
		print_persistent_callback_failure_check(indent, clazz, fmt);

	if (is_isl_type(return_type)) {
		string type;

		type = type2python(extract_type(return_type));
		print_indent(indent,
			"obj = %s(ctx=ctx, ptr=res)\n", type.c_str());
		if (is_mutator(clazz, method) &&
		    clazz.has_persistent_callbacks())
			print_indent(indent, "obj.copy_callbacks(arg0)\n");
		if (clazz.persistent_callbacks.count(method)) {
			string callback_name;

			callback_name = clazz.persistent_callback_name(method);
			print_indent(indent, "obj.%s = { 'func': cb, "
				"'exc_info': exc_info }\n",
				callback_name.c_str());
		}
		print_indent(indent, "return obj\n");
	} else if (is_string(return_type)) {
		print_indent(indent, "if res == 0:\n");
		print_indent(indent, "    raise\n");
		print_indent(indent, "string = "
		       "cast(res, c_char_p).value.decode('ascii')\n");

		if (gives(method))
			print_indent(indent, "libc.free(res)\n");

		print_indent(indent, "return string\n");
	} else if (is_isl_neg_error(return_type)) {
		print_indent(indent, "if res < 0:\n");
		print_indent(indent, "    raise\n");
		if (is_isl_bool(return_type))
			print_indent(indent, "return bool(res)\n");
		else if (is_isl_size(return_type))
			print_indent(indent, "return int(res)\n");
	} else {
		print_indent(indent, "return res\n");
	}
}

/* Print a python "get" method corresponding to the C function "fd"
 * in class "clazz" using a name that includes the "get_" prefix.
 *
 * This method simply calls the variant without the "get_" prefix and
 * returns its result.
 * Note that static methods are not considered to be "get" methods.
 */
void python_generator::print_get_method(const isl_class &clazz,
	FunctionDecl *fd)
{
	string get_name = clazz.base_method_name(fd);
	string name = clazz.method_name(fd);
	int num_params = fd->getNumParams();

	print_method_header(false, get_name, num_params);
	printf("        return arg0.%s(", name.c_str());
	print_method_arguments(1, num_params);
	printf(")\n");
}

/* Print a call to "method", along with the corresponding
 * return statement, with the given indentation.
 * "drop_ctx" is set if the first argument is an isl_ctx.
 * "drop_user" is set if the last argument is a "user" argument
 * corresponding to a callback argument.
 *
 * A "ctx" variable is first initialized as it may be needed
 * in the first call to print_arg_in_call and in print_method_return.
 *
 * If the method has a callback function, then any exception
 * thrown in the callback also need to be rethrown.
 */
void python_generator::print_method_call(int indent, const isl_class &clazz,
	FunctionDecl *method, const char *fmt, int drop_ctx, int drop_user)
{
	string fullname = method->getName();
	int num_params = method->getNumParams();

	if (drop_ctx) {
		print_indent(indent, "ctx = Context.getDefaultInstance()\n");
	} else {
		print_indent(indent, "ctx = ");
		printf(fmt, 0);
		printf(".ctx\n");
	}
	print_indent(indent, "res = isl.%s(", fullname.c_str());
	for (int i = 0; i < num_params - drop_user; ++i) {
		if (i > 0)
			printf(", ");
		print_arg_in_call(method, fmt, i, drop_ctx);
	}
	if (drop_user)
		printf(", None");
	printf(")\n");

	if (drop_user)
		print_rethrow(indent, "exc_info[0]");

