OpFormatGen.cpp 81.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
//===- OpFormatGen.cpp - MLIR operation asm format generator --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "OpFormatGen.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/TableGen/Format.h"
#include "mlir/TableGen/GenInfo.h"
#include "mlir/TableGen/Interfaces.h"
#include "mlir/TableGen/OpClass.h"
#include "mlir/TableGen/OpTrait.h"
#include "mlir/TableGen/Operator.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Signals.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"

#define DEBUG_TYPE "mlir-tblgen-opformatgen"

using namespace mlir;
using namespace mlir::tblgen;

static llvm::cl::opt<bool> formatErrorIsFatal(
    "asmformat-error-is-fatal",
    llvm::cl::desc("Emit a fatal error if format parsing fails"),
    llvm::cl::init(true));

//===----------------------------------------------------------------------===//
// Element
//===----------------------------------------------------------------------===//

namespace {
/// This class represents a single format element.
class Element {
public:
  enum class Kind {
    /// This element is a directive.
    AttrDictDirective,
    FunctionalTypeDirective,
    OperandsDirective,
    ResultsDirective,
    SuccessorsDirective,
    TypeDirective,

    /// This element is a literal.
    Literal,

    /// This element is an variable value.
    AttributeVariable,
    OperandVariable,
    ResultVariable,
    SuccessorVariable,

    /// This element is an optional element.
    Optional,
  };
  Element(Kind kind) : kind(kind) {}
  virtual ~Element() = default;

  /// Return the kind of this element.
  Kind getKind() const { return kind; }

private:
  /// The kind of this element.
  Kind kind;
};
} // namespace

//===----------------------------------------------------------------------===//
// VariableElement

namespace {
/// This class represents an instance of an variable element. A variable refers
/// to something registered on the operation itself, e.g. an argument, result,
/// etc.
template <typename VarT, Element::Kind kindVal>
class VariableElement : public Element {
public:
  VariableElement(const VarT *var) : Element(kindVal), var(var) {}
  static bool classof(const Element *element) {
    return element->getKind() == kindVal;
  }
  const VarT *getVar() { return var; }

protected:
  const VarT *var;
};

/// This class represents a variable that refers to an attribute argument.
struct AttributeVariable
    : public VariableElement<NamedAttribute, Element::Kind::AttributeVariable> {
  using VariableElement<NamedAttribute,
                        Element::Kind::AttributeVariable>::VariableElement;

  /// Return the constant builder call for the type of this attribute, or None
  /// if it doesn't have one.
  Optional<StringRef> getTypeBuilder() const {
    Optional<Type> attrType = var->attr.getValueType();
    return attrType ? attrType->getBuilderCall() : llvm::None;
  }
};

/// This class represents a variable that refers to an operand argument.
using OperandVariable =
    VariableElement<NamedTypeConstraint, Element::Kind::OperandVariable>;

/// This class represents a variable that refers to a result.
using ResultVariable =
    VariableElement<NamedTypeConstraint, Element::Kind::ResultVariable>;

/// This class represents a variable that refers to a successor.
using SuccessorVariable =
    VariableElement<NamedSuccessor, Element::Kind::SuccessorVariable>;
} // end anonymous namespace

//===----------------------------------------------------------------------===//
// DirectiveElement

namespace {
/// This class implements single kind directives.
template <Element::Kind type>
class DirectiveElement : public Element {
public:
  DirectiveElement() : Element(type){};
  static bool classof(const Element *ele) { return ele->getKind() == type; }
};
/// This class represents the `operands` directive. This directive represents
/// all of the operands of an operation.
using OperandsDirective = DirectiveElement<Element::Kind::OperandsDirective>;

/// This class represents the `results` directive. This directive represents
/// all of the results of an operation.
using ResultsDirective = DirectiveElement<Element::Kind::ResultsDirective>;

/// This class represents the `successors` directive. This directive represents
/// all of the successors of an operation.
using SuccessorsDirective =
    DirectiveElement<Element::Kind::SuccessorsDirective>;

/// This class represents the `attr-dict` directive. This directive represents
/// the attribute dictionary of the operation.
class AttrDictDirective
    : public DirectiveElement<Element::Kind::AttrDictDirective> {
public:
  explicit AttrDictDirective(bool withKeyword) : withKeyword(withKeyword) {}
  bool isWithKeyword() const { return withKeyword; }

private:
  /// If the dictionary should be printed with the 'attributes' keyword.
  bool withKeyword;
};

/// This class represents the `functional-type` directive. This directive takes
/// two arguments and formats them, respectively, as the inputs and results of a
/// FunctionType.
class FunctionalTypeDirective
    : public DirectiveElement<Element::Kind::FunctionalTypeDirective> {
public:
  FunctionalTypeDirective(std::unique_ptr<Element> inputs,
                          std::unique_ptr<Element> results)
      : inputs(std::move(inputs)), results(std::move(results)) {}
  Element *getInputs() const { return inputs.get(); }
  Element *getResults() const { return results.get(); }

private:
  /// The input and result arguments.
  std::unique_ptr<Element> inputs, results;
};

/// This class represents the `type` directive.
class TypeDirective : public DirectiveElement<Element::Kind::TypeDirective> {
public:
  TypeDirective(std::unique_ptr<Element> arg) : operand(std::move(arg)) {}
  Element *getOperand() const { return operand.get(); }

private:
  /// The operand that is used to format the directive.
  std::unique_ptr<Element> operand;
};
} // end anonymous namespace

//===----------------------------------------------------------------------===//
// LiteralElement

namespace {
/// This class represents an instance of a literal element.
class LiteralElement : public Element {
public:
  LiteralElement(StringRef literal)
      : Element{Kind::Literal}, literal(literal) {}
  static bool classof(const Element *element) {
    return element->getKind() == Kind::Literal;
  }

  /// Return the literal for this element.
  StringRef getLiteral() const { return literal; }

  /// Returns true if the given string is a valid literal.
  static bool isValidLiteral(StringRef value);

private:
  /// The spelling of the literal for this element.
  StringRef literal;
};
} // end anonymous namespace

bool LiteralElement::isValidLiteral(StringRef value) {
  if (value.empty())
    return false;
  char front = value.front();

  // If there is only one character, this must either be punctuation or a
  // single character bare identifier.
  if (value.size() == 1)
    return isalpha(front) || StringRef("_:,=<>()[]").contains(front);

  // Check the punctuation that are larger than a single character.
  if (value == "->")
    return true;

  // Otherwise, this must be an identifier.
  if (!isalpha(front) && front != '_')
    return false;
  return llvm::all_of(value.drop_front(), [](char c) {
    return isalnum(c) || c == '_' || c == '$' || c == '.';
  });
}

//===----------------------------------------------------------------------===//
// OptionalElement

namespace {
/// This class represents a group of elements that are optionally emitted based
/// upon an optional variable of the operation.
class OptionalElement : public Element {
public:
  OptionalElement(std::vector<std::unique_ptr<Element>> &&elements,
                  unsigned anchor)
      : Element{Kind::Optional}, elements(std::move(elements)), anchor(anchor) {
  }
  static bool classof(const Element *element) {
    return element->getKind() == Kind::Optional;
  }

  /// Return the nested elements of this grouping.
  auto getElements() const { return llvm::make_pointee_range(elements); }

  /// Return the anchor of this optional group.
  Element *getAnchor() const { return elements[anchor].get(); }

private:
  /// The child elements of this optional.
  std::vector<std::unique_ptr<Element>> elements;
  /// The index of the element that acts as the anchor for the optional group.
  unsigned anchor;
};
} // end anonymous namespace

//===----------------------------------------------------------------------===//
// OperationFormat
//===----------------------------------------------------------------------===//

namespace {

using ConstArgument =
    llvm::PointerUnion<const NamedAttribute *, const NamedTypeConstraint *>;

struct OperationFormat {
  /// This class represents a specific resolver for an operand or result type.
  class TypeResolution {
  public:
    TypeResolution() = default;

    /// Get the index into the buildable types for this type, or None.
    Optional<int> getBuilderIdx() const { return builderIdx; }
    void setBuilderIdx(int idx) { builderIdx = idx; }

    /// Get the variable this type is resolved to, or nullptr.
    const NamedTypeConstraint *getVariable() const {
      return resolver.dyn_cast<const NamedTypeConstraint *>();
    }
    /// Get the attribute this type is resolved to, or nullptr.
    const NamedAttribute *getAttribute() const {
      return resolver.dyn_cast<const NamedAttribute *>();
    }
    /// Get the transformer for the type of the variable, or None.
    Optional<StringRef> getVarTransformer() const {
      return variableTransformer;
    }
    void setResolver(ConstArgument arg, Optional<StringRef> transformer) {
      resolver = arg;
      variableTransformer = transformer;
      assert(getVariable() || getAttribute());
    }

  private:
    /// If the type is resolved with a buildable type, this is the index into
    /// 'buildableTypes' in the parent format.
    Optional<int> builderIdx;
    /// If the type is resolved based upon another operand or result, this is
    /// the variable or the attribute that this type is resolved to.
    ConstArgument resolver;
    /// If the type is resolved based upon another operand or result, this is
    /// a transformer to apply to the variable when resolving.
    Optional<StringRef> variableTransformer;
  };

  OperationFormat(const Operator &op)
      : allOperands(false), allOperandTypes(false), allResultTypes(false) {
    operandTypes.resize(op.getNumOperands(), TypeResolution());
    resultTypes.resize(op.getNumResults(), TypeResolution());
  }

  /// Generate the operation parser from this format.
  void genParser(Operator &op, OpClass &opClass);
  /// Generate the c++ to resolve the types of operands and results during
  /// parsing.
  void genParserTypeResolution(Operator &op, OpMethodBody &body);
  /// Generate the c++ to resolve successors during parsing.
  void genParserSuccessorResolution(Operator &op, OpMethodBody &body);
  /// Generate the c++ to handling variadic segment size traits.
  void genParserVariadicSegmentResolution(Operator &op, OpMethodBody &body);

  /// Generate the operation printer from this format.
  void genPrinter(Operator &op, OpClass &opClass);

  /// The various elements in this format.
  std::vector<std::unique_ptr<Element>> elements;

