Builders.cpp
15.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
//===- Builders.cpp - Helpers for constructing MLIR Classes ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/Builders.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/StandardTypes.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
Builder::Builder(ModuleOp module) : context(module.getContext()) {}
Identifier Builder::getIdentifier(StringRef str) {
return Identifier::get(str, context);
}
//===----------------------------------------------------------------------===//
// Locations.
//===----------------------------------------------------------------------===//
Location Builder::getUnknownLoc() { return UnknownLoc::get(context); }
Location Builder::getFileLineColLoc(Identifier filename, unsigned line,
unsigned column) {
return FileLineColLoc::get(filename, line, column, context);
}
Location Builder::getFusedLoc(ArrayRef<Location> locs, Attribute metadata) {
return FusedLoc::get(locs, metadata, context);
}
//===----------------------------------------------------------------------===//
// Types.
//===----------------------------------------------------------------------===//
FloatType Builder::getBF16Type() { return FloatType::getBF16(context); }
FloatType Builder::getF16Type() { return FloatType::getF16(context); }
FloatType Builder::getF32Type() { return FloatType::getF32(context); }
FloatType Builder::getF64Type() { return FloatType::getF64(context); }
IndexType Builder::getIndexType() { return IndexType::get(context); }
IntegerType Builder::getI1Type() { return IntegerType::get(1, context); }
IntegerType Builder::getI32Type() { return IntegerType::get(32, context); }
IntegerType Builder::getI64Type() { return IntegerType::get(64, context); }
IntegerType Builder::getIntegerType(unsigned width) {
return IntegerType::get(width, context);
}
IntegerType Builder::getIntegerType(unsigned width, bool isSigned) {
return IntegerType::get(
width, isSigned ? IntegerType::Signed : IntegerType::Unsigned, context);
}
FunctionType Builder::getFunctionType(ArrayRef<Type> inputs,
ArrayRef<Type> results) {
return FunctionType::get(inputs, results, context);
}
TupleType Builder::getTupleType(ArrayRef<Type> elementTypes) {
return TupleType::get(elementTypes, context);
}
NoneType Builder::getNoneType() { return NoneType::get(context); }
//===----------------------------------------------------------------------===//
// Attributes.
//===----------------------------------------------------------------------===//
NamedAttribute Builder::getNamedAttr(StringRef name, Attribute val) {
return NamedAttribute(getIdentifier(name), val);
}
UnitAttr Builder::getUnitAttr() { return UnitAttr::get(context); }
BoolAttr Builder::getBoolAttr(bool value) {
return BoolAttr::get(value, context);
}
DictionaryAttr Builder::getDictionaryAttr(ArrayRef<NamedAttribute> value) {
return DictionaryAttr::get(value, context);
}
IntegerAttr Builder::getIndexAttr(int64_t value) {
return IntegerAttr::get(getIndexType(), APInt(64, value));
}
IntegerAttr Builder::getI64IntegerAttr(int64_t value) {
return IntegerAttr::get(getIntegerType(64), APInt(64, value));
}
DenseIntElementsAttr Builder::getBoolVectorAttr(ArrayRef<bool> values) {
return DenseIntElementsAttr::get(
VectorType::get(static_cast<int64_t>(values.size()), getI1Type()),
values);
}
DenseIntElementsAttr Builder::getI32VectorAttr(ArrayRef<int32_t> values) {
return DenseIntElementsAttr::get(
VectorType::get(static_cast<int64_t>(values.size()), getIntegerType(32)),
values);
}
DenseIntElementsAttr Builder::getI64VectorAttr(ArrayRef<int64_t> values) {
return DenseIntElementsAttr::get(
VectorType::get(static_cast<int64_t>(values.size()), getIntegerType(64)),