	print_method_return(indent, clazz, method, fmt);
}

/* Print a python method corresponding to the C function "method".
 * "super" contains the superclasses of the class to which the method belongs,
 * with the first element corresponding to the annotation that appears
 * closest to the annotated type.  This superclass is the least
 * general extension of the annotated type in the linearization
 * of the class hierarchy.
 *
 * If the first argument of "method" is something other than an instance
 * of the class, then mark the python method as static.
 * If, moreover, this first argument is an isl_ctx, then remove
 * it from the arguments of the Python method.
 *
 * If the function has a callback argument, then it also has a "user"
 * argument.  Since Python has closures, there is no need for such
 * a user argument in the Python interface, so we simply drop it.
 * We also create a wrapper ("cb") for the callback.
 *
 * If the function consumes a reference, then we pass it a copy of
 * the actual argument.
 *
 * For methods that are identified as "get" methods, also
 * print a variant of the method using a name that includes
 * the "get_" prefix.
 */
void python_generator::print_method(const isl_class &clazz,
	FunctionDecl *method, vector<string> super)
{
	string cname = clazz.method_name(method);
	int num_params = method->getNumParams();
	int drop_user = 0;
	int drop_ctx = first_arg_is_isl_ctx(method);

	for (int i = 1; i < num_params; ++i) {
		ParmVarDecl *param = method->getParamDecl(i);
		QualType type = param->getOriginalType();
		if (is_callback(type))
			drop_user = 1;
	}

	print_method_header(is_static(clazz, method), cname,
			    num_params - drop_ctx - drop_user);

	print_type_checks(cname, method, drop_ctx,
			    num_params - drop_user, super);
	for (int i = 1; i < num_params; ++i) {
		ParmVarDecl *param = method->getParamDecl(i);
		QualType type = param->getOriginalType();
		if (!is_callback(type))
			continue;
		print_callback(param, i - drop_ctx);
	}
	print_method_call(8, clazz, method, fixed_arg_fmt, drop_ctx, drop_user);

	if (clazz.is_get_method(method))
		print_get_method(clazz, method);
}

/* Print a condition that checks whether Python method argument "i"
 * corresponds to the C function argument type "type".
 */
static void print_argument_check(QualType type, int i)
{
	if (generator::is_isl_type(type)) {
		string type_str;
		type_str = generator::extract_type(type);
		type_str = type2python(type_str);
		printf("args[%d].__class__ is %s", i, type_str.c_str());
	} else if (type->isPointerType()) {
		printf("type(args[%d]) == str", i);
	} else {
		printf("type(args[%d]) == int", i);
	}
}

/* Print a test that checks whether the arguments passed
 * to the Python method correspond to the arguments
 * expected by "fd".
 * "drop_ctx" is set if the first argument of "fd" is an isl_ctx,
 * which does not appear as an argument to the Python method.
 *
 * If an automatic conversion function is available for any
 * of the argument types, then also allow the argument
 * to be of the type as prescribed by the second input argument
 * of the conversion function.
 * The corresponding arguments are then converted to the expected types
 * if needed.  The argument tuple first needs to be converted to a list
 * in order to be able to modify the entries.
 */
void python_generator::print_argument_checks(const isl_class &clazz,
	FunctionDecl *fd, int drop_ctx)
{
	int num_params = fd->getNumParams();
	int first = generator::is_static(clazz, fd) ? drop_ctx : 1;
	std::vector<bool> convert(num_params);

	printf("        if len(args) == %d", num_params - drop_ctx);
	for (int i = first; i < num_params; ++i) {
		ParmVarDecl *param = fd->getParamDecl(i);
		QualType type = param->getOriginalType();
		const Type *ptr = type.getTypePtr();

		printf(" and ");
		if (conversions.count(ptr) == 0) {
			print_argument_check(type, i - drop_ctx);
		} else {
			QualType type2 = conversions.at(ptr)->getOriginalType();
			convert[i] = true;
			printf("(");
			print_argument_check(type, i - drop_ctx);
			printf(" or ");
			print_argument_check(type2, i - drop_ctx);
			printf(")");
		}
	}
	printf(":\n");

	if (std::find(convert.begin(), convert.end(), true) == convert.end())
		return;
	print_indent(12, "args = list(args)\n");
	for (int i = first; i < num_params; ++i) {
		ParmVarDecl *param = fd->getParamDecl(i);
		string type;

		if (!convert[i])
			continue;
		type = type2python(extract_type(param->getOriginalType()));
		print_type_check(12, type, var_arg_fmt,
				i - drop_ctx, false, "", "", -1);
	}
}

