python.cc
35.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
/*
* Copyright 2011,2015 Sven Verdoolaege. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY SVEN VERDOOLAEGE ''AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SVEN VERDOOLAEGE OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation
* are those of the authors and should not be interpreted as
* representing official policies, either expressed or implied, of
* Sven Verdoolaege.
*/
#include "isl_config.h"
#include <stdarg.h>
#include <stdio.h>
#include <algorithm>
#include <iostream>
#include <map>
#include <vector>
#include "python.h"
#include "generator.h"
/* Argument format for Python methods with a fixed number of arguments.
*/
static const char *fixed_arg_fmt = "arg%d";
/* Argument format for Python methods with a variable number of arguments.
*/
static const char *var_arg_fmt = "args[%d]";
/* Drop the "isl_" initial part of the type name "name".
*/
static string type2python(string name)
{
return name.substr(4);
}
/* Print the arguments of a method with "n_arg" arguments, starting at "first".
*/
void python_generator::print_method_arguments(int first, int n_arg)
{
for (int i = first; i < n_arg; ++i) {
if (i > first)
printf(", ");
printf("arg%d", i);
}
}
/* Print the start of a definition for method "name"
* (without specifying the arguments).
* If "is_static" is set, then mark the python method as static.
*
* If the method is called "from", then rename it to "convert_from"
* because "from" is a python keyword.
*/
static void print_method_def(bool is_static, const string &name)
{
const char *s;
if (is_static)
printf(" @staticmethod\n");
s = name.c_str();
if (name == "from")
s = "convert_from";
printf(" def %s", s);
}
/* Print the header of the method "name" with "n_arg" arguments.
* If "is_static" is set, then mark the python method as static.
*/
void python_generator::print_method_header(bool is_static, const string &name,
int n_arg)
{
print_method_def(is_static, name);
printf("(");
print_method_arguments(0, n_arg);
printf("):\n");
}
/* Print formatted output with the given indentation.
*/
static void print_indent(int indent, const char *format, ...)
{
va_list args;
printf("%*s", indent, " ");
va_start(args, format);
vprintf(format, args);
va_end(args);
}
/* Print a check that the argument in position "pos" is of type "type"
* with the given indentation.
* If this fails and if "upcast" is set, then convert the first
* argument to "super" and call the method "name" on it, passing
* the remaining of the "n" arguments.
* If the check fails and "upcast" is not set, then simply raise
* an exception.
* If "upcast" is not set, then the "super", "name" and "n" arguments
* to this function are ignored.
* "fmt" is the format for printing Python method arguments.
*/
void python_generator::print_type_check(int indent, const string &type,
const char *fmt, int pos, bool upcast, const string &super,
const string &name, int n)
{
print_indent(indent, "try:\n");
print_indent(indent, " if not ");
printf(fmt, pos);
printf(".__class__ is %s:\n", type.c_str());
print_indent(indent, " ");
printf(fmt, pos);
printf(" = %s(", type.c_str());
printf(fmt, pos);
printf(")\n");
print_indent(indent, "except:\n");
if (upcast) {
print_indent(indent, " return %s(",
type2python(super).c_str());
printf(fmt, 0);
printf(").%s(", name.c_str());
for (int i = 1; i < n; ++i) {
if (i != 1)
printf(", ");
printf(fmt, i);
}
printf(")\n");
} else
print_indent(indent, " raise\n");
}
/* For each of the "n" initial arguments of the function "method"
* that refer to an isl structure,
* including the object on which the method is called,
* check if the corresponding actual argument is of the right type.
* If not, try and convert it to the right type.
* If that doesn't work and if "super" contains at least one element,
* try and convert self to the type of the first superclass in "super" and
* call the corresponding method.
* If "first_is_ctx" is set, then the first argument is skipped.
*/
void python_generator::print_type_checks(const string &cname,
FunctionDecl *method, bool first_is_ctx, int n,
const vector<string> &super)
{
for (int i = first_is_ctx; i < n; ++i) {
ParmVarDecl *param = method->getParamDecl(i);
string type;
if (!is_isl_type(param->getOriginalType()))
continue;
type = type2python(extract_type(param->getOriginalType()));
if (!first_is_ctx && i > 0 && super.size() > 0)
print_type_check(8, type, fixed_arg_fmt,
i - first_is_ctx, true,
super[0], cname, n);
else
print_type_check(8, type, fixed_arg_fmt,
i - first_is_ctx, false, "", cname, -1);
}
}
/* Print a call to the *_copy function corresponding to "type".
