kmp_stats.cpp 29.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
/** @file kmp_stats.cpp
 * Statistics gathering and processing.
 */

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "kmp.h"
#include "kmp_lock.h"
#include "kmp_stats.h"
#include "kmp_str.h"

#include <algorithm>
#include <ctime>
#include <iomanip>
#include <sstream>
#include <stdlib.h> // for atexit
#include <cmath>

#define STRINGIZE2(x) #x
#define STRINGIZE(x) STRINGIZE2(x)

#define expandName(name, flags, ignore) {STRINGIZE(name), flags},
statInfo timeStat::timerInfo[] = {
    KMP_FOREACH_TIMER(expandName, 0){"TIMER_LAST", 0}};
const statInfo counter::counterInfo[] = {
    KMP_FOREACH_COUNTER(expandName, 0){"COUNTER_LAST", 0}};
#undef expandName

#define expandName(ignore1, ignore2, ignore3) {0.0, 0.0, 0.0},
kmp_stats_output_module::rgb_color kmp_stats_output_module::timerColorInfo[] = {
    KMP_FOREACH_TIMER(expandName, 0){0.0, 0.0, 0.0}};
#undef expandName

const kmp_stats_output_module::rgb_color
    kmp_stats_output_module::globalColorArray[] = {
        {1.0, 0.0, 0.0}, // red
        {1.0, 0.6, 0.0}, // orange
        {1.0, 1.0, 0.0}, // yellow
        {0.0, 1.0, 0.0}, // green
        {0.0, 0.0, 1.0}, // blue
        {0.6, 0.2, 0.8}, // purple
        {1.0, 0.0, 1.0}, // magenta
        {0.0, 0.4, 0.2}, // dark green
        {1.0, 1.0, 0.6}, // light yellow
        {0.6, 0.4, 0.6}, // dirty purple
        {0.0, 1.0, 1.0}, // cyan
        {1.0, 0.4, 0.8}, // pink
        {0.5, 0.5, 0.5}, // grey
        {0.8, 0.7, 0.5}, // brown
        {0.6, 0.6, 1.0}, // light blue
        {1.0, 0.7, 0.5}, // peach
        {0.8, 0.5, 1.0}, // lavender
        {0.6, 0.0, 0.0}, // dark red
        {0.7, 0.6, 0.0}, // gold
        {0.0, 0.0, 0.0} // black
};

// Ensure that the atexit handler only runs once.
static uint32_t statsPrinted = 0;

// output interface
static kmp_stats_output_module *__kmp_stats_global_output = NULL;

double logHistogram::binMax[] = {
    1.e1l,  1.e2l,  1.e3l,  1.e4l,  1.e5l,  1.e6l,  1.e7l,  1.e8l,
    1.e9l,  1.e10l, 1.e11l, 1.e12l, 1.e13l, 1.e14l, 1.e15l, 1.e16l,
    1.e17l, 1.e18l, 1.e19l, 1.e20l, 1.e21l, 1.e22l, 1.e23l, 1.e24l,
    1.e25l, 1.e26l, 1.e27l, 1.e28l, 1.e29l, 1.e30l};

/* ************* statistic member functions ************* */

void statistic::addSample(double sample) {
  sample -= offset;
  KMP_DEBUG_ASSERT(std::isfinite(sample));

  double delta = sample - meanVal;

  sampleCount = sampleCount + 1;
  meanVal = meanVal + delta / sampleCount;
  m2 = m2 + delta * (sample - meanVal);

  minVal = std::min(minVal, sample);
  maxVal = std::max(maxVal, sample);
  if (collectingHist)
    hist.addSample(sample);
}

statistic &statistic::operator+=(const statistic &other) {
  if (other.sampleCount == 0)
    return *this;

  if (sampleCount == 0) {
    *this = other;
    return *this;
  }

  uint64_t newSampleCount = sampleCount + other.sampleCount;
  double dnsc = double(newSampleCount);
  double dsc = double(sampleCount);
  double dscBydnsc = dsc / dnsc;
  double dosc = double(other.sampleCount);
  double delta = other.meanVal - meanVal;