/* Print part of an overloaded python method corresponding to the C function
 * "method".
 * "drop_ctx" is set if the first argument of "method" is an isl_ctx.
 *
 * In particular, print code to test whether the arguments passed to
 * the python method correspond to the arguments expected by "method"
 * and to call "method" if they do.
 */
void python_generator::print_method_overload(const isl_class &clazz,
	FunctionDecl *method)
{
	int drop_ctx = first_arg_is_isl_ctx(method);

	print_argument_checks(clazz, method, drop_ctx);
	print_method_call(12, clazz, method, var_arg_fmt, drop_ctx, 0);
}

/* Print a python method with a name derived from "fullname"
 * corresponding to the C functions "methods".
 * "super" contains the superclasses of the class to which the method belongs.
 *
 * If "methods" consists of a single element that is not marked overloaded,
 * the use print_method to print the method.
 * Otherwise, print an overloaded method with pieces corresponding
 * to each function in "methods".
 */
void python_generator::print_method(const isl_class &clazz,
	const string &fullname, const function_set &methods,
	vector<string> super)
{
	string cname;
	function_set::const_iterator it;
	FunctionDecl *any_method;

	any_method = *methods.begin();
	if (methods.size() == 1 && !is_overload(any_method)) {
		print_method(clazz, any_method, super);
		return;
	}

	cname = clazz.method_name(any_method);

	print_method_def(is_static(clazz, any_method), cname);
	printf("(*args):\n");

	for (it = methods.begin(); it != methods.end(); ++it)
		print_method_overload(clazz, *it);
	printf("        raise Error\n");
}

/* Print a python method "name" corresponding to "fd" setting
 * the enum value "value".
 * "super" contains the superclasses of the class to which the method belongs,
 * with the first element corresponding to the annotation that appears
 * closest to the annotated type.
 *
 * The last argument of the C function does not appear in the method call,
 * but is fixed to "value" instead.
 * Other than that, the method printed here is similar to one
 * printed by python_generator::print_method, except that
 * some of the special cases do not occur.
 */
void python_generator::print_set_enum(const isl_class &clazz,
	FunctionDecl *fd, int value, const string &name,
	const vector<string> &super)
{
	string fullname = fd->getName();
	int num_params = fd->getNumParams();

	print_method_header(is_static(clazz, fd), name, num_params - 1);

	print_type_checks(name, fd, false, num_params - 1, super);
	printf("        ctx = arg0.ctx\n");
	printf("        res = isl.%s(", fullname.c_str());
	for (int i = 0; i < num_params - 1; ++i) {
		if (i)
			printf(", ");
		print_arg_in_call(fd, fixed_arg_fmt, i, 0);
	}
	printf(", %d", value);
	printf(")\n");
	print_method_return(8, clazz, fd, fixed_arg_fmt);
}

/* Print python methods corresponding to "fd", which sets an enum.
 * "super" contains the superclasses of the class to which the method belongs,
 * with the first element corresponding to the annotation that appears
 * closest to the annotated type.
 *
 * A method is generated for each value in the enum, setting
 * the enum to that value.
 */
void python_generator::print_set_enum(const isl_class &clazz,
	FunctionDecl *fd, const vector<string> &super)
{
	vector<set_enum>::const_iterator it;
	const vector<set_enum> &set_enums = clazz.set_enums.at(fd);

	for (it = set_enums.begin(); it != set_enums.end(); ++it)
		print_set_enum(clazz, fd, it->value, it->method_name, super);
}