*/
void python_generator::print_copy(QualType type)
{
string type_s = extract_type(type);
printf("isl.%s_copy", type_s.c_str());
}
/* Construct a wrapper for callback argument "param" (at position "arg").
* Assign the wrapper to "cb". We assume here that a function call
* has at most one callback argument.
*
* The wrapper converts the arguments of the callback to python types,
* taking a copy if the C callback does not take its arguments.
* If any exception is thrown, the wrapper keeps track of it in exc_info[0]
* and returns a value indicating an error. Otherwise the wrapper
* returns a value indicating success.
* In case the C callback is expected to return an isl_stat,
* the error value is -1 and the success value is 0.
* In case the C callback is expected to return an isl_bool,
* the error value is -1 and the success value is 1 or 0 depending
* on the result of the Python callback.
* Otherwise, None is returned to indicate an error and
* a copy of the object in case of success.
*/
void python_generator::print_callback(ParmVarDecl *param, int arg)
{
QualType type = param->getOriginalType();
const FunctionProtoType *fn = extract_prototype(type);
QualType return_type = fn->getReturnType();
unsigned n_arg = fn->getNumArgs();
printf(" exc_info = [None]\n");
printf(" fn = CFUNCTYPE(");
if (is_isl_stat(return_type) || is_isl_bool(return_type))
printf("c_int");
else
printf("c_void_p");
for (unsigned i = 0; i < n_arg - 1; ++i) {
if (!is_isl_type(fn->getArgType(i)))
die("Argument has non-isl type");
printf(", c_void_p");
}
printf(", c_void_p)\n");
printf(" def cb_func(");
for (unsigned i = 0; i < n_arg; ++i) {
if (i)
printf(", ");
printf("cb_arg%d", i);
}
printf("):\n");
for (unsigned i = 0; i < n_arg - 1; ++i) {
string arg_type;
arg_type = type2python(extract_type(fn->getArgType(i)));
printf(" cb_arg%d = %s(ctx=arg0.ctx, ptr=",
i, arg_type.c_str());
if (!callback_takes_argument(param, i))
print_copy(fn->getArgType(i));
printf("(cb_arg%d))\n", i);
}
printf(" try:\n");
if (is_isl_stat(return_type))
printf(" arg%d(", arg);
else
printf(" res = arg%d(", arg);
for (unsigned i = 0; i < n_arg - 1; ++i) {
if (i)
printf(", ");
printf("cb_arg%d", i);
}
printf(")\n");
printf(" except:\n");
printf(" import sys\n");
printf(" exc_info[0] = sys.exc_info()\n");
if (is_isl_stat(return_type) || is_isl_bool(return_type))
printf(" return -1\n");
else
printf(" return None\n");
if (is_isl_stat(return_type)) {
printf(" return 0\n");
} else if (is_isl_bool(return_type)) {
printf(" return 1 if res else 0\n");
} else {
printf(" return ");
print_copy(return_type);
printf("(res.ptr)\n");
}
printf(" cb = fn(cb_func)\n");
}
/* Print the argument at position "arg" in call to "fd".
* "fmt" is the format for printing Python method arguments.
* "skip" is the number of initial arguments of "fd" that are
* skipped in the Python method.
*
* If the (first) argument is an isl_ctx, then print "ctx",
* assuming that the caller has made the context available
* in a "ctx" variable.
* Otherwise, if the argument is a callback, then print a reference to
* the callback wrapper "cb".
* Otherwise, if the argument is marked as consuming a reference,
* then pass a copy of the pointer stored in the corresponding
* argument passed to the Python method.
* Otherwise, if the argument is a string, then the python string is first
* encoded as a byte sequence, using 'ascii' as encoding. This assumes
* that all strings passed to isl can be converted to 'ascii'.
* Otherwise, if the argument is a pointer, then pass this pointer itself.
* Otherwise, pass the argument directly.