  // Try to order these calculations to avoid overflows. If this were Fortran,
  // then the compiler would not be able to re-order over brackets. In C++ it
  // may be legal to do that (we certainly hope it doesn't, and CC+ Programming
  // Language 2nd edition suggests it shouldn't, since it says that exploitation
  // of associativity can only be made if the operation really is associative
  // (which floating addition isn't...)).
  meanVal = meanVal * dscBydnsc + other.meanVal * (1 - dscBydnsc);
  m2 = m2 + other.m2 + dscBydnsc * dosc * delta * delta;
  minVal = std::min(minVal, other.minVal);
  maxVal = std::max(maxVal, other.maxVal);
  sampleCount = newSampleCount;
  if (collectingHist)
    hist += other.hist;

  return *this;
}

void statistic::scale(double factor) {
  minVal = minVal * factor;
  maxVal = maxVal * factor;
  meanVal = meanVal * factor;
  m2 = m2 * factor * factor;
  return;
}

std::string statistic::format(char unit, bool total) const {
  std::string result = formatSI(sampleCount, 9, ' ');

  if (sampleCount == 0) {
    result = result + std::string(", ") + formatSI(0.0, 9, unit);
    result = result + std::string(", ") + formatSI(0.0, 9, unit);
    result = result + std::string(", ") + formatSI(0.0, 9, unit);
    if (total)
      result = result + std::string(", ") + formatSI(0.0, 9, unit);
    result = result + std::string(", ") + formatSI(0.0, 9, unit);
  } else {
    result = result + std::string(", ") + formatSI(minVal, 9, unit);
    result = result + std::string(", ") + formatSI(meanVal, 9, unit);
    result = result + std::string(", ") + formatSI(maxVal, 9, unit);
    if (total)
      result =
          result + std::string(", ") + formatSI(meanVal * sampleCount, 9, unit);
    result = result + std::string(", ") + formatSI(getSD(), 9, unit);
  }
  return result;
}

/* ************* histogram member functions ************* */

// Lowest bin that has anything in it
int logHistogram::minBin() const {
  for (int i = 0; i < numBins; i++) {
    if (bins[i].count != 0)
      return i - logOffset;
  }
  return -logOffset;
}

// Highest bin that has anything in it
int logHistogram::maxBin() const {
  for (int i = numBins - 1; i >= 0; i--) {
    if (bins[i].count != 0)
      return i - logOffset;
  }
  return -logOffset;
}

// Which bin does this sample belong in ?
uint32_t logHistogram::findBin(double sample) {
  double v = std::fabs(sample);
  // Simply loop up looking which bin to put it in.
  // According to a micro-architect this is likely to be faster than a binary
  // search, since
  // it will only have one branch mis-predict
  for (int b = 0; b < numBins; b++)
    if (binMax[b] > v)
      return b;
  fprintf(stderr,
          "Trying to add a sample that is too large into a histogram\n");
  KMP_ASSERT(0);
  return -1;
}

void logHistogram::addSample(double sample) {
  if (sample == 0.0) {
    zeroCount += 1;
#ifdef KMP_DEBUG
    _total++;
    check();
#endif
    return;
  }
  KMP_DEBUG_ASSERT(std::isfinite(sample));
  uint32_t bin = findBin(sample);
  KMP_DEBUG_ASSERT(0 <= bin && bin < numBins);

  bins[bin].count += 1;
  bins[bin].total += sample;
#ifdef KMP_DEBUG
  _total++;
  check();
#endif
}

// This may not be the format we want, but it'll do for now
std::string logHistogram::format(char unit) const {
  std::stringstream result;

  result << "Bin,                Count,     Total\n";
  if (zeroCount) {
    result << "0,              " << formatSI(zeroCount, 9, ' ') << ", ",
        formatSI(0.0, 9, unit);
    if (count(minBin()) == 0)
      return result.str();
    result << "\n";
  }
  for (int i = minBin(); i <= maxBin(); i++) {
    result << "10**" << i << "<=v<10**" << (i + 1) << ", "
           << formatSI(count(i), 9, ' ') << ", " << formatSI(total(i), 9, unit);
    if (i != maxBin())
      result << "\n";
  }