/* Print part of the constructor for this isl_class.
 *
 * In particular, check if the actual arguments correspond to the
 * formal arguments of "cons" and if so call "cons" and put the
 * result in self.ptr and a reference to the default context in self.ctx.
 */
void python_generator::print_constructor(const isl_class &clazz,
	FunctionDecl *cons)
{
	string fullname = cons->getName();
	string cname = clazz.method_name(cons);
	int num_params = cons->getNumParams();
	int drop_ctx = first_arg_is_isl_ctx(cons);

	print_argument_checks(clazz, cons, drop_ctx);
	printf("            self.ctx = Context.getDefaultInstance()\n");
	printf("            self.ptr = isl.%s(", fullname.c_str());
	if (drop_ctx)
		printf("self.ctx");
	for (int i = drop_ctx; i < num_params; ++i) {
		if (i)
			printf(", ");
		print_arg_in_call(cons, var_arg_fmt, i, drop_ctx);
	}
	printf(")\n");
	printf("            return\n");
}

/* If "clazz" has a type function describing subclasses,
 * then add constructors that allow each of these subclasses
 * to be treated as an object to the superclass.
 */
void python_generator::print_upcast_constructors(const isl_class &clazz)
{
	map<int, string>::const_iterator i;

	if (!clazz.fn_type)
		return;

	for (i = clazz.type_subclasses.begin();
	     i != clazz.type_subclasses.end(); ++i) {
		printf("        if len(args) == 1 and "
						"isinstance(args[0], %s):\n",
			 type2python(i->second).c_str());
		printf("            self.ctx = args[0].ctx\n");
		printf("            self.ptr = isl.%s_copy(args[0].ptr)\n",
			clazz.name.c_str());
		printf("            return\n");
	}
}

/* Print the header of the class "name" with superclasses "super".
 * The order of the superclasses is the opposite of the order
 * in which the corresponding annotations appear in the source code.
 * If "clazz" is a subclass derived from a type function,
 * then the immediate superclass is recorded in "clazz" itself.
 */
void python_generator::print_class_header(const isl_class &clazz,
	const string &name, const vector<string> &super)
{
	printf("class %s", name.c_str());
	if (super.size() > 0) {
		printf("(");
		for (unsigned i = 0; i < super.size(); ++i) {
			if (i > 0)
				printf(", ");
			printf("%s", type2python(super[i]).c_str());
		}
		printf(")");
	} else if (clazz.is_type_subclass()) {
		printf("(%s)", type2python(clazz.superclass_name).c_str());
	} else {
		printf("(object)");
	}
	printf(":\n");
}

/* Tell ctypes about the return type of "fd".
 * In particular, if "fd" returns a pointer to an isl object,
 * then tell ctypes it returns a "c_void_p".
 * If "fd" returns a char *, then simply tell ctypes.
 *
 * Nothing needs to be done for functions returning
 * isl_bool, isl_stat or isl_size since they are represented by an int and
 * ctypes assumes that a function returns int by default.
 */
void python_generator::print_restype(FunctionDecl *fd)
{
	string fullname = fd->getName();
	QualType type = fd->getReturnType();
	if (is_isl_type(type))
		printf("isl.%s.restype = c_void_p\n", fullname.c_str());
	else if (is_string(type))
		printf("isl.%s.restype = POINTER(c_char)\n", fullname.c_str());
}

/* Tell ctypes about the types of the arguments of the function "fd".
 */
void python_generator::print_argtypes(FunctionDecl *fd)
{
	string fullname = fd->getName();
	int n = fd->getNumParams();
	int drop_user = 0;

	printf("isl.%s.argtypes = [", fullname.c_str());
	for (int i = 0; i < n - drop_user; ++i) {
		ParmVarDecl *param = fd->getParamDecl(i);
		QualType type = param->getOriginalType();
		if (is_callback(type))
			drop_user = 1;
		if (i)
			printf(", ");
		if (is_isl_ctx(type))
			printf("Context");
		else if (is_isl_type(type) || is_callback(type))
			printf("c_void_p");
		else if (is_string(type))
			printf("c_char_p");
		else if (is_long(type))
			printf("c_long");
		else
			printf("c_int");
	}
	if (drop_user)
		printf(", c_void_p");
	printf("]\n");
}

/* Print type definitions for the method 'fd'.
 */
void python_generator::print_method_type(FunctionDecl *fd)
{
	print_restype(fd);
	print_argtypes(fd);
}