*/
void python_generator::print_arg_in_call(FunctionDecl *fd, const char *fmt,
int arg, int skip)
{
ParmVarDecl *param = fd->getParamDecl(arg);
QualType type = param->getOriginalType();
if (is_isl_ctx(type)) {
printf("ctx");
} else if (is_callback(type)) {
printf("cb");
} else if (takes(param)) {
print_copy(type);
printf("(");
printf(fmt, arg - skip);
printf(".ptr)");
} else if (is_string(type)) {
printf(fmt, arg - skip);
printf(".encode('ascii')");
} else if (type->isPointerType()) {
printf(fmt, arg - skip);
printf(".ptr");
} else {
printf(fmt, arg - skip);
}
}
/* Generate code that raises the exception captured in "exc_info", if any,
* with the given indentation.
*/
static void print_rethrow(int indent, const char *exc_info)
{
print_indent(indent, "if %s != None:\n", exc_info);
print_indent(indent, " raise (%s[0], %s[1], %s[2])\n",
exc_info, exc_info, exc_info);
}
/* Print code with the given indentation that checks
* whether any of the persistent callbacks of "clazz"
* is set and if it failed with an exception. If so, the 'exc_info'
* field contains the exception and is raised again.
* The field is cleared because the callback and its data may get reused.
* "fmt" is the format for printing Python method arguments.
*/
static void print_persistent_callback_failure_check(int indent,
const isl_class &clazz, const char *fmt)
{
const set<FunctionDecl *> &callbacks = clazz.persistent_callbacks;
set<FunctionDecl *>::const_iterator in;
for (in = callbacks.begin(); in != callbacks.end(); ++in) {
string callback_name = clazz.persistent_callback_name(*in);
print_indent(indent, "if hasattr(");
printf(fmt, 0);
printf(", '%s') and ", callback_name.c_str());
printf(fmt, 0);
printf(".%s['exc_info'] != None:\n", callback_name.c_str());
print_indent(indent, " exc_info = ");
printf(fmt, 0);
printf(".%s['exc_info'][0]\n", callback_name.c_str());
print_indent(indent, " ");
printf(fmt, 0);
printf(".%s['exc_info'][0] = None\n", callback_name.c_str());
print_rethrow(indent + 4, "exc_info");
}
}
/* Print the return statement of the python method corresponding
* to the C function "method" with the given indentation.
* If the object on which the method was called
* may have a persistent callback, then first check if any of those failed.
* "fmt" is the format for printing Python method arguments.
*
* If the method returns a new instance of the same object type and
* if the class has any persistent callbacks, then the data
* for these callbacks are copied from the original to the new object.
* If the method it itself setting a persistent callback,
* then keep track of the constructed C callback (such that it doesn't
* get destroyed) and the data structure that holds the captured exception
* (such that it can be raised again).
*
* If the return type is a (const) char *, then convert the result
* to a Python string, raising an error on NULL and freeing
* the C string if needed. For python 3 compatibility, the string returned
* by isl is explicitly decoded as an 'ascii' string. This is correct
* as all strings returned by isl are expected to be 'ascii'.
*
* If the return type is isl_stat, isl_bool or isl_size, then
* raise an error on isl_stat_error, isl_bool_error or isl_size_error.
* In case of isl_bool, the result is converted to
* a Python boolean.
* In case of isl_size, the result is converted to a Python int.
*/
void python_generator::print_method_return(int indent, const isl_class &clazz,
FunctionDecl *method, const char *fmt)
{
QualType return_type = method->getReturnType();
if (!is_static(clazz, method))
print_persistent_callback_failure_check(indent, clazz, fmt);
if (is_isl_type(return_type)) {
string type;
type = type2python(extract_type(return_type));
print_indent(indent,
"obj = %s(ctx=ctx, ptr=res)\n", type.c_str());
if (is_mutator(clazz, method) &&
clazz.has_persistent_callbacks())
print_indent(indent, "obj.copy_callbacks(arg0)\n");
if (clazz.persistent_callbacks.count(method)) {
string callback_name;
callback_name = clazz.persistent_callback_name(method);
print_indent(indent, "obj.%s = { 'func': cb, "
"'exc_info': exc_info }\n",
callback_name.c_str());
}
print_indent(indent, "return obj\n");
} else if (is_string(return_type)) {
print_indent(indent, "if res == 0:\n");
print_indent(indent, " raise\n");
print_indent(indent, "string = "
"cast(res, c_char_p).value.decode('ascii')\n");
if (gives(method))
print_indent(indent, "libc.free(res)\n");
print_indent(indent, "return string\n");
} else if (is_isl_neg_error(return_type)) {
print_indent(indent, "if res < 0:\n");
print_indent(indent, " raise\n");
if (is_isl_bool(return_type))
print_indent(indent, "return bool(res)\n");
else if (is_isl_size(return_type))
print_indent(indent, "return int(res)\n");
} else {
print_indent(indent, "return res\n");
}
}
/* Print a python "get" method corresponding to the C function "fd"
* in class "clazz" using a name that includes the "get_" prefix.