  return result.str();
}

/* ************* explicitTimer member functions ************* */

void explicitTimer::start(tsc_tick_count tick) {
  startTime = tick;
  totalPauseTime = 0;
  if (timeStat::logEvent(timerEnumValue)) {
    __kmp_stats_thread_ptr->incrementNestValue();
  }
  return;
}

void explicitTimer::stop(tsc_tick_count tick,
                         kmp_stats_list *stats_ptr /* = nullptr */) {
  if (startTime.getValue() == 0)
    return;

  stat->addSample(((tick - startTime) - totalPauseTime).ticks());

  if (timeStat::logEvent(timerEnumValue)) {
    if (!stats_ptr)
      stats_ptr = __kmp_stats_thread_ptr;
    stats_ptr->push_event(
        startTime.getValue() - __kmp_stats_start_time.getValue(),
        tick.getValue() - __kmp_stats_start_time.getValue(),
        __kmp_stats_thread_ptr->getNestValue(), timerEnumValue);
    stats_ptr->decrementNestValue();
  }

  /* We accept the risk that we drop a sample because it really did start at
     t==0. */
  startTime = 0;
  return;
}

/* ************* partitionedTimers member functions ************* */
partitionedTimers::partitionedTimers() { timer_stack.reserve(8); }

// initialize the partitioned timers to an initial timer
void partitionedTimers::init(explicitTimer timer) {
  KMP_DEBUG_ASSERT(this->timer_stack.size() == 0);
  timer_stack.push_back(timer);
  timer_stack.back().start(tsc_tick_count::now());
}

// stop/save the current timer, and start the new timer (timer_pair)
// There is a special condition where if the current timer is equal to
// the one you are trying to push, then it only manipulates the stack,
// and it won't stop/start the currently running timer.
void partitionedTimers::push(explicitTimer timer) {
  // get the current timer
  // pause current timer
  // push new timer
  // start the new timer
  explicitTimer *current_timer, *new_timer;
  size_t stack_size;
  KMP_DEBUG_ASSERT(this->timer_stack.size() > 0);
  timer_stack.push_back(timer);
  stack_size = timer_stack.size();
  current_timer = &(timer_stack[stack_size - 2]);
  new_timer = &(timer_stack[stack_size - 1]);
  tsc_tick_count tick = tsc_tick_count::now();
  current_timer->pause(tick);
  new_timer->start(tick);
}

// stop/discard the current timer, and start the previously saved timer
void partitionedTimers::pop() {
  // get the current timer
  // stop current timer (record event/sample)
  // pop current timer
  // get the new current timer and resume
  explicitTimer *old_timer, *new_timer;
  size_t stack_size = timer_stack.size();
  KMP_DEBUG_ASSERT(stack_size > 1);
  old_timer = &(timer_stack[stack_size - 1]);
  new_timer = &(timer_stack[stack_size - 2]);
  tsc_tick_count tick = tsc_tick_count::now();
  old_timer->stop(tick);
  new_timer->resume(tick);
  timer_stack.pop_back();
}

void partitionedTimers::exchange(explicitTimer timer) {
  // get the current timer
  // stop current timer (record event/sample)
  // push new timer
  // start the new timer
  explicitTimer *current_timer, *new_timer;
  size_t stack_size;
  KMP_DEBUG_ASSERT(this->timer_stack.size() > 0);
  tsc_tick_count tick = tsc_tick_count::now();
  stack_size = timer_stack.size();
  current_timer = &(timer_stack[stack_size - 1]);
  current_timer->stop(tick);
  timer_stack.pop_back();
  timer_stack.push_back(timer);
  new_timer = &(timer_stack[stack_size - 1]);
  new_timer->start(tick);
}

// Wind up all the currently running timers.
// This pops off all the timers from the stack and clears the stack
// After this is called, init() must be run again to initialize the
// stack of timers
void partitionedTimers::windup() {
  while (timer_stack.size() > 1) {
    this->pop();
  }
  // Pop the timer from the init() call
  if (timer_stack.size() > 0) {
    timer_stack.back().stop(tsc_tick_count::now());
    timer_stack.pop_back();
  }
}

/* ************* kmp_stats_event_vector member functions ************* */

void kmp_stats_event_vector::deallocate() {
  __kmp_free(events);
  internal_size = 0;
  allocated_size = 0;
  events = NULL;
}