  /// A flag indicating if all operand/result types were seen. If the format
  /// contains these, it can not contain individual type resolvers.
  bool allOperands, allOperandTypes, allResultTypes;

  /// A map of buildable types to indices.
  llvm::MapVector<StringRef, int, llvm::StringMap<int>> buildableTypes;

  /// The index of the buildable type, if valid, for every operand and result.
  std::vector<TypeResolution> operandTypes, resultTypes;
};
} // end anonymous namespace

//===----------------------------------------------------------------------===//
// Parser Gen

/// Returns if we can format the given attribute as an EnumAttr in the parser
/// format.
static bool canFormatEnumAttr(const NamedAttribute *attr) {
  const EnumAttr *enumAttr = dyn_cast<EnumAttr>(&attr->attr);
  if (!enumAttr)
    return false;

  // The attribute must have a valid underlying type and a constant builder.
  return !enumAttr->getUnderlyingType().empty() &&
         !enumAttr->getConstBuilderTemplate().empty();
}

/// The code snippet used to generate a parser call for an attribute.
///
/// {0}: The storage type of the attribute.
/// {1}: The name of the attribute.
/// {2}: The type for the attribute.
const char *const attrParserCode = R"(
  {0} {1}Attr;
  if (parser.parseAttribute({1}Attr{2}, "{1}", result.attributes))
    return failure();
)";
const char *const optionalAttrParserCode = R"(
  {0} {1}Attr;
  {
    ::mlir::OptionalParseResult parseResult =
      parser.parseOptionalAttribute({1}Attr{2}, "{1}", result.attributes);
    if (parseResult.hasValue() && failed(*parseResult))
      return failure();
  }
)";

/// The code snippet used to generate a parser call for an enum attribute.
///
/// {0}: The name of the attribute.
/// {1}: The c++ namespace for the enum symbolize functions.
/// {2}: The function to symbolize a string of the enum.
/// {3}: The constant builder call to create an attribute of the enum type.
const char *const enumAttrParserCode = R"(
  {
    ::mlir::StringAttr attrVal;
    ::mlir::NamedAttrList attrStorage;
    auto loc = parser.getCurrentLocation();
    if (parser.parseAttribute(attrVal, parser.getBuilder().getNoneType(),
                              "{0}", attrStorage))
      return failure();

    auto attrOptional = {1}::{2}(attrVal.getValue());
    if (!attrOptional)
      return parser.emitError(loc, "invalid ")
             << "{0} attribute specification: " << attrVal;

    result.addAttribute("{0}", {3});
  }
)";
const char *const optionalEnumAttrParserCode = R"(
  Attribute {0}Attr;
  {
    ::mlir::StringAttr attrVal;
    ::mlir::NamedAttrList attrStorage;
    auto loc = parser.getCurrentLocation();

    ::mlir::OptionalParseResult parseResult =
      parser.parseOptionalAttribute(attrVal, parser.getBuilder().getNoneType(),
                                    "{0}", attrStorage);
    if (parseResult.hasValue()) {
      if (failed(*parseResult))
        return failure();

      auto attrOptional = {1}::{2}(attrVal.getValue());
      if (!attrOptional)
        return parser.emitError(loc, "invalid ")
               << "{0} attribute specification: " << attrVal;

      {0}Attr = {3};
      result.addAttribute("{0}", {0}Attr);
    }
  }
)";

/// The code snippet used to generate a parser call for an operand.
///
/// {0}: The name of the operand.
const char *const variadicOperandParserCode = R"(
  if (parser.parseOperandList({0}Operands))
    return failure();
)";
const char *const optionalOperandParserCode = R"(
  {
    ::mlir::OpAsmParser::OperandType operand;
    ::mlir::OptionalParseResult parseResult =
                                    parser.parseOptionalOperand(operand);
    if (parseResult.hasValue()) {
      if (failed(*parseResult))
        return failure();
      {0}Operands.push_back(operand);
    }
  }
)";
const char *const operandParserCode = R"(
  if (parser.parseOperand({0}RawOperands[0]))
    return failure();
)";

/// The code snippet used to generate a parser call for a type list.
///
/// {0}: The name for the type list.
const char *const variadicTypeParserCode = R"(
  if (parser.parseTypeList({0}Types))
    return failure();
)";
const char *const optionalTypeParserCode = R"(
  {
    ::mlir::Type optionalType;
    ::mlir::OptionalParseResult parseResult =
                                    parser.parseOptionalType(optionalType);
    if (parseResult.hasValue()) {
      if (failed(*parseResult))
        return failure();
      {0}Types.push_back(optionalType);
    }
  }
)";
const char *const typeParserCode = R"(
  if (parser.parseType({0}RawTypes[0]))
    return failure();
)";

/// The code snippet used to generate a parser call for a functional type.
///
/// {0}: The name for the input type list.
/// {1}: The name for the result type list.
const char *const functionalTypeParserCode = R"(
  ::mlir::FunctionType {0}__{1}_functionType;
  if (parser.parseType({0}__{1}_functionType))
    return failure();
  {0}Types = {0}__{1}_functionType.getInputs();
  {1}Types = {0}__{1}_functionType.getResults();
)";

/// The code snippet used to generate a parser call for a successor list.
///
/// {0}: The name for the successor list.
const char *successorListParserCode = R"(
  ::llvm::SmallVector<::mlir::Block *, 2> {0}Successors;
  {
    ::mlir::Block *succ;
    auto firstSucc = parser.parseOptionalSuccessor(succ);
    if (firstSucc.hasValue()) {
      if (failed(*firstSucc))
        return failure();
      {0}Successors.emplace_back(succ);

      // Parse any trailing successors.
      while (succeeded(parser.parseOptionalComma())) {
        if (parser.parseSuccessor(succ))
          return failure();
        {0}Successors.emplace_back(succ);
      }
    }
  }
)";

/// The code snippet used to generate a parser call for a successor.
///
/// {0}: The name of the successor.
const char *successorParserCode = R"(
  ::mlir::Block *{0}Successor = nullptr;
  if (parser.parseSuccessor({0}Successor))
    return failure();
)";

namespace {
/// The type of length for a given parse argument.
enum class ArgumentLengthKind {
  /// The argument is variadic, and may contain 0->N elements.
  Variadic,
  /// The argument is optional, and may contain 0 or 1 elements.
  Optional,
  /// The argument is a single element, i.e. always represents 1 element.
  Single
};
} // end anonymous namespace

/// Get the length kind for the given constraint.
static ArgumentLengthKind
getArgumentLengthKind(const NamedTypeConstraint *var) {
  if (var->isOptional())
    return ArgumentLengthKind::Optional;
  if (var->isVariadic())
    return ArgumentLengthKind::Variadic;
  return ArgumentLengthKind::Single;
}

/// Get the name used for the type list for the given type directive operand.
/// 'lengthKind' to the corresponding kind for the given argument.
static StringRef getTypeListName(Element *arg, ArgumentLengthKind &lengthKind) {
  if (auto *operand = dyn_cast<OperandVariable>(arg)) {
    lengthKind = getArgumentLengthKind(operand->getVar());
    return operand->getVar()->name;
  }
  if (auto *result = dyn_cast<ResultVariable>(arg)) {
    lengthKind = getArgumentLengthKind(result->getVar());
    return result->getVar()->name;
  }
  lengthKind = ArgumentLengthKind::Variadic;
  if (isa<OperandsDirective>(arg))
    return "allOperand";
  if (isa<ResultsDirective>(arg))
    return "allResult";
  llvm_unreachable("unknown 'type' directive argument");
}

/// Generate the parser for a literal value.
static void genLiteralParser(StringRef value, OpMethodBody &body) {
  // Handle the case of a keyword/identifier.
  if (value.front() == '_' || isalpha(value.front())) {
    body << "Keyword(\"" << value << "\")";
    return;
  }
  body << (StringRef)llvm::StringSwitch<StringRef>(value)
              .Case("->", "Arrow()")
              .Case(":", "Colon()")
              .Case(",", "Comma()")
              .Case("=", "Equal()")
              .Case("<", "Less()")
              .Case(">", "Greater()")
              .Case("(", "LParen()")
              .Case(")", "RParen()")
              .Case("[", "LSquare()")
              .Case("]", "RSquare()");
}

/// Generate the storage code required for parsing the given element.
static void genElementParserStorage(Element *element, OpMethodBody &body) {
  if (auto *optional = dyn_cast<OptionalElement>(element)) {
    for (auto &childElement : optional->getElements())
      genElementParserStorage(&childElement, body);
  } else if (auto *operand = dyn_cast<OperandVariable>(element)) {
    StringRef name = operand->getVar()->name;
    if (operand->getVar()->isVariableLength()) {
      body << "  ::mlir::SmallVector<::mlir::OpAsmParser::OperandType, 4> "
           << name << "Operands;\n";
    } else {
      body << "  ::mlir::OpAsmParser::OperandType " << name
           << "RawOperands[1];\n"
           << "  ::llvm::ArrayRef<::mlir::OpAsmParser::OperandType> " << name
           << "Operands(" << name << "RawOperands);";
    }
    body << llvm::formatv(
        "  ::llvm::SMLoc {0}OperandsLoc = parser.getCurrentLocation();\n"
        "  (void){0}OperandsLoc;\n",
        name);
  } else if (auto *dir = dyn_cast<TypeDirective>(element)) {
    ArgumentLengthKind lengthKind;
    StringRef name = getTypeListName(dir->getOperand(), lengthKind);
    if (lengthKind != ArgumentLengthKind::Single)
      body << "  ::mlir::SmallVector<::mlir::Type, 1> " << name << "Types;\n";
    else
      body << llvm::formatv("  ::mlir::Type {0}RawTypes[1];\n", name)
           << llvm::formatv(
                  "  ::llvm::ArrayRef<::mlir::Type> {0}Types({0}RawTypes);\n",
                  name);
  } else if (auto *dir = dyn_cast<FunctionalTypeDirective>(element)) {
    ArgumentLengthKind ignored;
    body << "  ::llvm::ArrayRef<::mlir::Type> "
         << getTypeListName(dir->getInputs(), ignored) << "Types;\n";
    body << "  ::llvm::ArrayRef<::mlir::Type> "
         << getTypeListName(dir->getResults(), ignored) << "Types;\n";
  }
}