*
* This method simply calls the variant without the "get_" prefix and
* returns its result.
* Note that static methods are not considered to be "get" methods.
*/
void python_generator::print_get_method(const isl_class &clazz,
FunctionDecl *fd)
{
string get_name = clazz.base_method_name(fd);
string name = clazz.method_name(fd);
int num_params = fd->getNumParams();
print_method_header(false, get_name, num_params);
printf(" return arg0.%s(", name.c_str());
print_method_arguments(1, num_params);
printf(")\n");
}
/* Print a call to "method", along with the corresponding
* return statement, with the given indentation.
* "drop_ctx" is set if the first argument is an isl_ctx.
* "drop_user" is set if the last argument is a "user" argument
* corresponding to a callback argument.
*
* A "ctx" variable is first initialized as it may be needed
* in the first call to print_arg_in_call and in print_method_return.
*
* If the method has a callback function, then any exception
* thrown in the callback also need to be rethrown.
*/
void python_generator::print_method_call(int indent, const isl_class &clazz,
FunctionDecl *method, const char *fmt, int drop_ctx, int drop_user)
{
string fullname = method->getName();
int num_params = method->getNumParams();
if (drop_ctx) {
print_indent(indent, "ctx = Context.getDefaultInstance()\n");
} else {
print_indent(indent, "ctx = ");
printf(fmt, 0);
printf(".ctx\n");
}
print_indent(indent, "res = isl.%s(", fullname.c_str());
for (int i = 0; i < num_params - drop_user; ++i) {
if (i > 0)
printf(", ");
print_arg_in_call(method, fmt, i, drop_ctx);
}
if (drop_user)
printf(", None");
printf(")\n");
if (drop_user)
print_rethrow(indent, "exc_info[0]");
print_method_return(indent, clazz, method, fmt);
}
/* Print a python method corresponding to the C function "method".
* "super" contains the superclasses of the class to which the method belongs,
* with the first element corresponding to the annotation that appears
* closest to the annotated type. This superclass is the least
* general extension of the annotated type in the linearization
* of the class hierarchy.
*
* If the first argument of "method" is something other than an instance
* of the class, then mark the python method as static.
* If, moreover, this first argument is an isl_ctx, then remove
* it from the arguments of the Python method.
*
* If the function has a callback argument, then it also has a "user"
* argument. Since Python has closures, there is no need for such
* a user argument in the Python interface, so we simply drop it.
* We also create a wrapper ("cb") for the callback.
*
* If the function consumes a reference, then we pass it a copy of
* the actual argument.
*
* For methods that are identified as "get" methods, also
* print a variant of the method using a name that includes
* the "get_" prefix.
*/
void python_generator::print_method(const isl_class &clazz,
FunctionDecl *method, vector<string> super)
{
string cname = clazz.method_name(method);
int num_params = method->getNumParams();
int drop_user = 0;
int drop_ctx = first_arg_is_isl_ctx(method);
for (int i = 1; i < num_params; ++i) {
ParmVarDecl *param = method->getParamDecl(i);
QualType type = param->getOriginalType();
if (is_callback(type))
drop_user = 1;
}
print_method_header(is_static(clazz, method), cname,
num_params - drop_ctx - drop_user);
print_type_checks(cname, method, drop_ctx,
num_params - drop_user, super);
for (int i = 1; i < num_params; ++i) {
ParmVarDecl *param = method->getParamDecl(i);
QualType type = param->getOriginalType();
if (!is_callback(type))
continue;
print_callback(param, i - drop_ctx);
}
print_method_call(8, clazz, method, fixed_arg_fmt, drop_ctx, drop_user);
if (clazz.is_get_method(method))
print_get_method(clazz, method);
}
/* Print a condition that checks whether Python method argument "i"
* corresponds to the C function argument type "type".