// This function is for qsort() which requires the compare function to return
// either a negative number if event1 < event2, a positive number if event1 >
// event2 or zero if event1 == event2. This sorts by start time (lowest to
// highest).
int compare_two_events(const void *event1, const void *event2) {
  const kmp_stats_event *ev1 = RCAST(const kmp_stats_event *, event1);
  const kmp_stats_event *ev2 = RCAST(const kmp_stats_event *, event2);

  if (ev1->getStart() < ev2->getStart())
    return -1;
  else if (ev1->getStart() > ev2->getStart())
    return 1;
  else
    return 0;
}

void kmp_stats_event_vector::sort() {
  qsort(events, internal_size, sizeof(kmp_stats_event), compare_two_events);
}

/* ************* kmp_stats_list member functions ************* */

// returns a pointer to newly created stats node
kmp_stats_list *kmp_stats_list::push_back(int gtid) {
  kmp_stats_list *newnode =
      (kmp_stats_list *)__kmp_allocate(sizeof(kmp_stats_list));
  // placement new, only requires space and pointer and initializes (so
  // __kmp_allocate instead of C++ new[] is used)
  new (newnode) kmp_stats_list();
  newnode->setGtid(gtid);
  newnode->prev = this->prev;
  newnode->next = this;
  newnode->prev->next = newnode;
  newnode->next->prev = newnode;
  return newnode;
}
void kmp_stats_list::deallocate() {
  kmp_stats_list *ptr = this->next;
  kmp_stats_list *delptr = this->next;
  while (ptr != this) {
    delptr = ptr;
    ptr = ptr->next;
    // placement new means we have to explicitly call destructor.
    delptr->_event_vector.deallocate();
    delptr->~kmp_stats_list();
    __kmp_free(delptr);
  }
}
kmp_stats_list::iterator kmp_stats_list::begin() {
  kmp_stats_list::iterator it;
  it.ptr = this->next;
  return it;
}
kmp_stats_list::iterator kmp_stats_list::end() {
  kmp_stats_list::iterator it;
  it.ptr = this;
  return it;
}
int kmp_stats_list::size() {
  int retval;
  kmp_stats_list::iterator it;
  for (retval = 0, it = begin(); it != end(); it++, retval++) {
  }
  return retval;
}

/* ************* kmp_stats_list::iterator member functions ************* */

kmp_stats_list::iterator::iterator() : ptr(NULL) {}
kmp_stats_list::iterator::~iterator() {}
kmp_stats_list::iterator kmp_stats_list::iterator::operator++() {
  this->ptr = this->ptr->next;
  return *this;
}
kmp_stats_list::iterator kmp_stats_list::iterator::operator++(int dummy) {
  this->ptr = this->ptr->next;
  return *this;
}
kmp_stats_list::iterator kmp_stats_list::iterator::operator--() {
  this->ptr = this->ptr->prev;
  return *this;
}
kmp_stats_list::iterator kmp_stats_list::iterator::operator--(int dummy) {
  this->ptr = this->ptr->prev;
  return *this;
}
bool kmp_stats_list::iterator::operator!=(const kmp_stats_list::iterator &rhs) {
  return this->ptr != rhs.ptr;
}
bool kmp_stats_list::iterator::operator==(const kmp_stats_list::iterator &rhs) {
  return this->ptr == rhs.ptr;
}
kmp_stats_list *kmp_stats_list::iterator::operator*() const {
  return this->ptr;
}

/* *************  kmp_stats_output_module functions ************** */

const char *kmp_stats_output_module::eventsFileName = NULL;
const char *kmp_stats_output_module::plotFileName = NULL;
int kmp_stats_output_module::printPerThreadFlag = 0;
int kmp_stats_output_module::printPerThreadEventsFlag = 0;

static char const *lastName(char *name) {
  int l = strlen(name);
  for (int i = l - 1; i >= 0; --i) {
    if (name[i] == '.')
      name[i] = '_';
    if (name[i] == '/')
      return name + i + 1;
  }
  return name;
}