/* If "clazz" has a type function describing subclasses or
 * if it is one of those type subclasses, then print a __new__ method.
 *
 * In the superclass, the __new__ method constructs an object
 * of the subclass type specified by the type function.
 * In the subclass, the __new__ method reverts to the original behavior.
 */
void python_generator::print_new(const isl_class &clazz,
	const string &python_name)
{
	if (!clazz.fn_type && !clazz.is_type_subclass())
		return;

	printf("    def __new__(cls, *args, **keywords):\n");

	if (clazz.fn_type) {
		map<int, string>::const_iterator i;

		printf("        if \"ptr\" in keywords:\n");
		printf("            type = isl.%s(keywords[\"ptr\"])\n",
			clazz.fn_type->getNameAsString().c_str());

		for (i = clazz.type_subclasses.begin();
		     i != clazz.type_subclasses.end(); ++i) {
			printf("            if type == %d:\n", i->first);
			printf("                return %s(**keywords)\n",
				type2python(i->second).c_str());
		}
		printf("            raise\n");
	}

	printf("        return super(%s, cls).__new__(cls)\n",
		python_name.c_str());
}

/* Print declarations for methods printing the class representation,
 * provided there is a corresponding *_to_str function.
 *
 * In particular, provide an implementation of __str__ and __repr__ methods to
 * override the default representation used by python. Python uses __str__ to
 * pretty print the class (e.g., when calling print(obj)) and uses __repr__
 * when printing a precise representation of an object (e.g., when dumping it
 * in the REPL console).
 *
 * Check the type of the argument before calling the *_to_str function
 * on it in case the method was called on an object from a subclass.
 *
 * The return value of the *_to_str function is decoded to a python string
 * assuming an 'ascii' encoding.  This is necessary for python 3 compatibility.
 */
void python_generator::print_representation(const isl_class &clazz,
	const string &python_name)
{
	if (!clazz.fn_to_str)
		return;

	printf("    def __str__(arg0):\n");
	print_type_check(8, python_name, fixed_arg_fmt, 0, false, "", "", -1);
	printf("        ptr = isl.%s(arg0.ptr)\n",
		string(clazz.fn_to_str->getName()).c_str());
	printf("        res = cast(ptr, c_char_p).value.decode('ascii')\n");
	printf("        libc.free(ptr)\n");
	printf("        return res\n");
	printf("    def __repr__(self):\n");
	printf("        s = str(self)\n");
	printf("        if '\"' in s:\n");
	printf("            return 'isl.%s(\"\"\"%%s\"\"\")' %% s\n",
		python_name.c_str());
	printf("        else:\n");
	printf("            return 'isl.%s(\"%%s\")' %% s\n",
		python_name.c_str());
}

/* If "clazz" has any persistent callbacks, then print the definition
 * of a "copy_callbacks" function that copies the persistent callbacks
 * from one object to another.
 */
void python_generator::print_copy_callbacks(const isl_class &clazz)
{
	const set<FunctionDecl *> &callbacks = clazz.persistent_callbacks;
	set<FunctionDecl *>::const_iterator in;

	if (!clazz.has_persistent_callbacks())
		return;

	printf("    def copy_callbacks(self, obj):\n");
	for (in = callbacks.begin(); in != callbacks.end(); ++in) {
		string callback_name = clazz.persistent_callback_name(*in);

		printf("        if hasattr(obj, '%s'):\n",
			callback_name.c_str());
		printf("            self.%s = obj.%s\n",
			callback_name.c_str(), callback_name.c_str());
	}
}