*/
static void print_argument_check(QualType type, int i)
{
if (generator::is_isl_type(type)) {
string type_str;
type_str = generator::extract_type(type);
type_str = type2python(type_str);
printf("args[%d].__class__ is %s", i, type_str.c_str());
} else if (type->isPointerType()) {
printf("type(args[%d]) == str", i);
} else {
printf("type(args[%d]) == int", i);
}
}
/* Print a test that checks whether the arguments passed
* to the Python method correspond to the arguments
* expected by "fd".
* "drop_ctx" is set if the first argument of "fd" is an isl_ctx,
* which does not appear as an argument to the Python method.
*
* If an automatic conversion function is available for any
* of the argument types, then also allow the argument
* to be of the type as prescribed by the second input argument
* of the conversion function.
* The corresponding arguments are then converted to the expected types
* if needed. The argument tuple first needs to be converted to a list
* in order to be able to modify the entries.
*/
void python_generator::print_argument_checks(const isl_class &clazz,
FunctionDecl *fd, int drop_ctx)
{
int num_params = fd->getNumParams();
int first = generator::is_static(clazz, fd) ? drop_ctx : 1;
std::vector<bool> convert(num_params);
printf(" if len(args) == %d", num_params - drop_ctx);
for (int i = first; i < num_params; ++i) {
ParmVarDecl *param = fd->getParamDecl(i);
QualType type = param->getOriginalType();
const Type *ptr = type.getTypePtr();
printf(" and ");
if (conversions.count(ptr) == 0) {
print_argument_check(type, i - drop_ctx);
} else {
QualType type2 = conversions.at(ptr)->getOriginalType();
convert[i] = true;
printf("(");
print_argument_check(type, i - drop_ctx);
printf(" or ");
print_argument_check(type2, i - drop_ctx);
printf(")");
}
}
printf(":\n");
if (std::find(convert.begin(), convert.end(), true) == convert.end())
return;
print_indent(12, "args = list(args)\n");
for (int i = first; i < num_params; ++i) {
ParmVarDecl *param = fd->getParamDecl(i);
string type;
if (!convert[i])
continue;
type = type2python(extract_type(param->getOriginalType()));
print_type_check(12, type, var_arg_fmt,
i - drop_ctx, false, "", "", -1);
}
}
/* Print part of an overloaded python method corresponding to the C function
* "method".
* "drop_ctx" is set if the first argument of "method" is an isl_ctx.
*
* In particular, print code to test whether the arguments passed to
* the python method correspond to the arguments expected by "method"
* and to call "method" if they do.
*/
void python_generator::print_method_overload(const isl_class &clazz,
FunctionDecl *method)
{
int drop_ctx = first_arg_is_isl_ctx(method);
print_argument_checks(clazz, method, drop_ctx);
print_method_call(12, clazz, method, var_arg_fmt, drop_ctx, 0);
}
/* Print a python method with a name derived from "fullname"
* corresponding to the C functions "methods".
* "super" contains the superclasses of the class to which the method belongs.
*
* If "methods" consists of a single element that is not marked overloaded,
* the use print_method to print the method.
* Otherwise, print an overloaded method with pieces corresponding
* to each function in "methods".
*/
void python_generator::print_method(const isl_class &clazz,
const string &fullname, const function_set &methods,
vector<string> super)
{
string cname;
function_set::const_iterator it;
FunctionDecl *any_method;
any_method = *methods.begin();
if (methods.size() == 1 && !is_overload(any_method)) {
print_method(clazz, any_method, super);
return;
}
cname = clazz.method_name(any_method);
print_method_def(is_static(clazz, any_method), cname);
printf("(*args):\n");
for (it = methods.begin(); it != methods.end(); ++it)
print_method_overload(clazz, *it);
printf(" raise Error\n");
}
/* Print a python method "name" corresponding to "fd" setting
* the enum value "value".
* "super" contains the superclasses of the class to which the method belongs,
* with the first element corresponding to the annotation that appears
* closest to the annotated type.
*
* The last argument of the C function does not appear in the method call,
* but is fixed to "value" instead.
* Other than that, the method printed here is similar to one
* printed by python_generator::print_method, except that
* some of the special cases do not occur.