values);
}
DenseIntElementsAttr Builder::getI32TensorAttr(ArrayRef<int32_t> values) {
return DenseIntElementsAttr::get(
RankedTensorType::get(static_cast<int64_t>(values.size()),
getIntegerType(32)),
values);
}
DenseIntElementsAttr Builder::getI64TensorAttr(ArrayRef<int64_t> values) {
return DenseIntElementsAttr::get(
RankedTensorType::get(static_cast<int64_t>(values.size()),
getIntegerType(64)),
values);
}
DenseIntElementsAttr Builder::getIndexTensorAttr(ArrayRef<int64_t> values) {
return DenseIntElementsAttr::get(
RankedTensorType::get(static_cast<int64_t>(values.size()),
getIndexType()),
values);
}
IntegerAttr Builder::getI32IntegerAttr(int32_t value) {
return IntegerAttr::get(getIntegerType(32), APInt(32, value));
}
IntegerAttr Builder::getSI32IntegerAttr(int32_t value) {
return IntegerAttr::get(getIntegerType(32, /*isSigned=*/true),
APInt(32, value, /*isSigned=*/true));
}
IntegerAttr Builder::getUI32IntegerAttr(uint32_t value) {
return IntegerAttr::get(getIntegerType(32, /*isSigned=*/false),
APInt(32, (uint64_t)value, /*isSigned=*/false));
}
IntegerAttr Builder::getI16IntegerAttr(int16_t value) {
return IntegerAttr::get(getIntegerType(16), APInt(16, value));
}
IntegerAttr Builder::getI8IntegerAttr(int8_t value) {
return IntegerAttr::get(getIntegerType(8), APInt(8, value));
}
IntegerAttr Builder::getIntegerAttr(Type type, int64_t value) {
if (type.isIndex())
return IntegerAttr::get(type, APInt(64, value));
return IntegerAttr::get(
type, APInt(type.getIntOrFloatBitWidth(), value, type.isSignedInteger()));
}
IntegerAttr Builder::getIntegerAttr(Type type, const APInt &value) {
return IntegerAttr::get(type, value);
}
FloatAttr Builder::getF64FloatAttr(double value) {
return FloatAttr::get(getF64Type(), APFloat(value));
}
FloatAttr Builder::getF32FloatAttr(float value) {
return FloatAttr::get(getF32Type(), APFloat(value));
}
FloatAttr Builder::getF16FloatAttr(float value) {
return FloatAttr::get(getF16Type(), value);
}
FloatAttr Builder::getFloatAttr(Type type, double value) {
return FloatAttr::get(type, value);
}
FloatAttr Builder::getFloatAttr(Type type, const APFloat &value) {
return FloatAttr::get(type, value);
}
StringAttr Builder::getStringAttr(StringRef bytes) {
return StringAttr::get(bytes, context);
}
ArrayAttr Builder::getArrayAttr(ArrayRef<Attribute> value) {
return ArrayAttr::get(value, context);
}
FlatSymbolRefAttr Builder::getSymbolRefAttr(Operation *value) {
auto symName =
value->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName());
assert(symName && "value does not have a valid symbol name");
return getSymbolRefAttr(symName.getValue());
}
FlatSymbolRefAttr Builder::getSymbolRefAttr(StringRef value) {
return SymbolRefAttr::get(value, getContext());
}
SymbolRefAttr
Builder::getSymbolRefAttr(StringRef value,
ArrayRef<FlatSymbolRefAttr> nestedReferences) {
return SymbolRefAttr::get(value, nestedReferences, getContext());
}
ArrayAttr Builder::getBoolArrayAttr(ArrayRef<bool> values) {
auto attrs = llvm::to_vector<8>(llvm::map_range(
values, [this](bool v) -> Attribute { return getBoolAttr(v); }));
return getArrayAttr(attrs);
}
ArrayAttr Builder::getI32ArrayAttr(ArrayRef<int32_t> values) {
auto attrs = llvm::to_vector<8>(llvm::map_range(
values, [this](int32_t v) -> Attribute { return getI32IntegerAttr(v); }));
return getArrayAttr(attrs);
}
ArrayAttr Builder::getI64ArrayAttr(ArrayRef<int64_t> values) {
auto attrs = llvm::to_vector<8>(llvm::map_range(
values, [this](int64_t v) -> Attribute { return getI64IntegerAttr(v); }));
return getArrayAttr(attrs);
}
ArrayAttr Builder::getIndexArrayAttr(ArrayRef<int64_t> values) {
auto attrs = llvm::to_vector<8>(
llvm::map_range(values, [this](int64_t v) -> Attribute {