/* Read the name of the executable from /proc/self/cmdline */
static char const *getImageName(char *buffer, size_t buflen) {
  FILE *f = fopen("/proc/self/cmdline", "r");
  buffer[0] = char(0);
  if (!f)
    return buffer;

  // The file contains char(0) delimited words from the commandline.
  // This just returns the last filename component of the first word on the
  // line.
  size_t n = fread(buffer, 1, buflen, f);
  if (n == 0) {
    fclose(f);
    KMP_CHECK_SYSFAIL("fread", 1)
  }
  fclose(f);
  buffer[buflen - 1] = char(0);
  return lastName(buffer);
}

static void getTime(char *buffer, size_t buflen, bool underscores = false) {
  time_t timer;

  time(&timer);

  struct tm *tm_info = localtime(&timer);
  if (underscores)
    strftime(buffer, buflen, "%Y-%m-%d_%H%M%S", tm_info);
  else
    strftime(buffer, buflen, "%Y-%m-%d %H%M%S", tm_info);
}

/* Generate a stats file name, expanding prototypes */
static std::string generateFilename(char const *prototype,
                                    char const *imageName) {
  std::string res;

  for (int i = 0; prototype[i] != char(0); i++) {
    char ch = prototype[i];

    if (ch == '%') {
      i++;
      if (prototype[i] == char(0))
        break;

      switch (prototype[i]) {
      case 't': // Insert time and date
      {
        char date[26];
        getTime(date, sizeof(date), true);
        res += date;
      } break;
      case 'e': // Insert executable name
        res += imageName;
        break;
      case 'p': // Insert pid
      {
        std::stringstream ss;
        ss << getpid();
        res += ss.str();
      } break;
      default:
        res += prototype[i];
        break;
      }
    } else
      res += ch;
  }
  return res;
}

// init() is called very near the beginning of execution time in the constructor
// of __kmp_stats_global_output
void kmp_stats_output_module::init() {

  char *statsFileName = getenv("KMP_STATS_FILE");
  eventsFileName = getenv("KMP_STATS_EVENTS_FILE");
  plotFileName = getenv("KMP_STATS_PLOT_FILE");
  char *threadStats = getenv("KMP_STATS_THREADS");
  char *threadEvents = getenv("KMP_STATS_EVENTS");

  // set the stats output filenames based on environment variables and defaults
  if (statsFileName) {
    char imageName[1024];
    // Process any escapes (e.g., %p, %e, %t) in the name
    outputFileName = generateFilename(
        statsFileName, getImageName(&imageName[0], sizeof(imageName)));
  }
  eventsFileName = eventsFileName ? eventsFileName : "events.dat";
  plotFileName = plotFileName ? plotFileName : "events.plt";

  // set the flags based on environment variables matching: true, on, 1, .true.
  // , .t. , yes
  printPerThreadFlag = __kmp_str_match_true(threadStats);
  printPerThreadEventsFlag = __kmp_str_match_true(threadEvents);

  if (printPerThreadEventsFlag) {
    // assigns a color to each timer for printing
    setupEventColors();
  } else {
    // will clear flag so that no event will be logged
    timeStat::clearEventFlags();
  }
}

void kmp_stats_output_module::setupEventColors() {
  int i;
  int globalColorIndex = 0;
  int numGlobalColors = sizeof(globalColorArray) / sizeof(rgb_color);
  for (i = 0; i < TIMER_LAST; i++) {
    if (timeStat::logEvent((timer_e)i)) {
      timerColorInfo[i] = globalColorArray[globalColorIndex];
      globalColorIndex = (globalColorIndex + 1) % numGlobalColors;
    }
  }
}

void kmp_stats_output_module::printTimerStats(FILE *statsOut,
                                              statistic const *theStats,
                                              statistic const *totalStats) {
  fprintf(statsOut,
          "Timer,                             SampleCount,    Min,      "
          "Mean,       Max,     Total,        SD\n");
  for (timer_e s = timer_e(0); s < TIMER_LAST; s = timer_e(s + 1)) {
    statistic const *stat = &theStats[s];
    char tag = timeStat::noUnits(s) ? ' ' : 'T';

    fprintf(statsOut, "%-35s, %s\n", timeStat::name(s),
            stat->format(tag, true).c_str());
  }
  // Also print the Total_ versions of times.
  for (timer_e s = timer_e(0); s < TIMER_LAST; s = timer_e(s + 1)) {
    char tag = timeStat::noUnits(s) ? ' ' : 'T';
    if (totalStats && !timeStat::noTotal(s))
      fprintf(statsOut, "Total_%-29s, %s\n", timeStat::name(s),
              totalStats[s].format(tag, true).c_str());
  }

