gmock-matchers.h 157 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)

// Google Mock - a framework for writing C++ mock classes.
//
// This file implements some commonly used argument matchers.  More
// matchers can be defined by the user implementing the
// MatcherInterface<T> interface if necessary.

// IWYU pragma: private, include "gmock/gmock.h"

#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
#define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_

#include <math.h>
#include <algorithm>
#include <iterator>
#include <limits>
#include <ostream>  // NOLINT
#include <sstream>
#include <string>
#include <utility>
#include <vector>

#include "gmock/internal/gmock-internal-utils.h"
#include "gmock/internal/gmock-port.h"
#include "gtest/gtest.h"

#if GTEST_HAS_STD_INITIALIZER_LIST_
# include <initializer_list>  // NOLINT -- must be after gtest.h
#endif

namespace testing {

// To implement a matcher Foo for type T, define:
//   1. a class FooMatcherImpl that implements the
//      MatcherInterface<T> interface, and
//   2. a factory function that creates a Matcher<T> object from a
//      FooMatcherImpl*.
//
// The two-level delegation design makes it possible to allow a user
// to write "v" instead of "Eq(v)" where a Matcher is expected, which
// is impossible if we pass matchers by pointers.  It also eases
// ownership management as Matcher objects can now be copied like
// plain values.

// MatchResultListener is an abstract class.  Its << operator can be
// used by a matcher to explain why a value matches or doesn't match.
//
// TODO(wan@google.com): add method
//   bool InterestedInWhy(bool result) const;
// to indicate whether the listener is interested in why the match
// result is 'result'.
class MatchResultListener {
 public:
  // Creates a listener object with the given underlying ostream.  The
  // listener does not own the ostream, and does not dereference it
  // in the constructor or destructor.
  explicit MatchResultListener(::std::ostream* os) : stream_(os) {}
  virtual ~MatchResultListener() = 0;  // Makes this class abstract.

  // Streams x to the underlying ostream; does nothing if the ostream
  // is NULL.
  template <typename T>
  MatchResultListener& operator<<(const T& x) {
    if (stream_ != NULL)
      *stream_ << x;
    return *this;
  }

  // Returns the underlying ostream.
  ::std::ostream* stream() { return stream_; }

  // Returns true iff the listener is interested in an explanation of
  // the match result.  A matcher's MatchAndExplain() method can use
  // this information to avoid generating the explanation when no one
  // intends to hear it.
  bool IsInterested() const { return stream_ != NULL; }

 private:
  ::std::ostream* const stream_;

  GTEST_DISALLOW_COPY_AND_ASSIGN_(MatchResultListener);
};

inline MatchResultListener::~MatchResultListener() {
}

// An instance of a subclass of this knows how to describe itself as a
// matcher.
class MatcherDescriberInterface {
 public:
  virtual ~MatcherDescriberInterface() {}

  // Describes this matcher to an ostream.  The function should print
  // a verb phrase that describes the property a value matching this
  // matcher should have.  The subject of the verb phrase is the value
  // being matched.  For example, the DescribeTo() method of the Gt(7)
  // matcher prints "is greater than 7".
  virtual void DescribeTo(::std::ostream* os) const = 0;

  // Describes the negation of this matcher to an ostream.  For
  // example, if the description of this matcher is "is greater than
  // 7", the negated description could be "is not greater than 7".
  // You are not required to override this when implementing
  // MatcherInterface, but it is highly advised so that your matcher
  // can produce good error messages.
  virtual void DescribeNegationTo(::std::ostream* os) const {
    *os << "not (";
    DescribeTo(os);
    *os << ")";
  }
};