/// Generate the parser for a single format element.
static void genElementParser(Element *element, OpMethodBody &body,
                             FmtContext &attrTypeCtx) {
  /// Optional Group.
  if (auto *optional = dyn_cast<OptionalElement>(element)) {
    auto elements = optional->getElements();

    // Generate a special optional parser for the first element to gate the
    // parsing of the rest of the elements.
    Element *firstElement = &*elements.begin();
    if (auto *attrVar = dyn_cast<AttributeVariable>(firstElement)) {
      genElementParser(attrVar, body, attrTypeCtx);
      body << "  if (" << attrVar->getVar()->name << "Attr) {\n";
    } else if (auto *literal = dyn_cast<LiteralElement>(firstElement)) {
      body << "  if (succeeded(parser.parseOptional";
      genLiteralParser(literal->getLiteral(), body);
      body << ")) {\n";
    } else if (auto *opVar = dyn_cast<OperandVariable>(firstElement)) {
      genElementParser(opVar, body, attrTypeCtx);
      body << "  if (!" << opVar->getVar()->name << "Operands.empty()) {\n";
    }

    // Generate the rest of the elements normally.
    for (auto &childElement : llvm::drop_begin(elements, 1))
      genElementParser(&childElement, body, attrTypeCtx);
    body << "  }\n";

    /// Literals.
  } else if (LiteralElement *literal = dyn_cast<LiteralElement>(element)) {
    body << "  if (parser.parse";
    genLiteralParser(literal->getLiteral(), body);
    body << ")\n    return failure();\n";

    /// Arguments.
  } else if (auto *attr = dyn_cast<AttributeVariable>(element)) {
    const NamedAttribute *var = attr->getVar();

    // Check to see if we can parse this as an enum attribute.
    if (canFormatEnumAttr(var)) {
      const EnumAttr &enumAttr = cast<EnumAttr>(var->attr);

      // Generate the code for building an attribute for this enum.
      std::string attrBuilderStr;
      {
        llvm::raw_string_ostream os(attrBuilderStr);
        os << tgfmt(enumAttr.getConstBuilderTemplate(), &attrTypeCtx,
                    "attrOptional.getValue()");
      }

      body << formatv(var->attr.isOptional() ? optionalEnumAttrParserCode
                                             : enumAttrParserCode,
                      var->name, enumAttr.getCppNamespace(),
                      enumAttr.getStringToSymbolFnName(), attrBuilderStr);
      return;
    }

    // If this attribute has a buildable type, use that when parsing the
    // attribute.
    std::string attrTypeStr;
    if (Optional<StringRef> typeBuilder = attr->getTypeBuilder()) {
      llvm::raw_string_ostream os(attrTypeStr);
      os << ", " << tgfmt(*typeBuilder, &attrTypeCtx);
    }

    body << formatv(var->attr.isOptional() ? optionalAttrParserCode
                                           : attrParserCode,
                    var->attr.getStorageType(), var->name, attrTypeStr);
  } else if (auto *operand = dyn_cast<OperandVariable>(element)) {
    ArgumentLengthKind lengthKind = getArgumentLengthKind(operand->getVar());
    StringRef name = operand->getVar()->name;
    if (lengthKind == ArgumentLengthKind::Variadic)
      body << llvm::formatv(variadicOperandParserCode, name);
    else if (lengthKind == ArgumentLengthKind::Optional)
      body << llvm::formatv(optionalOperandParserCode, name);
    else
      body << formatv(operandParserCode, name);
  } else if (auto *successor = dyn_cast<SuccessorVariable>(element)) {
    bool isVariadic = successor->getVar()->isVariadic();
    body << formatv(isVariadic ? successorListParserCode : successorParserCode,
                    successor->getVar()->name);

    /// Directives.
  } else if (auto *attrDict = dyn_cast<AttrDictDirective>(element)) {
    body << "  if (parser.parseOptionalAttrDict"
         << (attrDict->isWithKeyword() ? "WithKeyword" : "")
         << "(result.attributes))\n"
         << "    return failure();\n";
  } else if (isa<OperandsDirective>(element)) {
    body << "  ::llvm::SMLoc allOperandLoc = parser.getCurrentLocation();\n"
         << "  ::mlir::SmallVector<::mlir::OpAsmParser::OperandType, 4> "
            "allOperands;\n"
         << "  if (parser.parseOperandList(allOperands))\n"
         << "    return failure();\n";
  } else if (isa<SuccessorsDirective>(element)) {
    body << llvm::formatv(successorListParserCode, "full");
  } else if (auto *dir = dyn_cast<TypeDirective>(element)) {
    ArgumentLengthKind lengthKind;
    StringRef listName = getTypeListName(dir->getOperand(), lengthKind);
    if (lengthKind == ArgumentLengthKind::Variadic)
      body << llvm::formatv(variadicTypeParserCode, listName);
    else if (lengthKind == ArgumentLengthKind::Optional)
      body << llvm::formatv(optionalTypeParserCode, listName);
    else
      body << formatv(typeParserCode, listName);
  } else if (auto *dir = dyn_cast<FunctionalTypeDirective>(element)) {
    ArgumentLengthKind ignored;
    body << formatv(functionalTypeParserCode,
                    getTypeListName(dir->getInputs(), ignored),
                    getTypeListName(dir->getResults(), ignored));
  } else {
    llvm_unreachable("unknown format element");
  }
}

void OperationFormat::genParser(Operator &op, OpClass &opClass) {
  auto &method = opClass.newMethod(
      "::mlir::ParseResult", "parse",
      "::mlir::OpAsmParser &parser, ::mlir::OperationState &result",
      OpMethod::MP_Static);
  auto &body = method.body();

  // Generate variables to store the operands and type within the format. This
  // allows for referencing these variables in the presence of optional
  // groupings.
  for (auto &element : elements)
    genElementParserStorage(&*element, body);

  // A format context used when parsing attributes with buildable types.
  FmtContext attrTypeCtx;
  attrTypeCtx.withBuilder("parser.getBuilder()");

  // Generate parsers for each of the elements.
  for (auto &element : elements)
    genElementParser(element.get(), body, attrTypeCtx);

  // Generate the code to resolve the operand/result types and successors now
  // that they have been parsed.
  genParserTypeResolution(op, body);
  genParserSuccessorResolution(op, body);
  genParserVariadicSegmentResolution(op, body);

  body << "  return success();\n";
}

void OperationFormat::genParserTypeResolution(Operator &op,
                                              OpMethodBody &body) {
  // If any of type resolutions use transformed variables, make sure that the
  // types of those variables are resolved.
  SmallPtrSet<const NamedTypeConstraint *, 8> verifiedVariables;
  FmtContext verifierFCtx;
  for (TypeResolution &resolver :
       llvm::concat<TypeResolution>(resultTypes, operandTypes)) {
    Optional<StringRef> transformer = resolver.getVarTransformer();
    if (!transformer)
      continue;
    // Ensure that we don't verify the same variables twice.
    const NamedTypeConstraint *variable = resolver.getVariable();
    if (!variable || !verifiedVariables.insert(variable).second)
      continue;

    auto constraint = variable->constraint;
    body << "  for (::mlir::Type type : " << variable->name << "Types) {\n"
         << "    (void)type;\n"
         << "    if (!("
         << tgfmt(constraint.getConditionTemplate(),
                  &verifierFCtx.withSelf("type"))
         << ")) {\n"
         << formatv("      return parser.emitError(parser.getNameLoc()) << "
                    "\"'{0}' must be {1}, but got \" << type;\n",
                    variable->name, constraint.getDescription())
         << "    }\n"
         << "  }\n";
  }

  // Initialize the set of buildable types.
  if (!buildableTypes.empty()) {
    FmtContext typeBuilderCtx;
    typeBuilderCtx.withBuilder("parser.getBuilder()");
    for (auto &it : buildableTypes)
      body << "  ::mlir::Type odsBuildableType" << it.second << " = "
           << tgfmt(it.first, &typeBuilderCtx) << ";\n";
  }

  // Emit the code necessary for a type resolver.
  auto emitTypeResolver = [&](TypeResolution &resolver, StringRef curVar) {
    if (Optional<int> val = resolver.getBuilderIdx()) {
      body << "odsBuildableType" << *val;
    } else if (const NamedTypeConstraint *var = resolver.getVariable()) {
      if (Optional<StringRef> tform = resolver.getVarTransformer())
        body << tgfmt(*tform, &FmtContext().withSelf(var->name + "Types[0]"));
      else
        body << var->name << "Types";
    } else if (const NamedAttribute *attr = resolver.getAttribute()) {
      if (Optional<StringRef> tform = resolver.getVarTransformer())
        body << tgfmt(*tform,
                      &FmtContext().withSelf(attr->name + "Attr.getType()"));
      else
        body << attr->name << "Attr.getType()";
    } else {
      body << curVar << "Types";
    }
  };

  // Resolve each of the result types.
  if (allResultTypes) {
    body << "  result.addTypes(allResultTypes);\n";
  } else {
    for (unsigned i = 0, e = op.getNumResults(); i != e; ++i) {
      body << "  result.addTypes(";
      emitTypeResolver(resultTypes[i], op.getResultName(i));
      body << ");\n";
    }
  }

  // Early exit if there are no operands.
  if (op.getNumOperands() == 0)
    return;

  // Handle the case where all operand types are in one group.
  if (allOperandTypes) {
    // If we have all operands together, use the full operand list directly.
    if (allOperands) {
      body << "  if (parser.resolveOperands(allOperands, allOperandTypes, "
              "allOperandLoc, result.operands))\n"
              "    return failure();\n";
      return;
    }

    // Otherwise, use llvm::concat to merge the disjoint operand lists together.
    // llvm::concat does not allow the case of a single range, so guard it here.
    body << "  if (parser.resolveOperands(";
    if (op.getNumOperands() > 1) {
      body << "::llvm::concat<const ::mlir::OpAsmParser::OperandType>(";
      llvm::interleaveComma(op.getOperands(), body, [&](auto &operand) {
        body << operand.name << "Operands";
      });
      body << ")";
    } else {
      body << op.operand_begin()->name << "Operands";
    }
    body << ", allOperandTypes, parser.getNameLoc(), result.operands))\n"
         << "    return failure();\n";
    return;
  }
  // Handle the case where all of the operands were grouped together.
  if (allOperands) {
    body << "  if (parser.resolveOperands(allOperands, ";