  // Print histogram of statistics
  if (theStats[0].haveHist()) {
    fprintf(statsOut, "\nTimer distributions\n");
    for (int s = 0; s < TIMER_LAST; s++) {
      statistic const *stat = &theStats[s];

      if (stat->getCount() != 0) {
        char tag = timeStat::noUnits(timer_e(s)) ? ' ' : 'T';

        fprintf(statsOut, "%s\n", timeStat::name(timer_e(s)));
        fprintf(statsOut, "%s\n", stat->getHist()->format(tag).c_str());
      }
    }
  }
}

void kmp_stats_output_module::printCounterStats(FILE *statsOut,
                                                statistic const *theStats) {
  fprintf(statsOut, "Counter,                 ThreadCount,    Min,      Mean,  "
                    "     Max,     Total,        SD\n");
  for (int s = 0; s < COUNTER_LAST; s++) {
    statistic const *stat = &theStats[s];
    fprintf(statsOut, "%-25s, %s\n", counter::name(counter_e(s)),
            stat->format(' ', true).c_str());
  }
  // Print histogram of counters
  if (theStats[0].haveHist()) {
    fprintf(statsOut, "\nCounter distributions\n");
    for (int s = 0; s < COUNTER_LAST; s++) {
      statistic const *stat = &theStats[s];

      if (stat->getCount() != 0) {
        fprintf(statsOut, "%s\n", counter::name(counter_e(s)));
        fprintf(statsOut, "%s\n", stat->getHist()->format(' ').c_str());
      }
    }
  }
}

void kmp_stats_output_module::printCounters(FILE *statsOut,
                                            counter const *theCounters) {
  // We print all the counters even if they are zero.
  // That makes it easier to slice them into a spreadsheet if you need to.
  fprintf(statsOut, "\nCounter,                    Count\n");
  for (int c = 0; c < COUNTER_LAST; c++) {
    counter const *stat = &theCounters[c];
    fprintf(statsOut, "%-25s, %s\n", counter::name(counter_e(c)),
            formatSI(stat->getValue(), 9, ' ').c_str());
  }
}

void kmp_stats_output_module::printEvents(FILE *eventsOut,
                                          kmp_stats_event_vector *theEvents,
                                          int gtid) {
  // sort by start time before printing
  theEvents->sort();
  for (int i = 0; i < theEvents->size(); i++) {
    kmp_stats_event ev = theEvents->at(i);
    rgb_color color = getEventColor(ev.getTimerName());
    fprintf(eventsOut, "%d %llu %llu %1.1f rgb(%1.1f,%1.1f,%1.1f) %s\n", gtid,
            static_cast<unsigned long long>(ev.getStart()),
            static_cast<unsigned long long>(ev.getStop()),
            1.2 - (ev.getNestLevel() * 0.2), color.r, color.g, color.b,
            timeStat::name(ev.getTimerName()));
  }
  return;
}

void kmp_stats_output_module::windupExplicitTimers() {
  // Wind up any explicit timers. We assume that it's fair at this point to just
  // walk all the explicit timers in all threads and say "it's over".
  // If the timer wasn't running, this won't record anything anyway.
  kmp_stats_list::iterator it;
  for (it = __kmp_stats_list->begin(); it != __kmp_stats_list->end(); it++) {
    kmp_stats_list *ptr = *it;
    ptr->getPartitionedTimers()->windup();
    ptr->endLife();
  }
}

void kmp_stats_output_module::printPloticusFile() {
  int i;
  int size = __kmp_stats_list->size();
  FILE *plotOut = fopen(plotFileName, "w+");

  fprintf(plotOut, "#proc page\n"
                   "   pagesize: 15 10\n"
                   "   scale: 1.0\n\n");