*/
void python_generator::print_set_enum(const isl_class &clazz,
FunctionDecl *fd, int value, const string &name,
const vector<string> &super)
{
string fullname = fd->getName();
int num_params = fd->getNumParams();
print_method_header(is_static(clazz, fd), name, num_params - 1);
print_type_checks(name, fd, false, num_params - 1, super);
printf(" ctx = arg0.ctx\n");
printf(" res = isl.%s(", fullname.c_str());
for (int i = 0; i < num_params - 1; ++i) {
if (i)
printf(", ");
print_arg_in_call(fd, fixed_arg_fmt, i, 0);
}
printf(", %d", value);
printf(")\n");
print_method_return(8, clazz, fd, fixed_arg_fmt);
}
/* Print python methods corresponding to "fd", which sets an enum.
* "super" contains the superclasses of the class to which the method belongs,
* with the first element corresponding to the annotation that appears
* closest to the annotated type.
*
* A method is generated for each value in the enum, setting
* the enum to that value.
*/
void python_generator::print_set_enum(const isl_class &clazz,
FunctionDecl *fd, const vector<string> &super)
{
vector<set_enum>::const_iterator it;
const vector<set_enum> &set_enums = clazz.set_enums.at(fd);
for (it = set_enums.begin(); it != set_enums.end(); ++it)
print_set_enum(clazz, fd, it->value, it->method_name, super);
}
/* Print part of the constructor for this isl_class.
*
* In particular, check if the actual arguments correspond to the
* formal arguments of "cons" and if so call "cons" and put the
* result in self.ptr and a reference to the default context in self.ctx.
*/
void python_generator::print_constructor(const isl_class &clazz,
FunctionDecl *cons)
{
string fullname = cons->getName();
string cname = clazz.method_name(cons);
int num_params = cons->getNumParams();
int drop_ctx = first_arg_is_isl_ctx(cons);
print_argument_checks(clazz, cons, drop_ctx);
printf(" self.ctx = Context.getDefaultInstance()\n");
printf(" self.ptr = isl.%s(", fullname.c_str());
if (drop_ctx)
printf("self.ctx");
for (int i = drop_ctx; i < num_params; ++i) {
if (i)
printf(", ");
print_arg_in_call(cons, var_arg_fmt, i, drop_ctx);
}
printf(")\n");
printf(" return\n");
}
/* If "clazz" has a type function describing subclasses,
* then add constructors that allow each of these subclasses
* to be treated as an object to the superclass.
*/
void python_generator::print_upcast_constructors(const isl_class &clazz)
{
map<int, string>::const_iterator i;
if (!clazz.fn_type)
return;
for (i = clazz.type_subclasses.begin();
i != clazz.type_subclasses.end(); ++i) {
printf(" if len(args) == 1 and "
"isinstance(args[0], %s):\n",
type2python(i->second).c_str());
printf(" self.ctx = args[0].ctx\n");
printf(" self.ptr = isl.%s_copy(args[0].ptr)\n",
clazz.name.c_str());
printf(" return\n");
}
}
/* Print the header of the class "name" with superclasses "super".
* The order of the superclasses is the opposite of the order
* in which the corresponding annotations appear in the source code.
* If "clazz" is a subclass derived from a type function,
* then the immediate superclass is recorded in "clazz" itself.
*/
void python_generator::print_class_header(const isl_class &clazz,
const string &name, const vector<string> &super)
{
printf("class %s", name.c_str());
if (super.size() > 0) {
printf("(");
for (unsigned i = 0; i < super.size(); ++i) {
if (i > 0)
printf(", ");
printf("%s", type2python(super[i]).c_str());
}
printf(")");
} else if (clazz.is_type_subclass()) {
printf("(%s)", type2python(clazz.superclass_name).c_str());
} else {
printf("(object)");
}
printf(":\n");
}
/* Tell ctypes about the return type of "fd".
* In particular, if "fd" returns a pointer to an isl object,
* then tell ctypes it returns a "c_void_p".
* If "fd" returns a char *, then simply tell ctypes.
*
* Nothing needs to be done for functions returning
* isl_bool, isl_stat or isl_size since they are represented by an int and
* ctypes assumes that a function returns int by default.
*/
void python_generator::print_restype(FunctionDecl *fd)
{
string fullname = fd->getName();
QualType type = fd->getReturnType();
if (is_isl_type(type))
printf("isl.%s.restype = c_void_p\n", fullname.c_str());
else if (is_string(type))
printf("isl.%s.restype = POINTER(c_char)\n", fullname.c_str());
}
/* Tell ctypes about the types of the arguments of the function "fd".