return getIntegerAttr(IndexType::get(getContext()), v);
}));
return getArrayAttr(attrs);
}
ArrayAttr Builder::getF32ArrayAttr(ArrayRef<float> values) {
auto attrs = llvm::to_vector<8>(llvm::map_range(
values, [this](float v) -> Attribute { return getF32FloatAttr(v); }));
return getArrayAttr(attrs);
}
ArrayAttr Builder::getF64ArrayAttr(ArrayRef<double> values) {
auto attrs = llvm::to_vector<8>(llvm::map_range(
values, [this](double v) -> Attribute { return getF64FloatAttr(v); }));
return getArrayAttr(attrs);
}
ArrayAttr Builder::getStrArrayAttr(ArrayRef<StringRef> values) {
auto attrs = llvm::to_vector<8>(llvm::map_range(
values, [this](StringRef v) -> Attribute { return getStringAttr(v); }));
return getArrayAttr(attrs);
}
ArrayAttr Builder::getAffineMapArrayAttr(ArrayRef<AffineMap> values) {
auto attrs = llvm::to_vector<8>(llvm::map_range(
values, [](AffineMap v) -> Attribute { return AffineMapAttr::get(v); }));
return getArrayAttr(attrs);
}
Attribute Builder::getZeroAttr(Type type) {
switch (type.getKind()) {
case StandardTypes::BF16:
case StandardTypes::F16:
case StandardTypes::F32:
case StandardTypes::F64:
return getFloatAttr(type, 0.0);
case StandardTypes::Integer:
return getIntegerAttr(type, APInt(type.cast<IntegerType>().getWidth(), 0));
case StandardTypes::Vector:
case StandardTypes::RankedTensor: {
auto vtType = type.cast<ShapedType>();
auto element = getZeroAttr(vtType.getElementType());
if (!element)
return {};
return DenseElementsAttr::get(vtType, element);
}
default:
break;
}
return {};
}
//===----------------------------------------------------------------------===//
// Affine Expressions, Affine Maps, and Integer Sets.
//===----------------------------------------------------------------------===//
AffineExpr Builder::getAffineDimExpr(unsigned position) {
return mlir::getAffineDimExpr(position, context);
}
AffineExpr Builder::getAffineSymbolExpr(unsigned position) {
return mlir::getAffineSymbolExpr(position, context);
}
AffineExpr Builder::getAffineConstantExpr(int64_t constant) {
return mlir::getAffineConstantExpr(constant, context);
}
AffineMap Builder::getEmptyAffineMap() { return AffineMap::get(context); }
AffineMap Builder::getConstantAffineMap(int64_t val) {
return AffineMap::get(/*dimCount=*/0, /*symbolCount=*/0,
getAffineConstantExpr(val));
}
AffineMap Builder::getDimIdentityMap() {
return AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0, getAffineDimExpr(0));
}
AffineMap Builder::getMultiDimIdentityMap(unsigned rank) {
SmallVector<AffineExpr, 4> dimExprs;
dimExprs.reserve(rank);
for (unsigned i = 0; i < rank; ++i)
dimExprs.push_back(getAffineDimExpr(i));
return AffineMap::get(/*dimCount=*/rank, /*symbolCount=*/0, dimExprs,
context);
}
AffineMap Builder::getSymbolIdentityMap() {
return AffineMap::get(/*dimCount=*/0, /*symbolCount=*/1,
getAffineSymbolExpr(0));
}
AffineMap Builder::getSingleDimShiftAffineMap(int64_t shift) {
// expr = d0 + shift.
auto expr = getAffineDimExpr(0) + shift;
return AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0, expr);
}
AffineMap Builder::getShiftedAffineMap(AffineMap map, int64_t shift) {
SmallVector<AffineExpr, 4> shiftedResults;
shiftedResults.reserve(map.getNumResults());
for (auto resultExpr : map.getResults())
shiftedResults.push_back(resultExpr + shift);
return AffineMap::get(map.getNumDims(), map.getNumSymbols(), shiftedResults,
context);
}
//===----------------------------------------------------------------------===//
// OpBuilder
//===----------------------------------------------------------------------===//
OpBuilder::Listener::~Listener() {}
/// Insert the given operation at the current insertion point and return it.