/* Print code to set method type signatures.
 *
 * To be able to call C functions it is necessary to explicitly set their
 * argument and result types.  Do this for all exported constructors and
 * methods (including those that set a persistent callback and
 * those that set an enum value),
 * as well as for the *_to_str and the type function, if they exist.
 * Assuming each exported class has a *_copy and a *_free method,
 * also unconditionally set the type of such methods.
 */
void python_generator::print_method_types(const isl_class &clazz)
{
	function_set::const_iterator in;
	map<string, function_set>::const_iterator it;
	map<FunctionDecl *, vector<set_enum> >::const_iterator ie;
	const set<FunctionDecl *> &callbacks = clazz.persistent_callbacks;

	for (in = clazz.constructors.begin(); in != clazz.constructors.end();
		++in)
		print_method_type(*in);

	for (in = callbacks.begin(); in != callbacks.end(); ++in)
		print_method_type(*in);
	for (it = clazz.methods.begin(); it != clazz.methods.end(); ++it)
		for (in = it->second.begin(); in != it->second.end(); ++in)
			print_method_type(*in);
	for (ie = clazz.set_enums.begin(); ie != clazz.set_enums.end(); ++ie)
		print_method_type(ie->first);

	print_method_type(clazz.fn_copy);
	print_method_type(clazz.fn_free);
	if (clazz.fn_to_str)
		print_method_type(clazz.fn_to_str);
	if (clazz.fn_type)
		print_method_type(clazz.fn_type);
}

/* Print out the definition of this isl_class.
 *
 * We first check if this isl_class is a subclass of one or more other classes.
 * If it is, we make sure those superclasses are printed out first.
 *
 * Then we print a constructor with several cases, one for constructing
 * a Python object from a return value, one for each function that
 * was marked as a constructor and for each type based subclass.
 *
 * Next, we print out some common methods and the methods corresponding
 * to functions that are not marked as constructors, including those
 * that set a persistent callback and those that set an enum value.
 *
 * Finally, we tell ctypes about the types of the arguments of the
 * constructor functions and the return types of those function returning
 * an isl object.
 */
void python_generator::print(const isl_class &clazz)
{
	string p_name = type2python(clazz.subclass_name);
	function_set::const_iterator in;
	map<string, function_set>::const_iterator it;
	map<FunctionDecl *, vector<set_enum> >::const_iterator ie;
	vector<string> super = find_superclasses(clazz.type);
	const set<FunctionDecl *> &callbacks = clazz.persistent_callbacks;

	for (unsigned i = 0; i < super.size(); ++i)
		if (done.find(super[i]) == done.end())
			print(classes[super[i]]);
	if (clazz.is_type_subclass() && done.find(clazz.name) == done.end())
		print(classes[clazz.name]);
	done.insert(clazz.subclass_name);

	printf("\n");
	print_class_header(clazz, p_name, super);
	printf("    def __init__(self, *args, **keywords):\n");

	printf("        if \"ptr\" in keywords:\n");
	printf("            self.ctx = keywords[\"ctx\"]\n");
	printf("            self.ptr = keywords[\"ptr\"]\n");
	printf("            return\n");

	for (in = clazz.constructors.begin(); in != clazz.constructors.end();
		++in)
		print_constructor(clazz, *in);
	print_upcast_constructors(clazz);
	printf("        raise Error\n");
	printf("    def __del__(self):\n");
	printf("        if hasattr(self, 'ptr'):\n");
	printf("            isl.%s_free(self.ptr)\n", clazz.name.c_str());

	print_new(clazz, p_name);
	print_representation(clazz, p_name);
	print_copy_callbacks(clazz);

	for (in = callbacks.begin(); in != callbacks.end(); ++in)
		print_method(clazz, *in, super);
	for (it = clazz.methods.begin(); it != clazz.methods.end(); ++it)
		print_method(clazz, it->first, it->second, super);
	for (ie = clazz.set_enums.begin(); ie != clazz.set_enums.end(); ++ie)
		print_set_enum(clazz, ie->first, super);

	printf("\n");

	print_method_types(clazz);
}

/* Generate a python interface based on the extracted types and
 * functions.
 *
 * Print out each class in turn.  If one of these is a subclass of some
 * other class, make sure the superclass is printed out first.
 * functions.
 */
void python_generator::generate()
{
	map<string, isl_class>::iterator ci;

	for (ci = classes.begin(); ci != classes.end(); ++ci) {
		if (done.find(ci->first) == done.end())
			print(ci->second);
	}
}