// The implementation of a matcher.
template <typename T>
class MatcherInterface : public MatcherDescriberInterface {
 public:
  // Returns true iff the matcher matches x; also explains the match
  // result to 'listener' if necessary (see the next paragraph), in
  // the form of a non-restrictive relative clause ("which ...",
  // "whose ...", etc) that describes x.  For example, the
  // MatchAndExplain() method of the Pointee(...) matcher should
  // generate an explanation like "which points to ...".
  //
  // Implementations of MatchAndExplain() should add an explanation of
  // the match result *if and only if* they can provide additional
  // information that's not already present (or not obvious) in the
  // print-out of x and the matcher's description.  Whether the match
  // succeeds is not a factor in deciding whether an explanation is
  // needed, as sometimes the caller needs to print a failure message
  // when the match succeeds (e.g. when the matcher is used inside
  // Not()).
  //
  // For example, a "has at least 10 elements" matcher should explain
  // what the actual element count is, regardless of the match result,
  // as it is useful information to the reader; on the other hand, an
  // "is empty" matcher probably only needs to explain what the actual
  // size is when the match fails, as it's redundant to say that the
  // size is 0 when the value is already known to be empty.
  //
  // You should override this method when defining a new matcher.
  //
  // It's the responsibility of the caller (Google Mock) to guarantee
  // that 'listener' is not NULL.  This helps to simplify a matcher's
  // implementation when it doesn't care about the performance, as it
  // can talk to 'listener' without checking its validity first.
  // However, in order to implement dummy listeners efficiently,
  // listener->stream() may be NULL.
  virtual bool MatchAndExplain(T x, MatchResultListener* listener) const = 0;

  // Inherits these methods from MatcherDescriberInterface:
  //   virtual void DescribeTo(::std::ostream* os) const = 0;
  //   virtual void DescribeNegationTo(::std::ostream* os) const;
};

// A match result listener that stores the explanation in a string.
class StringMatchResultListener : public MatchResultListener {
 public:
  StringMatchResultListener() : MatchResultListener(&ss_) {}

  // Returns the explanation accumulated so far.
  internal::string str() const { return ss_.str(); }

  // Clears the explanation accumulated so far.
  void Clear() { ss_.str(""); }

 private:
  ::std::stringstream ss_;

  GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener);
};

namespace internal {

struct AnyEq {
  template <typename A, typename B>
  bool operator()(const A& a, const B& b) const { return a == b; }
};
struct AnyNe {
  template <typename A, typename B>
  bool operator()(const A& a, const B& b) const { return a != b; }
};
struct AnyLt {
  template <typename A, typename B>
  bool operator()(const A& a, const B& b) const { return a < b; }
};
struct AnyGt {
  template <typename A, typename B>
  bool operator()(const A& a, const B& b) const { return a > b; }
};
struct AnyLe {
  template <typename A, typename B>
  bool operator()(const A& a, const B& b) const { return a <= b; }
};
struct AnyGe {
  template <typename A, typename B>
  bool operator()(const A& a, const B& b) const { return a >= b; }
};

// A match result listener that ignores the explanation.
class DummyMatchResultListener : public MatchResultListener {
 public:
  DummyMatchResultListener() : MatchResultListener(NULL) {}

 private:
  GTEST_DISALLOW_COPY_AND_ASSIGN_(DummyMatchResultListener);
};

// A match result listener that forwards the explanation to a given
// ostream.  The difference between this and MatchResultListener is
// that the former is concrete.
class StreamMatchResultListener : public MatchResultListener {
 public:
  explicit StreamMatchResultListener(::std::ostream* os)
      : MatchResultListener(os) {}

 private:
  GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamMatchResultListener);
};

// An internal class for implementing Matcher<T>, which will derive
// from it.  We put functionalities common to all Matcher<T>
// specializations here to avoid code duplication.
template <typename T>
class MatcherBase {
 public:
  // Returns true iff the matcher matches x; also explains the match
  // result to 'listener'.
  bool MatchAndExplain(T x, MatchResultListener* listener) const {
    return impl_->MatchAndExplain(x, listener);
  }

  // Returns true iff this matcher matches x.
  bool Matches(T x) const {
    DummyMatchResultListener dummy;
    return MatchAndExplain(x, &dummy);
  }