  fprintf(plotOut, "#proc getdata\n"
                   "   file: %s\n\n",
          eventsFileName);

  fprintf(plotOut, "#proc areadef\n"
                   "   title: OpenMP Sampling Timeline\n"
                   "   titledetails: align=center size=16\n"
                   "   rectangle: 1 1 13 9\n"
                   "   xautorange: datafield=2,3\n"
                   "   yautorange: -1 %d\n\n",
          size);

  fprintf(plotOut, "#proc xaxis\n"
                   "   stubs: inc\n"
                   "   stubdetails: size=12\n"
                   "   label: Time (ticks)\n"
                   "   labeldetails: size=14\n\n");

  fprintf(plotOut, "#proc yaxis\n"
                   "   stubs: inc 1\n"
                   "   stubrange: 0 %d\n"
                   "   stubdetails: size=12\n"
                   "   label: Thread #\n"
                   "   labeldetails: size=14\n\n",
          size - 1);

  fprintf(plotOut, "#proc bars\n"
                   "   exactcolorfield: 5\n"
                   "   axis: x\n"
                   "   locfield: 1\n"
                   "   segmentfields: 2 3\n"
                   "   barwidthfield: 4\n\n");

  // create legend entries corresponding to the timer color
  for (i = 0; i < TIMER_LAST; i++) {
    if (timeStat::logEvent((timer_e)i)) {
      rgb_color c = getEventColor((timer_e)i);
      fprintf(plotOut, "#proc legendentry\n"
                       "   sampletype: color\n"
                       "   label: %s\n"
                       "   details: rgb(%1.1f,%1.1f,%1.1f)\n\n",
              timeStat::name((timer_e)i), c.r, c.g, c.b);
    }
  }

  fprintf(plotOut, "#proc legend\n"
                   "   format: down\n"
                   "   location: max max\n\n");
  fclose(plotOut);
  return;
}

static void outputEnvVariable(FILE *statsOut, char const *name) {
  char const *value = getenv(name);
  fprintf(statsOut, "# %s = %s\n", name, value ? value : "*unspecified*");
}

/* Print some useful information about
   * the date and time this experiment ran.
   * the machine on which it ran.
   We output all of this as stylised comments, though we may decide to parse
   some of it. */
void kmp_stats_output_module::printHeaderInfo(FILE *statsOut) {
  std::time_t now = std::time(0);
  char buffer[40];
  char hostName[80];

  std::strftime(&buffer[0], sizeof(buffer), "%c", std::localtime(&now));
  fprintf(statsOut, "# Time of run: %s\n", &buffer[0]);
  if (gethostname(&hostName[0], sizeof(hostName)) == 0)
    fprintf(statsOut, "# Hostname: %s\n", &hostName[0]);
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
  fprintf(statsOut, "# CPU:  %s\n", &__kmp_cpuinfo.name[0]);
  fprintf(statsOut, "# Family: %d, Model: %d, Stepping: %d\n",
          __kmp_cpuinfo.family, __kmp_cpuinfo.model, __kmp_cpuinfo.stepping);
  if (__kmp_cpuinfo.frequency == 0)
    fprintf(statsOut, "# Nominal frequency: Unknown\n");
  else
    fprintf(statsOut, "# Nominal frequency: %sz\n",
            formatSI(double(__kmp_cpuinfo.frequency), 9, 'H').c_str());
  outputEnvVariable(statsOut, "KMP_HW_SUBSET");
  outputEnvVariable(statsOut, "KMP_AFFINITY");
  outputEnvVariable(statsOut, "KMP_BLOCKTIME");
  outputEnvVariable(statsOut, "KMP_LIBRARY");
  fprintf(statsOut, "# Production runtime built " __DATE__ " " __TIME__ "\n");
#endif
}

void kmp_stats_output_module::outputStats(const char *heading) {
  // Stop all the explicit timers in all threads
  // Do this before declaring the local statistics because thay have
  // constructors so will take time to create.
  windupExplicitTimers();

  statistic allStats[TIMER_LAST];
  statistic totalStats[TIMER_LAST]; /* Synthesized, cross threads versions of
                                       normal timer stats */
  statistic allCounters[COUNTER_LAST];