    // Group all of the operand types together to perform the resolution all at
    // once. Use llvm::concat to perform the merge. llvm::concat does not allow
    // the case of a single range, so guard it here.
    if (op.getNumOperands() > 1) {
      body << "::llvm::concat<const Type>(";
      llvm::interleaveComma(
          llvm::seq<int>(0, op.getNumOperands()), body, [&](int i) {
            body << "::llvm::ArrayRef<::mlir::Type>(";
            emitTypeResolver(operandTypes[i], op.getOperand(i).name);
            body << ")";
          });
      body << ")";
    } else {
      emitTypeResolver(operandTypes.front(), op.getOperand(0).name);
    }

    body << ", allOperandLoc, result.operands))\n"
         << "    return failure();\n";
    return;
  }

  // The final case is the one where each of the operands types are resolved
  // separately.
  for (unsigned i = 0, e = op.getNumOperands(); i != e; ++i) {
    NamedTypeConstraint &operand = op.getOperand(i);
    body << "  if (parser.resolveOperands(" << operand.name << "Operands, ";

    // Resolve the type of this operand.
    TypeResolution &operandType = operandTypes[i];
    emitTypeResolver(operandType, operand.name);

    // If the type is resolved by a non-variadic variable, index into the
    // resolved type list. This allows for resolving the types of a variadic
    // operand list from a non-variadic variable.
    bool verifyOperandAndTypeSize = true;
    if (auto *resolverVar = operandType.getVariable()) {
      if (!resolverVar->isVariadic() && !operandType.getVarTransformer()) {
        body << "[0]";
        verifyOperandAndTypeSize = false;
      }
    } else {
      verifyOperandAndTypeSize = !operandType.getBuilderIdx();
    }

    // Check to see if the sizes between the types and operands must match. If
    // they do, provide the operand location to select the proper resolution
    // overload.
    if (verifyOperandAndTypeSize)
      body << ", " << operand.name << "OperandsLoc";
    body << ", result.operands))\n    return failure();\n";
  }
}

void OperationFormat::genParserSuccessorResolution(Operator &op,
                                                   OpMethodBody &body) {
  // Check for the case where all successors were parsed.
  bool hasAllSuccessors = llvm::any_of(
      elements, [](auto &elt) { return isa<SuccessorsDirective>(elt.get()); });
  if (hasAllSuccessors) {
    body << "  result.addSuccessors(fullSuccessors);\n";
    return;
  }

  // Otherwise, handle each successor individually.
  for (const NamedSuccessor &successor : op.getSuccessors()) {
    if (successor.isVariadic())
      body << "  result.addSuccessors(" << successor.name << "Successors);\n";
    else
      body << "  result.addSuccessors(" << successor.name << "Successor);\n";
  }
}

void OperationFormat::genParserVariadicSegmentResolution(Operator &op,
                                                         OpMethodBody &body) {
  if (!allOperands && op.getTrait("OpTrait::AttrSizedOperandSegments")) {
    body << "  result.addAttribute(\"operand_segment_sizes\", "
         << "parser.getBuilder().getI32VectorAttr({";
    auto interleaveFn = [&](const NamedTypeConstraint &operand) {
      // If the operand is variadic emit the parsed size.
      if (operand.isVariableLength())
        body << "static_cast<int32_t>(" << operand.name << "Operands.size())";
      else
        body << "1";
    };
    llvm::interleaveComma(op.getOperands(), body, interleaveFn);
    body << "}));\n";
  }
}

//===----------------------------------------------------------------------===//
// PrinterGen

/// Generate the printer for the 'attr-dict' directive.
static void genAttrDictPrinter(OperationFormat &fmt, Operator &op,
                               OpMethodBody &body, bool withKeyword) {
  // Collect all of the attributes used in the format, these will be elided.
  SmallVector<const NamedAttribute *, 1> usedAttributes;
  for (auto &it : fmt.elements) {
    if (auto *attr = dyn_cast<AttributeVariable>(it.get()))
      usedAttributes.push_back(attr->getVar());
    // Collect the optional attributes.
    if (auto *opt = dyn_cast<OptionalElement>(it.get())) {
      for (auto &elem : opt->getElements()) {
        if (auto *attr = dyn_cast<AttributeVariable>(&elem))
          usedAttributes.push_back(attr->getVar());
      }
    }
  }

  body << "  p.printOptionalAttrDict" << (withKeyword ? "WithKeyword" : "")
       << "(getAttrs(), /*elidedAttrs=*/{";
  // Elide the variadic segment size attributes if necessary.
  if (!fmt.allOperands && op.getTrait("OpTrait::AttrSizedOperandSegments"))
    body << "\"operand_segment_sizes\", ";
  llvm::interleaveComma(usedAttributes, body, [&](const NamedAttribute *attr) {
    body << "\"" << attr->name << "\"";
  });
  body << "});\n";
}

/// Generate the printer for a literal value. `shouldEmitSpace` is true if a
/// space should be emitted before this element. `lastWasPunctuation` is true if
/// the previous element was a punctuation literal.
static void genLiteralPrinter(StringRef value, OpMethodBody &body,
                              bool &shouldEmitSpace, bool &lastWasPunctuation) {
  body << "  p";

  // Don't insert a space for certain punctuation.
  auto shouldPrintSpaceBeforeLiteral = [&] {
    if (value.size() != 1 && value != "->")
      return true;
    if (lastWasPunctuation)
      return !StringRef(">)}],").contains(value.front());
    return !StringRef("<>(){}[],").contains(value.front());
  };
  if (shouldEmitSpace && shouldPrintSpaceBeforeLiteral())
    body << " << \" \"";
  body << " << \"" << value << "\";\n";

  // Insert a space after certain literals.
  shouldEmitSpace =
      value.size() != 1 || !StringRef("<({[").contains(value.front());
  lastWasPunctuation = !(value.front() == '_' || isalpha(value.front()));
}

/// Generate the C++ for an operand to a (*-)type directive.
static OpMethodBody &genTypeOperandPrinter(Element *arg, OpMethodBody &body) {
  if (isa<OperandsDirective>(arg))
    return body << "getOperation()->getOperandTypes()";
  if (isa<ResultsDirective>(arg))
    return body << "getOperation()->getResultTypes()";
  auto *operand = dyn_cast<OperandVariable>(arg);
  auto *var = operand ? operand->getVar() : cast<ResultVariable>(arg)->getVar();
  if (var->isVariadic())
    return body << var->name << "().getTypes()";
  if (var->isOptional())
    return body << llvm::formatv(
               "({0}() ? ::llvm::ArrayRef<::mlir::Type>({0}().getType()) : "
               "::llvm::ArrayRef<::mlir::Type>())",
               var->name);
  return body << "::llvm::ArrayRef<::mlir::Type>(" << var->name
              << "().getType())";
}

/// Generate the code for printing the given element.
static void genElementPrinter(Element *element, OpMethodBody &body,
                              OperationFormat &fmt, Operator &op,
                              bool &shouldEmitSpace, bool &lastWasPunctuation) {
  if (LiteralElement *literal = dyn_cast<LiteralElement>(element))
    return genLiteralPrinter(literal->getLiteral(), body, shouldEmitSpace,
                             lastWasPunctuation);

  // Emit an optional group.
  if (OptionalElement *optional = dyn_cast<OptionalElement>(element)) {
    // Emit the check for the presence of the anchor element.
    Element *anchor = optional->getAnchor();
    if (auto *operand = dyn_cast<OperandVariable>(anchor)) {
      const NamedTypeConstraint *var = operand->getVar();
      if (var->isOptional())
        body << "  if (" << var->name << "()) {\n";
      else if (var->isVariadic())
        body << "  if (!" << var->name << "().empty()) {\n";
    } else {
      body << "  if (getAttr(\""
           << cast<AttributeVariable>(anchor)->getVar()->name << "\")) {\n";
    }

    // Emit each of the elements.
    for (Element &childElement : optional->getElements())
      genElementPrinter(&childElement, body, fmt, op, shouldEmitSpace,
                        lastWasPunctuation);
    body << "  }\n";
    return;
  }

  // Emit the attribute dictionary.
  if (auto *attrDict = dyn_cast<AttrDictDirective>(element)) {
    genAttrDictPrinter(fmt, op, body, attrDict->isWithKeyword());
    lastWasPunctuation = false;
    return;
  }

  // Optionally insert a space before the next element. The AttrDict printer
  // already adds a space as necessary.
  if (shouldEmitSpace || !lastWasPunctuation)
    body << "  p << \" \";\n";
  lastWasPunctuation = false;
  shouldEmitSpace = true;

  if (auto *attr = dyn_cast<AttributeVariable>(element)) {
    const NamedAttribute *var = attr->getVar();

    // If we are formatting as an enum, symbolize the attribute as a string.
    if (canFormatEnumAttr(var)) {
      const EnumAttr &enumAttr = cast<EnumAttr>(var->attr);
      body << "  p << \"\\\"\" << " << enumAttr.getSymbolToStringFnName() << "("
           << var->name << "()) << \"\\\"\";\n";
      return;
    }

    // Elide the attribute type if it is buildable.
    if (attr->getTypeBuilder())
      body << "  p.printAttributeWithoutType(" << var->name << "Attr());\n";
    else
      body << "  p.printAttribute(" << var->name << "Attr());\n";
  } else if (auto *operand = dyn_cast<OperandVariable>(element)) {
    if (operand->getVar()->isOptional()) {
      body << "  if (::mlir::Value value = " << operand->getVar()->name
           << "())\n"
           << "    p << value;\n";
    } else {
      body << "  p << " << operand->getVar()->name << "();\n";
    }
  } else if (auto *successor = dyn_cast<SuccessorVariable>(element)) {
    const NamedSuccessor *var = successor->getVar();
    if (var->isVariadic())
      body << "  ::llvm::interleaveComma(" << var->name << "(), p);\n";
    else
      body << "  p << " << var->name << "();\n";
  } else if (isa<OperandsDirective>(element)) {
    body << "  p << getOperation()->getOperands();\n";
  } else if (isa<SuccessorsDirective>(element)) {
    body << "  ::llvm::interleaveComma(getOperation()->getSuccessors(), p);\n";
  } else if (auto *dir = dyn_cast<TypeDirective>(element)) {
    body << "  p << ";
    genTypeOperandPrinter(dir->getOperand(), body) << ";\n";
  } else if (auto *dir = dyn_cast<FunctionalTypeDirective>(element)) {
    body << "  p.printFunctionalType(";
    genTypeOperandPrinter(dir->getInputs(), body) << ", ";
    genTypeOperandPrinter(dir->getResults(), body) << ");\n";
  } else {
    llvm_unreachable("unknown format element");
  }
}

void OperationFormat::genPrinter(Operator &op, OpClass &opClass) {
  auto &method = opClass.newMethod("void", "print", "OpAsmPrinter &p");
  auto &body = method.body();