*/
void python_generator::print_argtypes(FunctionDecl *fd)
{
string fullname = fd->getName();
int n = fd->getNumParams();
int drop_user = 0;
printf("isl.%s.argtypes = [", fullname.c_str());
for (int i = 0; i < n - drop_user; ++i) {
ParmVarDecl *param = fd->getParamDecl(i);
QualType type = param->getOriginalType();
if (is_callback(type))
drop_user = 1;
if (i)
printf(", ");
if (is_isl_ctx(type))
printf("Context");
else if (is_isl_type(type) || is_callback(type))
printf("c_void_p");
else if (is_string(type))
printf("c_char_p");
else if (is_long(type))
printf("c_long");
else
printf("c_int");
}
if (drop_user)
printf(", c_void_p");
printf("]\n");
}
/* Print type definitions for the method 'fd'.
*/
void python_generator::print_method_type(FunctionDecl *fd)
{
print_restype(fd);
print_argtypes(fd);
}
/* If "clazz" has a type function describing subclasses or
* if it is one of those type subclasses, then print a __new__ method.
*
* In the superclass, the __new__ method constructs an object
* of the subclass type specified by the type function.
* In the subclass, the __new__ method reverts to the original behavior.
*/
void python_generator::print_new(const isl_class &clazz,
const string &python_name)
{
if (!clazz.fn_type && !clazz.is_type_subclass())
return;
printf(" def __new__(cls, *args, **keywords):\n");
if (clazz.fn_type) {
map<int, string>::const_iterator i;
printf(" if \"ptr\" in keywords:\n");
printf(" type = isl.%s(keywords[\"ptr\"])\n",
clazz.fn_type->getNameAsString().c_str());
for (i = clazz.type_subclasses.begin();
i != clazz.type_subclasses.end(); ++i) {
printf(" if type == %d:\n", i->first);
printf(" return %s(**keywords)\n",
type2python(i->second).c_str());
}
printf(" raise\n");
}
printf(" return super(%s, cls).__new__(cls)\n",
python_name.c_str());
}
/* Print declarations for methods printing the class representation,
* provided there is a corresponding *_to_str function.
*
* In particular, provide an implementation of __str__ and __repr__ methods to
* override the default representation used by python. Python uses __str__ to
* pretty print the class (e.g., when calling print(obj)) and uses __repr__
* when printing a precise representation of an object (e.g., when dumping it
* in the REPL console).
*
* Check the type of the argument before calling the *_to_str function
* on it in case the method was called on an object from a subclass.
*
* The return value of the *_to_str function is decoded to a python string
* assuming an 'ascii' encoding. This is necessary for python 3 compatibility.
*/
void python_generator::print_representation(const isl_class &clazz,
const string &python_name)
{
if (!clazz.fn_to_str)
return;
printf(" def __str__(arg0):\n");
print_type_check(8, python_name, fixed_arg_fmt, 0, false, "", "", -1);
printf(" ptr = isl.%s(arg0.ptr)\n",
string(clazz.fn_to_str->getName()).c_str());
printf(" res = cast(ptr, c_char_p).value.decode('ascii')\n");
printf(" libc.free(ptr)\n");
printf(" return res\n");
printf(" def __repr__(self):\n");
printf(" s = str(self)\n");
printf(" if '\"' in s:\n");
printf(" return 'isl.%s(\"\"\"%%s\"\"\")' %% s\n",
python_name.c_str());
printf(" else:\n");
printf(" return 'isl.%s(\"%%s\")' %% s\n",
python_name.c_str());
}
/* If "clazz" has any persistent callbacks, then print the definition
* of a "copy_callbacks" function that copies the persistent callbacks
* from one object to another.
*/
void python_generator::print_copy_callbacks(const isl_class &clazz)
{
const set<FunctionDecl *> &callbacks = clazz.persistent_callbacks;
set<FunctionDecl *>::const_iterator in;
if (!clazz.has_persistent_callbacks())
return;
printf(" def copy_callbacks(self, obj):\n");
for (in = callbacks.begin(); in != callbacks.end(); ++in) {
string callback_name = clazz.persistent_callback_name(*in);
printf(" if hasattr(obj, '%s'):\n",
callback_name.c_str());
printf(" self.%s = obj.%s\n",
callback_name.c_str(), callback_name.c_str());
}
}
/* Print code to set method type signatures.