  FILE *statsOut =
      !outputFileName.empty() ? fopen(outputFileName.c_str(), "a+") : stderr;
  if (!statsOut)
    statsOut = stderr;

  FILE *eventsOut;
  if (eventPrintingEnabled()) {
    eventsOut = fopen(eventsFileName, "w+");
  }

  printHeaderInfo(statsOut);
  fprintf(statsOut, "%s\n", heading);
  // Accumulate across threads.
  kmp_stats_list::iterator it;
  for (it = __kmp_stats_list->begin(); it != __kmp_stats_list->end(); it++) {
    int t = (*it)->getGtid();
    // Output per thread stats if requested.
    if (printPerThreadFlag) {
      fprintf(statsOut, "Thread %d\n", t);
      printTimerStats(statsOut, (*it)->getTimers(), 0);
      printCounters(statsOut, (*it)->getCounters());
      fprintf(statsOut, "\n");
    }
    // Output per thread events if requested.
    if (eventPrintingEnabled()) {
      kmp_stats_event_vector events = (*it)->getEventVector();
      printEvents(eventsOut, &events, t);
    }

    // Accumulate timers.
    for (timer_e s = timer_e(0); s < TIMER_LAST; s = timer_e(s + 1)) {
      // See if we should ignore this timer when aggregating
      if ((timeStat::masterOnly(s) && (t != 0)) || // Timer only valid on master
          // and this thread is worker
          (timeStat::workerOnly(s) && (t == 0)) // Timer only valid on worker
          // and this thread is the master
          ) {
        continue;
      }

      statistic *threadStat = (*it)->getTimer(s);
      allStats[s] += *threadStat;

      // Add Total stats for timers that are valid in more than one thread
      if (!timeStat::noTotal(s))
        totalStats[s].addSample(threadStat->getTotal());
    }

    // Accumulate counters.
    for (counter_e c = counter_e(0); c < COUNTER_LAST; c = counter_e(c + 1)) {
      if (counter::masterOnly(c) && t != 0)
        continue;
      allCounters[c].addSample((*it)->getCounter(c)->getValue());
    }
  }

  if (eventPrintingEnabled()) {
    printPloticusFile();
    fclose(eventsOut);
  }

  fprintf(statsOut, "Aggregate for all threads\n");
  printTimerStats(statsOut, &allStats[0], &totalStats[0]);
  fprintf(statsOut, "\n");
  printCounterStats(statsOut, &allCounters[0]);

  if (statsOut != stderr)
    fclose(statsOut);
}

/* *************  exported C functions ************** */

// no name mangling for these functions, we want the c files to be able to get
// at these functions
extern "C" {

void __kmp_reset_stats() {
  kmp_stats_list::iterator it;
  for (it = __kmp_stats_list->begin(); it != __kmp_stats_list->end(); it++) {
    timeStat *timers = (*it)->getTimers();
    counter *counters = (*it)->getCounters();

    for (int t = 0; t < TIMER_LAST; t++)
      timers[t].reset();

    for (int c = 0; c < COUNTER_LAST; c++)
      counters[c].reset();

    // reset the event vector so all previous events are "erased"
    (*it)->resetEventVector();
  }
}

// This function will reset all stats and stop all threads' explicit timers if
// they haven't been stopped already.
void __kmp_output_stats(const char *heading) {
  __kmp_stats_global_output->outputStats(heading);
  __kmp_reset_stats();
}

void __kmp_accumulate_stats_at_exit(void) {
  // Only do this once.
  if (KMP_XCHG_FIXED32(&statsPrinted, 1) != 0)
    return;

  __kmp_output_stats("Statistics on exit");
}

void __kmp_stats_init(void) {
  __kmp_init_tas_lock(&__kmp_stats_lock);
  __kmp_stats_start_time = tsc_tick_count::now();
  __kmp_stats_global_output = new kmp_stats_output_module();
  __kmp_stats_list = new kmp_stats_list();
}

void __kmp_stats_fini(void) {
  __kmp_accumulate_stats_at_exit();
  __kmp_stats_list->deallocate();
  delete __kmp_stats_global_output;
  delete __kmp_stats_list;
}

} // extern "C"