  // Emit the operation name, trimming the prefix if this is the standard
  // dialect.
  body << "  p << \"";
  std::string opName = op.getOperationName();
  if (op.getDialectName() == "std")
    body << StringRef(opName).drop_front(4);
  else
    body << opName;
  body << "\";\n";

  // Flags for if we should emit a space, and if the last element was
  // punctuation.
  bool shouldEmitSpace = true, lastWasPunctuation = false;
  for (auto &element : elements)
    genElementPrinter(element.get(), body, *this, op, shouldEmitSpace,
                      lastWasPunctuation);
}

//===----------------------------------------------------------------------===//
// FormatLexer
//===----------------------------------------------------------------------===//

namespace {
/// This class represents a specific token in the input format.
class Token {
public:
  enum Kind {
    // Markers.
    eof,
    error,

    // Tokens with no info.
    l_paren,
    r_paren,
    caret,
    comma,
    equal,
    question,

    // Keywords.
    keyword_start,
    kw_attr_dict,
    kw_attr_dict_w_keyword,
    kw_functional_type,
    kw_operands,
    kw_results,
    kw_successors,
    kw_type,
    keyword_end,

    // String valued tokens.
    identifier,
    literal,
    variable,
  };
  Token(Kind kind, StringRef spelling) : kind(kind), spelling(spelling) {}

  /// Return the bytes that make up this token.
  StringRef getSpelling() const { return spelling; }

  /// Return the kind of this token.
  Kind getKind() const { return kind; }

  /// Return a location for this token.
  llvm::SMLoc getLoc() const {
    return llvm::SMLoc::getFromPointer(spelling.data());
  }

  /// Return if this token is a keyword.
  bool isKeyword() const { return kind > keyword_start && kind < keyword_end; }

private:
  /// Discriminator that indicates the kind of token this is.
  Kind kind;

  /// A reference to the entire token contents; this is always a pointer into
  /// a memory buffer owned by the source manager.
  StringRef spelling;
};

/// This class implements a simple lexer for operation assembly format strings.
class FormatLexer {
public:
  FormatLexer(llvm::SourceMgr &mgr, Operator &op);

  /// Lex the next token and return it.
  Token lexToken();

  /// Emit an error to the lexer with the given location and message.
  Token emitError(llvm::SMLoc loc, const Twine &msg);
  Token emitError(const char *loc, const Twine &msg);

  Token emitErrorAndNote(llvm::SMLoc loc, const Twine &msg, const Twine &note);

private:
  Token formToken(Token::Kind kind, const char *tokStart) {
    return Token(kind, StringRef(tokStart, curPtr - tokStart));
  }

  /// Return the next character in the stream.
  int getNextChar();

  /// Lex an identifier, literal, or variable.
  Token lexIdentifier(const char *tokStart);
  Token lexLiteral(const char *tokStart);
  Token lexVariable(const char *tokStart);

  llvm::SourceMgr &srcMgr;
  Operator &op;
  StringRef curBuffer;
  const char *curPtr;
};
} // end anonymous namespace

FormatLexer::FormatLexer(llvm::SourceMgr &mgr, Operator &op)
    : srcMgr(mgr), op(op) {
  curBuffer = srcMgr.getMemoryBuffer(mgr.getMainFileID())->getBuffer();
  curPtr = curBuffer.begin();
}

Token FormatLexer::emitError(llvm::SMLoc loc, const Twine &msg) {
  srcMgr.PrintMessage(loc, llvm::SourceMgr::DK_Error, msg);
  llvm::SrcMgr.PrintMessage(op.getLoc()[0], llvm::SourceMgr::DK_Note,
                            "in custom assembly format for this operation");
  return formToken(Token::error, loc.getPointer());
}
Token FormatLexer::emitErrorAndNote(llvm::SMLoc loc, const Twine &msg,
                                    const Twine &note) {
  srcMgr.PrintMessage(loc, llvm::SourceMgr::DK_Error, msg);
  llvm::SrcMgr.PrintMessage(op.getLoc()[0], llvm::SourceMgr::DK_Note,
                            "in custom assembly format for this operation");
  srcMgr.PrintMessage(loc, llvm::SourceMgr::DK_Note, note);
  return formToken(Token::error, loc.getPointer());
}
Token FormatLexer::emitError(const char *loc, const Twine &msg) {
  return emitError(llvm::SMLoc::getFromPointer(loc), msg);
}

int FormatLexer::getNextChar() {
  char curChar = *curPtr++;
  switch (curChar) {
  default:
    return (unsigned char)curChar;
  case 0: {
    // A nul character in the stream is either the end of the current buffer or
    // a random nul in the file. Disambiguate that here.
    if (curPtr - 1 != curBuffer.end())
      return 0;

    // Otherwise, return end of file.
    --curPtr;
    return EOF;
  }
  case '\n':
  case '\r':
    // Handle the newline character by ignoring it and incrementing the line
    // count. However, be careful about 'dos style' files with \n\r in them.
    // Only treat a \n\r or \r\n as a single line.
    if ((*curPtr == '\n' || (*curPtr == '\r')) && *curPtr != curChar)
      ++curPtr;
    return '\n';
  }
}

Token FormatLexer::lexToken() {
  const char *tokStart = curPtr;

  // This always consumes at least one character.
  int curChar = getNextChar();
  switch (curChar) {
  default:
    // Handle identifiers: [a-zA-Z_]
    if (isalpha(curChar) || curChar == '_')
      return lexIdentifier(tokStart);

    // Unknown character, emit an error.
    return emitError(tokStart, "unexpected character");
  case EOF:
    // Return EOF denoting the end of lexing.
    return formToken(Token::eof, tokStart);

  // Lex punctuation.
  case '^':
    return formToken(Token::caret, tokStart);
  case ',':
    return formToken(Token::comma, tokStart);
  case '=':
    return formToken(Token::equal, tokStart);
  case '?':
    return formToken(Token::question, tokStart);
  case '(':
    return formToken(Token::l_paren, tokStart);
  case ')':
    return formToken(Token::r_paren, tokStart);

  // Ignore whitespace characters.
  case 0:
  case ' ':
  case '\t':
  case '\n':
    return lexToken();

  case '`':
    return lexLiteral(tokStart);
  case '$':
    return lexVariable(tokStart);
  }
}

Token FormatLexer::lexLiteral(const char *tokStart) {
  assert(curPtr[-1] == '`');

  // Lex a literal surrounded by ``.
  while (const char curChar = *curPtr++) {
    if (curChar == '`')
      return formToken(Token::literal, tokStart);
  }
  return emitError(curPtr - 1, "unexpected end of file in literal");
}

Token FormatLexer::lexVariable(const char *tokStart) {
  if (!isalpha(curPtr[0]) && curPtr[0] != '_')
    return emitError(curPtr - 1, "expected variable name");

  // Otherwise, consume the rest of the characters.
  while (isalnum(*curPtr) || *curPtr == '_')
    ++curPtr;
  return formToken(Token::variable, tokStart);
}

Token FormatLexer::lexIdentifier(const char *tokStart) {
  // Match the rest of the identifier regex: [0-9a-zA-Z_\-]*
  while (isalnum(*curPtr) || *curPtr == '_' || *curPtr == '-')
    ++curPtr;

  // Check to see if this identifier is a keyword.
  StringRef str(tokStart, curPtr - tokStart);
  Token::Kind kind =
      llvm::StringSwitch<Token::Kind>(str)
          .Case("attr-dict", Token::kw_attr_dict)
          .Case("attr-dict-with-keyword", Token::kw_attr_dict_w_keyword)
          .Case("functional-type", Token::kw_functional_type)
          .Case("operands", Token::kw_operands)
          .Case("results", Token::kw_results)
          .Case("successors", Token::kw_successors)
          .Case("type", Token::kw_type)
          .Default(Token::identifier);
  return Token(kind, str);
}

//===----------------------------------------------------------------------===//
// FormatParser
//===----------------------------------------------------------------------===//

/// Function to find an element within the given range that has the same name as
/// 'name'.
template <typename RangeT>
static auto findArg(RangeT &&range, StringRef name) {
  auto it = llvm::find_if(range, [=](auto &arg) { return arg.name == name; });
  return it != range.end() ? &*it : nullptr;
}

namespace {
/// This class implements a parser for an instance of an operation assembly
/// format.
class FormatParser {
public:
  FormatParser(llvm::SourceMgr &mgr, OperationFormat &format, Operator &op)
      : lexer(mgr, op), curToken(lexer.lexToken()), fmt(format), op(op),
        seenOperandTypes(op.getNumOperands()),
        seenResultTypes(op.getNumResults()) {}

  /// Parse the operation assembly format.
  LogicalResult parse();

private:
  /// This struct represents a type resolution instance. It includes a specific
  /// type as well as an optional transformer to apply to that type in order to
  /// properly resolve the type of a variable.
  struct TypeResolutionInstance {
    ConstArgument resolver;
    Optional<StringRef> transformer;
  };

  /// An iterator over the elements of a format group.
  using ElementsIterT = llvm::pointee_iterator<
      std::vector<std::unique_ptr<Element>>::const_iterator>;

  /// Verify the state of operation attributes within the format.
  LogicalResult verifyAttributes(llvm::SMLoc loc);
  /// Verify the attribute elements at the back of the given stack of iterators.
  LogicalResult verifyAttributes(
      llvm::SMLoc loc,
      SmallVectorImpl<std::pair<ElementsIterT, ElementsIterT>> &iteratorStack);