*
* To be able to call C functions it is necessary to explicitly set their
* argument and result types. Do this for all exported constructors and
* methods (including those that set a persistent callback and
* those that set an enum value),
* as well as for the *_to_str and the type function, if they exist.
* Assuming each exported class has a *_copy and a *_free method,
* also unconditionally set the type of such methods.
*/
void python_generator::print_method_types(const isl_class &clazz)
{
function_set::const_iterator in;
map<string, function_set>::const_iterator it;
map<FunctionDecl *, vector<set_enum> >::const_iterator ie;
const set<FunctionDecl *> &callbacks = clazz.persistent_callbacks;
for (in = clazz.constructors.begin(); in != clazz.constructors.end();
++in)
print_method_type(*in);
for (in = callbacks.begin(); in != callbacks.end(); ++in)
print_method_type(*in);
for (it = clazz.methods.begin(); it != clazz.methods.end(); ++it)
for (in = it->second.begin(); in != it->second.end(); ++in)
print_method_type(*in);
for (ie = clazz.set_enums.begin(); ie != clazz.set_enums.end(); ++ie)
print_method_type(ie->first);
print_method_type(clazz.fn_copy);
print_method_type(clazz.fn_free);
if (clazz.fn_to_str)
print_method_type(clazz.fn_to_str);
if (clazz.fn_type)
print_method_type(clazz.fn_type);
}
/* Print out the definition of this isl_class.
*
* We first check if this isl_class is a subclass of one or more other classes.
* If it is, we make sure those superclasses are printed out first.
*
* Then we print a constructor with several cases, one for constructing
* a Python object from a return value, one for each function that
* was marked as a constructor and for each type based subclass.
*
* Next, we print out some common methods and the methods corresponding
* to functions that are not marked as constructors, including those
* that set a persistent callback and those that set an enum value.
*
* Finally, we tell ctypes about the types of the arguments of the
* constructor functions and the return types of those function returning
* an isl object.
*/
void python_generator::print(const isl_class &clazz)
{
string p_name = type2python(clazz.subclass_name);
function_set::const_iterator in;
map<string, function_set>::const_iterator it;
map<FunctionDecl *, vector<set_enum> >::const_iterator ie;
vector<string> super = find_superclasses(clazz.type);
const set<FunctionDecl *> &callbacks = clazz.persistent_callbacks;
for (unsigned i = 0; i < super.size(); ++i)
if (done.find(super[i]) == done.end())
print(classes[super[i]]);
if (clazz.is_type_subclass() && done.find(clazz.name) == done.end())
print(classes[clazz.name]);
done.insert(clazz.subclass_name);
printf("\n");
print_class_header(clazz, p_name, super);
printf(" def __init__(self, *args, **keywords):\n");
printf(" if \"ptr\" in keywords:\n");
printf(" self.ctx = keywords[\"ctx\"]\n");
printf(" self.ptr = keywords[\"ptr\"]\n");
printf(" return\n");
for (in = clazz.constructors.begin(); in != clazz.constructors.end();
++in)
print_constructor(clazz, *in);
print_upcast_constructors(clazz);
printf(" raise Error\n");
printf(" def __del__(self):\n");
printf(" if hasattr(self, 'ptr'):\n");
printf(" isl.%s_free(self.ptr)\n", clazz.name.c_str());
print_new(clazz, p_name);
print_representation(clazz, p_name);
print_copy_callbacks(clazz);
for (in = callbacks.begin(); in != callbacks.end(); ++in)
print_method(clazz, *in, super);
for (it = clazz.methods.begin(); it != clazz.methods.end(); ++it)
print_method(clazz, it->first, it->second, super);
for (ie = clazz.set_enums.begin(); ie != clazz.set_enums.end(); ++ie)
print_set_enum(clazz, ie->first, super);
printf("\n");
print_method_types(clazz);
}
/* Generate a python interface based on the extracted types and
* functions.
*
* Print out each class in turn. If one of these is a subclass of some
* other class, make sure the superclass is printed out first.
* functions.
*/
void python_generator::generate()
{
map<string, isl_class>::iterator ci;
for (ci = classes.begin(); ci != classes.end(); ++ci) {
if (done.find(ci->first) == done.end())
print(ci->second);
}
}