Operation *OpBuilder::insert(Operation *op) {
if (block)
block->getOperations().insert(insertPoint, op);
if (listener)
listener->notifyOperationInserted(op);
return op;
}
/// Add new block with 'argTypes' arguments and set the insertion point to the
/// end of it. The block is inserted at the provided insertion point of
/// 'parent'.
Block *OpBuilder::createBlock(Region *parent, Region::iterator insertPt,
TypeRange argTypes) {
assert(parent && "expected valid parent region");
if (insertPt == Region::iterator())
insertPt = parent->end();
Block *b = new Block();
b->addArguments(argTypes);
parent->getBlocks().insert(insertPt, b);
setInsertionPointToEnd(b);
if (listener)
listener->notifyBlockCreated(b);
return b;
}
/// Add new block with 'argTypes' arguments and set the insertion point to the
/// end of it. The block is placed before 'insertBefore'.
Block *OpBuilder::createBlock(Block *insertBefore, TypeRange argTypes) {
assert(insertBefore && "expected valid insertion block");
return createBlock(insertBefore->getParent(), Region::iterator(insertBefore),
argTypes);
}
/// Create an operation given the fields represented as an OperationState.
Operation *OpBuilder::createOperation(const OperationState &state) {
return insert(Operation::create(state));
}
/// Attempts to fold the given operation and places new results within
/// 'results'. Returns success if the operation was folded, failure otherwise.
/// Note: This function does not erase the operation on a successful fold.
LogicalResult OpBuilder::tryFold(Operation *op,
SmallVectorImpl<Value> &results) {
results.reserve(op->getNumResults());
auto cleanupFailure = [&] {
results.assign(op->result_begin(), op->result_end());
return failure();
};
// If this operation is already a constant, there is nothing to do.
if (matchPattern(op, m_Constant()))
return cleanupFailure();
// Check to see if any operands to the operation is constant and whether
// the operation knows how to constant fold itself.
SmallVector<Attribute, 4> constOperands(op->getNumOperands());
for (unsigned i = 0, e = op->getNumOperands(); i != e; ++i)
matchPattern(op->getOperand(i), m_Constant(&constOperands[i]));
// Try to fold the operation.
SmallVector<OpFoldResult, 4> foldResults;
if (failed(op->fold(constOperands, foldResults)) || foldResults.empty())
return cleanupFailure();
// A temporary builder used for creating constants during folding.
OpBuilder cstBuilder(context);
SmallVector<Operation *, 1> generatedConstants;
// Populate the results with the folded results.
Dialect *dialect = op->getDialect();
for (auto &it : llvm::enumerate(foldResults)) {
// Normal values get pushed back directly.
if (auto value = it.value().dyn_cast<Value>()) {
results.push_back(value);
continue;
}
// Otherwise, try to materialize a constant operation.
if (!dialect)
return cleanupFailure();
// Ask the dialect to materialize a constant operation for this value.
Attribute attr = it.value().get<Attribute>();
auto *constOp = dialect->materializeConstant(
cstBuilder, attr, op->getResult(it.index()).getType(), op->getLoc());
if (!constOp) {
// Erase any generated constants.
for (Operation *cst : generatedConstants)
cst->erase();
return cleanupFailure();
}
assert(matchPattern(constOp, m_Constant()));
generatedConstants.push_back(constOp);
results.push_back(constOp->getResult(0));
}
// If we were successful, insert any generated constants.
for (Operation *cst : generatedConstants)
insert(cst);
return success();
}