  /// Verify the state of operation operands within the format.
  LogicalResult
  verifyOperands(llvm::SMLoc loc,
                 llvm::StringMap<TypeResolutionInstance> &variableTyResolver);

  /// Verify the state of operation results within the format.
  LogicalResult
  verifyResults(llvm::SMLoc loc,
                llvm::StringMap<TypeResolutionInstance> &variableTyResolver);

  /// Verify the state of operation successors within the format.
  LogicalResult verifySuccessors(llvm::SMLoc loc);

  /// Given the values of an `AllTypesMatch` trait, check for inferable type
  /// resolution.
  void handleAllTypesMatchConstraint(
      ArrayRef<StringRef> values,
      llvm::StringMap<TypeResolutionInstance> &variableTyResolver);
  /// Check for inferable type resolution given all operands, and or results,
  /// have the same type. If 'includeResults' is true, the results also have the
  /// same type as all of the operands.
  void handleSameTypesConstraint(
      llvm::StringMap<TypeResolutionInstance> &variableTyResolver,
      bool includeResults);
  /// Check for inferable type resolution based on another operand, result, or
  /// attribute.
  void handleTypesMatchConstraint(
      llvm::StringMap<TypeResolutionInstance> &variableTyResolver,
      llvm::Record def);

  /// Returns an argument or attribute with the given name that has been seen
  /// within the format.
  ConstArgument findSeenArg(StringRef name);

  /// Parse a specific element.
  LogicalResult parseElement(std::unique_ptr<Element> &element,
                             bool isTopLevel);
  LogicalResult parseVariable(std::unique_ptr<Element> &element,
                              bool isTopLevel);
  LogicalResult parseDirective(std::unique_ptr<Element> &element,
                               bool isTopLevel);
  LogicalResult parseLiteral(std::unique_ptr<Element> &element);
  LogicalResult parseOptional(std::unique_ptr<Element> &element,
                              bool isTopLevel);
  LogicalResult parseOptionalChildElement(
      std::vector<std::unique_ptr<Element>> &childElements,
      SmallPtrSetImpl<const NamedTypeConstraint *> &seenVariables,
      Optional<unsigned> &anchorIdx);

  /// Parse the various different directives.
  LogicalResult parseAttrDictDirective(std::unique_ptr<Element> &element,
                                       llvm::SMLoc loc, bool isTopLevel,
                                       bool withKeyword);
  LogicalResult parseFunctionalTypeDirective(std::unique_ptr<Element> &element,
                                             Token tok, bool isTopLevel);
  LogicalResult parseOperandsDirective(std::unique_ptr<Element> &element,
                                       llvm::SMLoc loc, bool isTopLevel);
  LogicalResult parseResultsDirective(std::unique_ptr<Element> &element,
                                      llvm::SMLoc loc, bool isTopLevel);
  LogicalResult parseSuccessorsDirective(std::unique_ptr<Element> &element,
                                         llvm::SMLoc loc, bool isTopLevel);
  LogicalResult parseTypeDirective(std::unique_ptr<Element> &element, Token tok,
                                   bool isTopLevel);
  LogicalResult parseTypeDirectiveOperand(std::unique_ptr<Element> &element);

  //===--------------------------------------------------------------------===//
  // Lexer Utilities
  //===--------------------------------------------------------------------===//

  /// Advance the current lexer onto the next token.
  void consumeToken() {
    assert(curToken.getKind() != Token::eof &&
           curToken.getKind() != Token::error &&
           "shouldn't advance past EOF or errors");
    curToken = lexer.lexToken();
  }
  LogicalResult parseToken(Token::Kind kind, const Twine &msg) {
    if (curToken.getKind() != kind)
      return emitError(curToken.getLoc(), msg);
    consumeToken();
    return success();
  }
  LogicalResult emitError(llvm::SMLoc loc, const Twine &msg) {
    lexer.emitError(loc, msg);
    return failure();
  }
  LogicalResult emitErrorAndNote(llvm::SMLoc loc, const Twine &msg,
                                 const Twine &note) {
    lexer.emitErrorAndNote(loc, msg, note);
    return failure();
  }

  //===--------------------------------------------------------------------===//
  // Fields
  //===--------------------------------------------------------------------===//

  FormatLexer lexer;
  Token curToken;
  OperationFormat &fmt;
  Operator &op;

  // The following are various bits of format state used for verification
  // during parsing.
  bool hasAllOperands = false, hasAttrDict = false;
  bool hasAllSuccessors = false;
  llvm::SmallBitVector seenOperandTypes, seenResultTypes;
  llvm::DenseSet<const NamedTypeConstraint *> seenOperands;
  llvm::DenseSet<const NamedAttribute *> seenAttrs;
  llvm::DenseSet<const NamedSuccessor *> seenSuccessors;
  llvm::DenseSet<const NamedTypeConstraint *> optionalVariables;
};
} // end anonymous namespace

LogicalResult FormatParser::parse() {
  llvm::SMLoc loc = curToken.getLoc();

  // Parse each of the format elements into the main format.
  while (curToken.getKind() != Token::eof) {
    std::unique_ptr<Element> element;
    if (failed(parseElement(element, /*isTopLevel=*/true)))
      return failure();
    fmt.elements.push_back(std::move(element));
  }

  // Check that the attribute dictionary is in the format.
  if (!hasAttrDict)
    return emitError(loc, "'attr-dict' directive not found in "
                          "custom assembly format");

  // Check for any type traits that we can use for inferring types.
  llvm::StringMap<TypeResolutionInstance> variableTyResolver;
  for (const OpTrait &trait : op.getTraits()) {
    const llvm::Record &def = trait.getDef();
    if (def.isSubClassOf("AllTypesMatch")) {
      handleAllTypesMatchConstraint(def.getValueAsListOfStrings("values"),
                                    variableTyResolver);
    } else if (def.getName() == "SameTypeOperands") {
      handleSameTypesConstraint(variableTyResolver, /*includeResults=*/false);
    } else if (def.getName() == "SameOperandsAndResultType") {
      handleSameTypesConstraint(variableTyResolver, /*includeResults=*/true);
    } else if (def.isSubClassOf("TypesMatchWith")) {
      handleTypesMatchConstraint(variableTyResolver, def);
    }
  }

  // Verify the state of the various operation components.
  if (failed(verifyAttributes(loc)) ||
      failed(verifyResults(loc, variableTyResolver)) ||
      failed(verifyOperands(loc, variableTyResolver)) ||
      failed(verifySuccessors(loc)))
    return failure();

  // Check to see if we are formatting all of the operands.
  fmt.allOperands = llvm::any_of(fmt.elements, [](auto &elt) {
    return isa<OperandsDirective>(elt.get());
  });
  return success();
}

LogicalResult FormatParser::verifyAttributes(llvm::SMLoc loc) {
  // Check that there are no `:` literals after an attribute without a constant
  // type. The attribute grammar contains an optional trailing colon type, which
  // can lead to unexpected and generally unintended behavior. Given that, it is
  // better to just error out here instead.
  using ElementsIterT = llvm::pointee_iterator<
      std::vector<std::unique_ptr<Element>>::const_iterator>;
  SmallVector<std::pair<ElementsIterT, ElementsIterT>, 1> iteratorStack;
  iteratorStack.emplace_back(fmt.elements.begin(), fmt.elements.end());
  while (!iteratorStack.empty())
    if (failed(verifyAttributes(loc, iteratorStack)))
      return failure();
  return success();
}
/// Verify the attribute elements at the back of the given stack of iterators.
LogicalResult FormatParser::verifyAttributes(
    llvm::SMLoc loc,
    SmallVectorImpl<std::pair<ElementsIterT, ElementsIterT>> &iteratorStack) {
  auto &stackIt = iteratorStack.back();
  ElementsIterT &it = stackIt.first, e = stackIt.second;
  while (it != e) {
    Element *element = &*(it++);

    // Traverse into optional groups.
    if (auto *optional = dyn_cast<OptionalElement>(element)) {
      auto elements = optional->getElements();
      iteratorStack.emplace_back(elements.begin(), elements.end());
      return success();
    }

    // We are checking for an attribute element followed by a `:`, so there is
    // no need to check the end.
    if (it == e && iteratorStack.size() == 1)
      break;

    // Check for an attribute with a constant type builder, followed by a `:`.
    auto *prevAttr = dyn_cast<AttributeVariable>(element);
    if (!prevAttr || prevAttr->getTypeBuilder())
      continue;

    // Check the next iterator within the stack for literal elements.
    for (auto &nextItPair : iteratorStack) {
      ElementsIterT nextIt = nextItPair.first, nextE = nextItPair.second;
      for (; nextIt != nextE; ++nextIt) {
        // Skip any trailing optional groups or attribute dictionaries.
        if (isa<AttrDictDirective>(*nextIt) || isa<OptionalElement>(*nextIt))
          continue;

        // We are only interested in `:` literals.
        auto *literal = dyn_cast<LiteralElement>(&*nextIt);
        if (!literal || literal->getLiteral() != ":")
          break;

        // TODO: Use the location of the literal element itself.
        return emitError(
            loc, llvm::formatv("format ambiguity caused by `:` literal found "
                               "after attribute `{0}` which does not have "
                               "a buildable type",
                               prevAttr->getVar()->name));
      }
    }
  }
  iteratorStack.pop_back();
  return success();
}

LogicalResult FormatParser::verifyOperands(
    llvm::SMLoc loc,
    llvm::StringMap<TypeResolutionInstance> &variableTyResolver) {
  // Check that all of the operands are within the format, and their types can
  // be inferred.
  auto &buildableTypes = fmt.buildableTypes;
  for (unsigned i = 0, e = op.getNumOperands(); i != e; ++i) {
    NamedTypeConstraint &operand = op.getOperand(i);

    // Check that the operand itself is in the format.
    if (!hasAllOperands && !seenOperands.count(&operand)) {
      return emitErrorAndNote(loc,
                              "operand #" + Twine(i) + ", named '" +
                                  operand.name + "', not found",
                              "suggest adding a '$" + operand.name +
                                  "' directive to the custom assembly format");
    }

    // Check that the operand type is in the format, or that it can be inferred.
    if (fmt.allOperandTypes || seenOperandTypes.test(i))
      continue;