  // Describes this matcher to an ostream.
  void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); }

  // Describes the negation of this matcher to an ostream.
  void DescribeNegationTo(::std::ostream* os) const {
    impl_->DescribeNegationTo(os);
  }

  // Explains why x matches, or doesn't match, the matcher.
  void ExplainMatchResultTo(T x, ::std::ostream* os) const {
    StreamMatchResultListener listener(os);
    MatchAndExplain(x, &listener);
  }

  // Returns the describer for this matcher object; retains ownership
  // of the describer, which is only guaranteed to be alive when
  // this matcher object is alive.
  const MatcherDescriberInterface* GetDescriber() const {
    return impl_.get();
  }

 protected:
  MatcherBase() {}

  // Constructs a matcher from its implementation.
  explicit MatcherBase(const MatcherInterface<T>* impl)
      : impl_(impl) {}

  virtual ~MatcherBase() {}

 private:
  // shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar
  // interfaces.  The former dynamically allocates a chunk of memory
  // to hold the reference count, while the latter tracks all
  // references using a circular linked list without allocating
  // memory.  It has been observed that linked_ptr performs better in
  // typical scenarios.  However, shared_ptr can out-perform
  // linked_ptr when there are many more uses of the copy constructor
  // than the default constructor.
  //
  // If performance becomes a problem, we should see if using
  // shared_ptr helps.
  ::testing::internal::linked_ptr<const MatcherInterface<T> > impl_;
};

}  // namespace internal

// A Matcher<T> is a copyable and IMMUTABLE (except by assignment)
// object that can check whether a value of type T matches.  The
// implementation of Matcher<T> is just a linked_ptr to const
// MatcherInterface<T>, so copying is fairly cheap.  Don't inherit
// from Matcher!
template <typename T>
class Matcher : public internal::MatcherBase<T> {
 public:
  // Constructs a null matcher.  Needed for storing Matcher objects in STL
  // containers.  A default-constructed matcher is not yet initialized.  You
  // cannot use it until a valid value has been assigned to it.
  explicit Matcher() {}  // NOLINT

  // Constructs a matcher from its implementation.
  explicit Matcher(const MatcherInterface<T>* impl)
      : internal::MatcherBase<T>(impl) {}

  // Implicit constructor here allows people to write
  // EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes
  Matcher(T value);  // NOLINT
};

// The following two specializations allow the user to write str
// instead of Eq(str) and "foo" instead of Eq("foo") when a string
// matcher is expected.
template <>
class GTEST_API_ Matcher<const internal::string&>
    : public internal::MatcherBase<const internal::string&> {
 public:
  Matcher() {}

  explicit Matcher(const MatcherInterface<const internal::string&>* impl)
      : internal::MatcherBase<const internal::string&>(impl) {}

  // Allows the user to write str instead of Eq(str) sometimes, where
  // str is a string object.
  Matcher(const internal::string& s);  // NOLINT

  // Allows the user to write "foo" instead of Eq("foo") sometimes.
  Matcher(const char* s);  // NOLINT
};

template <>
class GTEST_API_ Matcher<internal::string>
    : public internal::MatcherBase<internal::string> {
 public:
  Matcher() {}

  explicit Matcher(const MatcherInterface<internal::string>* impl)
      : internal::MatcherBase<internal::string>(impl) {}

  // Allows the user to write str instead of Eq(str) sometimes, where
  // str is a string object.
  Matcher(const internal::string& s);  // NOLINT

  // Allows the user to write "foo" instead of Eq("foo") sometimes.
  Matcher(const char* s);  // NOLINT
};

#if GTEST_HAS_STRING_PIECE_
// The following two specializations allow the user to write str
// instead of Eq(str) and "foo" instead of Eq("foo") when a StringPiece
// matcher is expected.
template <>
class GTEST_API_ Matcher<const StringPiece&>
    : public internal::MatcherBase<const StringPiece&> {
 public:
  Matcher() {}

  explicit Matcher(const MatcherInterface<const StringPiece&>* impl)
      : internal::MatcherBase<const StringPiece&>(impl) {}