    // Check to see if we can infer this type from another variable.
    auto varResolverIt = variableTyResolver.find(op.getOperand(i).name);
    if (varResolverIt != variableTyResolver.end()) {
      TypeResolutionInstance &resolver = varResolverIt->second;
      fmt.operandTypes[i].setResolver(resolver.resolver, resolver.transformer);
      continue;
    }

    // Similarly to results, allow a custom builder for resolving the type if
    // we aren't using the 'operands' directive.
    Optional<StringRef> builder = operand.constraint.getBuilderCall();
    if (!builder || (hasAllOperands && operand.isVariableLength())) {
      return emitErrorAndNote(
          loc,
          "type of operand #" + Twine(i) + ", named '" + operand.name +
              "', is not buildable and a buildable type cannot be inferred",
          "suggest adding a type constraint to the operation or adding a "
          "'type($" +
              operand.name + ")' directive to the " + "custom assembly format");
    }
    auto it = buildableTypes.insert({*builder, buildableTypes.size()});
    fmt.operandTypes[i].setBuilderIdx(it.first->second);
  }
  return success();
}

LogicalResult FormatParser::verifyResults(
    llvm::SMLoc loc,
    llvm::StringMap<TypeResolutionInstance> &variableTyResolver) {
  // If we format all of the types together, there is nothing to check.
  if (fmt.allResultTypes)
    return success();

  // Check that all of the result types can be inferred.
  auto &buildableTypes = fmt.buildableTypes;
  for (unsigned i = 0, e = op.getNumResults(); i != e; ++i) {
    if (seenResultTypes.test(i))
      continue;

    // Check to see if we can infer this type from another variable.
    auto varResolverIt = variableTyResolver.find(op.getResultName(i));
    if (varResolverIt != variableTyResolver.end()) {
      TypeResolutionInstance resolver = varResolverIt->second;
      fmt.resultTypes[i].setResolver(resolver.resolver, resolver.transformer);
      continue;
    }

    // If the result is not variable length, allow for the case where the type
    // has a builder that we can use.
    NamedTypeConstraint &result = op.getResult(i);
    Optional<StringRef> builder = result.constraint.getBuilderCall();
    if (!builder || result.isVariableLength()) {
      return emitErrorAndNote(
          loc,
          "type of result #" + Twine(i) + ", named '" + result.name +
              "', is not buildable and a buildable type cannot be inferred",
          "suggest adding a type constraint to the operation or adding a "
          "'type($" +
              result.name + ")' directive to the " + "custom assembly format");
    }
    // Note in the format that this result uses the custom builder.
    auto it = buildableTypes.insert({*builder, buildableTypes.size()});
    fmt.resultTypes[i].setBuilderIdx(it.first->second);
  }
  return success();
}

LogicalResult FormatParser::verifySuccessors(llvm::SMLoc loc) {
  // Check that all of the successors are within the format.
  if (hasAllSuccessors)
    return success();

  for (unsigned i = 0, e = op.getNumSuccessors(); i != e; ++i) {
    const NamedSuccessor &successor = op.getSuccessor(i);
    if (!seenSuccessors.count(&successor)) {
      return emitErrorAndNote(loc,
                              "successor #" + Twine(i) + ", named '" +
                                  successor.name + "', not found",
                              "suggest adding a '$" + successor.name +
                                  "' directive to the custom assembly format");
    }
  }
  return success();
}

void FormatParser::handleAllTypesMatchConstraint(
    ArrayRef<StringRef> values,
    llvm::StringMap<TypeResolutionInstance> &variableTyResolver) {
  for (unsigned i = 0, e = values.size(); i != e; ++i) {
    // Check to see if this value matches a resolved operand or result type.
    ConstArgument arg = findSeenArg(values[i]);
    if (!arg)
      continue;

    // Mark this value as the type resolver for the other variables.
    for (unsigned j = 0; j != i; ++j)
      variableTyResolver[values[j]] = {arg, llvm::None};
    for (unsigned j = i + 1; j != e; ++j)
      variableTyResolver[values[j]] = {arg, llvm::None};
  }
}

void FormatParser::handleSameTypesConstraint(
    llvm::StringMap<TypeResolutionInstance> &variableTyResolver,
    bool includeResults) {
  const NamedTypeConstraint *resolver = nullptr;
  int resolvedIt = -1;

  // Check to see if there is an operand or result to use for the resolution.
  if ((resolvedIt = seenOperandTypes.find_first()) != -1)
    resolver = &op.getOperand(resolvedIt);
  else if (includeResults && (resolvedIt = seenResultTypes.find_first()) != -1)
    resolver = &op.getResult(resolvedIt);
  else
    return;

  // Set the resolvers for each operand and result.
  for (unsigned i = 0, e = op.getNumOperands(); i != e; ++i)
    if (!seenOperandTypes.test(i) && !op.getOperand(i).name.empty())
      variableTyResolver[op.getOperand(i).name] = {resolver, llvm::None};
  if (includeResults) {
    for (unsigned i = 0, e = op.getNumResults(); i != e; ++i)
      if (!seenResultTypes.test(i) && !op.getResultName(i).empty())
        variableTyResolver[op.getResultName(i)] = {resolver, llvm::None};
  }
}

void FormatParser::handleTypesMatchConstraint(
    llvm::StringMap<TypeResolutionInstance> &variableTyResolver,
    llvm::Record def) {
  StringRef lhsName = def.getValueAsString("lhs");
  StringRef rhsName = def.getValueAsString("rhs");
  StringRef transformer = def.getValueAsString("transformer");
  if (ConstArgument arg = findSeenArg(lhsName))
    variableTyResolver[rhsName] = {arg, transformer};
}

ConstArgument FormatParser::findSeenArg(StringRef name) {
  if (const NamedTypeConstraint *arg = findArg(op.getOperands(), name))
    return seenOperandTypes.test(arg - op.operand_begin()) ? arg : nullptr;
  if (const NamedTypeConstraint *arg = findArg(op.getResults(), name))
    return seenResultTypes.test(arg - op.result_begin()) ? arg : nullptr;
  if (const NamedAttribute *attr = findArg(op.getAttributes(), name))
    return seenAttrs.find_as(attr) != seenAttrs.end() ? attr : nullptr;
  return nullptr;
}

LogicalResult FormatParser::parseElement(std::unique_ptr<Element> &element,
                                         bool isTopLevel) {
  // Directives.
  if (curToken.isKeyword())
    return parseDirective(element, isTopLevel);
  // Literals.
  if (curToken.getKind() == Token::literal)
    return parseLiteral(element);
  // Optionals.
  if (curToken.getKind() == Token::l_paren)
    return parseOptional(element, isTopLevel);
  // Variables.
  if (curToken.getKind() == Token::variable)
    return parseVariable(element, isTopLevel);
  return emitError(curToken.getLoc(),
                   "expected directive, literal, variable, or optional group");
}

LogicalResult FormatParser::parseVariable(std::unique_ptr<Element> &element,
                                          bool isTopLevel) {
  Token varTok = curToken;
  consumeToken();

  StringRef name = varTok.getSpelling().drop_front();
  llvm::SMLoc loc = varTok.getLoc();

  // Check that the parsed argument is something actually registered on the
  // op.
  /// Attributes
  if (const NamedAttribute *attr = findArg(op.getAttributes(), name)) {
    if (isTopLevel && !seenAttrs.insert(attr).second)
      return emitError(loc, "attribute '" + name + "' is already bound");
    element = std::make_unique<AttributeVariable>(attr);
    return success();
  }
  /// Operands
  if (const NamedTypeConstraint *operand = findArg(op.getOperands(), name)) {
    if (isTopLevel) {
      if (hasAllOperands || !seenOperands.insert(operand).second)
        return emitError(loc, "operand '" + name + "' is already bound");
    }
    element = std::make_unique<OperandVariable>(operand);
    return success();
  }
  /// Results.
  if (const auto *result = findArg(op.getResults(), name)) {
    if (isTopLevel)
      return emitError(loc, "results can not be used at the top level");
    element = std::make_unique<ResultVariable>(result);
    return success();
  }
  /// Successors.
  if (const auto *successor = findArg(op.getSuccessors(), name)) {
    if (!isTopLevel)
      return emitError(loc, "successors can only be used at the top level");
    if (hasAllSuccessors || !seenSuccessors.insert(successor).second)
      return emitError(loc, "successor '" + name + "' is already bound");
    element = std::make_unique<SuccessorVariable>(successor);
    return success();
  }
  return emitError(
      loc, "expected variable to refer to an argument, result, or successor");
}

LogicalResult FormatParser::parseDirective(std::unique_ptr<Element> &element,
                                           bool isTopLevel) {
  Token dirTok = curToken;
  consumeToken();

  switch (dirTok.getKind()) {
  case Token::kw_attr_dict:
    return parseAttrDictDirective(element, dirTok.getLoc(), isTopLevel,
                                  /*withKeyword=*/false);
  case Token::kw_attr_dict_w_keyword:
    return parseAttrDictDirective(element, dirTok.getLoc(), isTopLevel,
                                  /*withKeyword=*/true);
  case Token::kw_functional_type:
    return parseFunctionalTypeDirective(element, dirTok, isTopLevel);
  case Token::kw_operands:
    return parseOperandsDirective(element, dirTok.getLoc(), isTopLevel);
  case Token::kw_results:
    return parseResultsDirective(element, dirTok.getLoc(), isTopLevel);
  case Token::kw_successors:
    return parseSuccessorsDirective(element, dirTok.getLoc(), isTopLevel);
  case Token::kw_type:
    return parseTypeDirective(element, dirTok, isTopLevel);

  default:
    llvm_unreachable("unknown directive token");
  }
}

LogicalResult FormatParser::parseLiteral(std::unique_ptr<Element> &element) {
  Token literalTok = curToken;
  consumeToken();

  // Check that the parsed literal is valid.
  StringRef value = literalTok.getSpelling().drop_front().drop_back();
  if (!LiteralElement::isValidLiteral(value))
    return emitError(literalTok.getLoc(), "expected valid literal");

  element = std::make_unique<LiteralElement>(value);
  return success();
}

LogicalResult FormatParser::parseOptional(std::unique_ptr<Element> &element,
                                          bool isTopLevel) {
  llvm::SMLoc curLoc = curToken.getLoc();
  if (!isTopLevel)
    return emitError(curLoc, "optional groups can only be used as top-level "
                             "elements");
  consumeToken();

  // Parse the child elements for this optional group.
  std::vector<std::unique_ptr<Element>> elements;
  SmallPtrSet<const NamedTypeConstraint *, 8> seenVariables;
  Optional<unsigned> anchorIdx;
  do {
    if (failed(parseOptionalChildElement(elements, seenVariables, anchorIdx)))
      return failure();
  } while (curToken.getKind() != Token::r_paren);
  consumeToken();
  if (failed(parseToken(Token::question, "expected '?' after optional group")))
    return failure();

  // The optional group is required to have an anchor.
  if (!anchorIdx)
    return emitError(curLoc, "optional group specified no anchor element");

  // The first element of the group must be one that can be parsed/printed in an
  // optional fashion.
  Element *firstElement = &*elements.front();
  if (!isa<AttributeVariable>(firstElement) &&
      !isa<LiteralElement>(firstElement) && !isa<OperandVariable>(firstElement))
    return emitError(curLoc, "first element of an operand group must be an "
                             "attribute, literal, or operand");

  // After parsing all of the elements, ensure that all type directives refer
  // only to elements within the group.
  auto checkTypeOperand = [&](Element *typeEle) {
    auto *opVar = dyn_cast<OperandVariable>(typeEle);
    const NamedTypeConstraint *var = opVar ? opVar->getVar() : nullptr;
    if (!seenVariables.count(var))
      return emitError(curLoc, "type directive can only refer to variables "
                               "within the optional group");
    return success();
  };
  for (auto &ele : elements) {
    if (auto *typeEle = dyn_cast<TypeDirective>(ele.get())) {
      if (failed(checkTypeOperand(typeEle->getOperand())))
        return failure();
    } else if (auto *typeEle = dyn_cast<FunctionalTypeDirective>(ele.get())) {
      if (failed(checkTypeOperand(typeEle->getInputs())) ||
          failed(checkTypeOperand(typeEle->getResults())))
        return failure();
    }
  }

  optionalVariables.insert(seenVariables.begin(), seenVariables.end());
  element = std::make_unique<OptionalElement>(std::move(elements), *anchorIdx);
  return success();
}

LogicalResult FormatParser::parseOptionalChildElement(
    std::vector<std::unique_ptr<Element>> &childElements,
    SmallPtrSetImpl<const NamedTypeConstraint *> &seenVariables,
    Optional<unsigned> &anchorIdx) {
  llvm::SMLoc childLoc = curToken.getLoc();
  childElements.push_back({});
  if (failed(parseElement(childElements.back(), /*isTopLevel=*/true)))
    return failure();

  // Check to see if this element is the anchor of the optional group.
  bool isAnchor = curToken.getKind() == Token::caret;
  if (isAnchor) {
    if (anchorIdx)
      return emitError(childLoc, "only one element can be marked as the anchor "
                                 "of an optional group");
    anchorIdx = childElements.size() - 1;
    consumeToken();
  }

  return TypeSwitch<Element *, LogicalResult>(childElements.back().get())
      // All attributes can be within the optional group, but only optional
      // attributes can be the anchor.
      .Case([&](AttributeVariable *attrEle) {
        if (isAnchor && !attrEle->getVar()->attr.isOptional())
          return emitError(childLoc, "only optional attributes can be used to "
                                     "anchor an optional group");
        return success();
      })
      // Only optional-like(i.e. variadic) operands can be within an optional
      // group.
      .Case<OperandVariable>([&](OperandVariable *ele) {
        if (!ele->getVar()->isVariableLength())
          return emitError(childLoc, "only variable length operands can be "
                                     "used within an optional group");
        seenVariables.insert(ele->getVar());
        return success();
      })
      // Literals and type directives may be used, but they can't anchor the
      // group.
      .Case<LiteralElement, TypeDirective, FunctionalTypeDirective>(
          [&](Element *) {
            if (isAnchor)
              return emitError(childLoc, "only variables can be used to anchor "
                                         "an optional group");
            return success();
          })
      .Default([&](Element *) {
        return emitError(childLoc, "only literals, types, and variables can be "
                                   "used within an optional group");
      });
}

LogicalResult
FormatParser::parseAttrDictDirective(std::unique_ptr<Element> &element,
                                     llvm::SMLoc loc, bool isTopLevel,
                                     bool withKeyword) {
  if (!isTopLevel)
    return emitError(loc, "'attr-dict' directive can only be used as a "
                          "top-level directive");
  if (hasAttrDict)
    return emitError(loc, "'attr-dict' directive has already been seen");

  hasAttrDict = true;
  element = std::make_unique<AttrDictDirective>(withKeyword);
  return success();
}

LogicalResult
FormatParser::parseFunctionalTypeDirective(std::unique_ptr<Element> &element,
                                           Token tok, bool isTopLevel) {
  llvm::SMLoc loc = tok.getLoc();
  if (!isTopLevel)
    return emitError(
        loc, "'functional-type' is only valid as a top-level directive");

  // Parse the main operand.
  std::unique_ptr<Element> inputs, results;
  if (failed(parseToken(Token::l_paren, "expected '(' before argument list")) ||
      failed(parseTypeDirectiveOperand(inputs)) ||
      failed(parseToken(Token::comma, "expected ',' after inputs argument")) ||
      failed(parseTypeDirectiveOperand(results)) ||
      failed(parseToken(Token::r_paren, "expected ')' after argument list")))
    return failure();
  element = std::make_unique<FunctionalTypeDirective>(std::move(inputs),
                                                      std::move(results));
  return success();
}

LogicalResult
FormatParser::parseOperandsDirective(std::unique_ptr<Element> &element,
                                     llvm::SMLoc loc, bool isTopLevel) {
  if (isTopLevel && (hasAllOperands || !seenOperands.empty()))
    return emitError(loc, "'operands' directive creates overlap in format");
  hasAllOperands = true;
  element = std::make_unique<OperandsDirective>();
  return success();
}

LogicalResult
FormatParser::parseResultsDirective(std::unique_ptr<Element> &element,
                                    llvm::SMLoc loc, bool isTopLevel) {
  if (isTopLevel)
    return emitError(loc, "'results' directive can not be used as a "
                          "top-level directive");
  element = std::make_unique<ResultsDirective>();
  return success();
}

LogicalResult
FormatParser::parseSuccessorsDirective(std::unique_ptr<Element> &element,
                                       llvm::SMLoc loc, bool isTopLevel) {
  if (!isTopLevel)
    return emitError(loc,
                     "'successors' is only valid as a top-level directive");
  if (hasAllSuccessors || !seenSuccessors.empty())
    return emitError(loc, "'successors' directive creates overlap in format");
  hasAllSuccessors = true;
  element = std::make_unique<SuccessorsDirective>();
  return success();
}

LogicalResult
FormatParser::parseTypeDirective(std::unique_ptr<Element> &element, Token tok,
                                 bool isTopLevel) {
  llvm::SMLoc loc = tok.getLoc();
  if (!isTopLevel)
    return emitError(loc, "'type' is only valid as a top-level directive");

  std::unique_ptr<Element> operand;
  if (failed(parseToken(Token::l_paren, "expected '(' before argument list")) ||
      failed(parseTypeDirectiveOperand(operand)) ||
      failed(parseToken(Token::r_paren, "expected ')' after argument list")))
    return failure();
  element = std::make_unique<TypeDirective>(std::move(operand));
  return success();
}

LogicalResult
FormatParser::parseTypeDirectiveOperand(std::unique_ptr<Element> &element) {
  llvm::SMLoc loc = curToken.getLoc();
  if (failed(parseElement(element, /*isTopLevel=*/false)))
    return failure();
  if (isa<LiteralElement>(element.get()))
    return emitError(
        loc, "'type' directive operand expects variable or directive operand");

  if (auto *var = dyn_cast<OperandVariable>(element.get())) {
    unsigned opIdx = var->getVar() - op.operand_begin();
    if (fmt.allOperandTypes || seenOperandTypes.test(opIdx))
      return emitError(loc, "'type' of '" + var->getVar()->name +
                                "' is already bound");
    seenOperandTypes.set(opIdx);
  } else if (auto *var = dyn_cast<ResultVariable>(element.get())) {
    unsigned resIdx = var->getVar() - op.result_begin();
    if (fmt.allResultTypes || seenResultTypes.test(resIdx))
      return emitError(loc, "'type' of '" + var->getVar()->name +
                                "' is already bound");
    seenResultTypes.set(resIdx);
  } else if (isa<OperandsDirective>(&*element)) {
    if (fmt.allOperandTypes || seenOperandTypes.any())
      return emitError(loc, "'operands' 'type' is already bound");
    fmt.allOperandTypes = true;
  } else if (isa<ResultsDirective>(&*element)) {
    if (fmt.allResultTypes || seenResultTypes.any())
      return emitError(loc, "'results' 'type' is already bound");
    fmt.allResultTypes = true;
  } else {
    return emitError(loc, "invalid argument to 'type' directive");
  }
  return success();
}

//===----------------------------------------------------------------------===//
// Interface
//===----------------------------------------------------------------------===//

void mlir::tblgen::generateOpFormat(const Operator &constOp, OpClass &opClass) {
  // TODO: Operator doesn't expose all necessary functionality via
  // the const interface.
  Operator &op = const_cast<Operator &>(constOp);
  if (!op.hasAssemblyFormat())
    return;

  // Parse the format description.
  llvm::SourceMgr mgr;
  mgr.AddNewSourceBuffer(
      llvm::MemoryBuffer::getMemBuffer(op.getAssemblyFormat()), llvm::SMLoc());
  OperationFormat format(op);
  if (failed(FormatParser(mgr, format, op).parse())) {
    // Exit the process if format errors are treated as fatal.
    if (formatErrorIsFatal) {
      // Invoke the interrupt handlers to run the file cleanup handlers.
      llvm::sys::RunInterruptHandlers();
      std::exit(1);
    }
    return;
  }

  // Generate the printer and parser based on the parsed format.
  format.genParser(op, opClass);
  format.genPrinter(op, opClass);
}