  // Allows the user to write str instead of Eq(str) sometimes, where
  // str is a string object.
  Matcher(const internal::string& s);  // NOLINT

  // Allows the user to write "foo" instead of Eq("foo") sometimes.
  Matcher(const char* s);  // NOLINT

  // Allows the user to pass StringPieces directly.
  Matcher(StringPiece s);  // NOLINT
};

template <>
class GTEST_API_ Matcher<StringPiece>
    : public internal::MatcherBase<StringPiece> {
 public:
  Matcher() {}

  explicit Matcher(const MatcherInterface<StringPiece>* impl)
      : internal::MatcherBase<StringPiece>(impl) {}

  // Allows the user to write str instead of Eq(str) sometimes, where
  // str is a string object.
  Matcher(const internal::string& s);  // NOLINT

  // Allows the user to write "foo" instead of Eq("foo") sometimes.
  Matcher(const char* s);  // NOLINT

  // Allows the user to pass StringPieces directly.
  Matcher(StringPiece s);  // NOLINT
};
#endif  // GTEST_HAS_STRING_PIECE_

// The PolymorphicMatcher class template makes it easy to implement a
// polymorphic matcher (i.e. a matcher that can match values of more
// than one type, e.g. Eq(n) and NotNull()).
//
// To define a polymorphic matcher, a user should provide an Impl
// class that has a DescribeTo() method and a DescribeNegationTo()
// method, and define a member function (or member function template)
//
//   bool MatchAndExplain(const Value& value,
//                        MatchResultListener* listener) const;
//
// See the definition of NotNull() for a complete example.
template <class Impl>
class PolymorphicMatcher {
 public:
  explicit PolymorphicMatcher(const Impl& an_impl) : impl_(an_impl) {}

  // Returns a mutable reference to the underlying matcher
  // implementation object.
  Impl& mutable_impl() { return impl_; }

  // Returns an immutable reference to the underlying matcher
  // implementation object.
  const Impl& impl() const { return impl_; }

  template <typename T>
  operator Matcher<T>() const {
    return Matcher<T>(new MonomorphicImpl<T>(impl_));
  }

 private:
  template <typename T>
  class MonomorphicImpl : public MatcherInterface<T> {
   public:
    explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}

    virtual void DescribeTo(::std::ostream* os) const {
      impl_.DescribeTo(os);
    }

    virtual void DescribeNegationTo(::std::ostream* os) const {
      impl_.DescribeNegationTo(os);
    }

    virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
      return impl_.MatchAndExplain(x, listener);
    }

   private:
    const Impl impl_;

    GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
  };

  Impl impl_;

  GTEST_DISALLOW_ASSIGN_(PolymorphicMatcher);
};

// Creates a matcher from its implementation.  This is easier to use
// than the Matcher<T> constructor as it doesn't require you to
// explicitly write the template argument, e.g.
//
//   MakeMatcher(foo);
// vs
//   Matcher<const string&>(foo);
template <typename T>
inline Matcher<T> MakeMatcher(const MatcherInterface<T>* impl) {
  return Matcher<T>(impl);
}

// Creates a polymorphic matcher from its implementation.  This is
// easier to use than the PolymorphicMatcher<Impl> constructor as it
// doesn't require you to explicitly write the template argument, e.g.
//
//   MakePolymorphicMatcher(foo);
// vs
//   PolymorphicMatcher<TypeOfFoo>(foo);
template <class Impl>
inline PolymorphicMatcher<Impl> MakePolymorphicMatcher(const Impl& impl) {
  return PolymorphicMatcher<Impl>(impl);
}

// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
// and MUST NOT BE USED IN USER CODE!!!
namespace internal {

// The MatcherCastImpl class template is a helper for implementing
// MatcherCast().  We need this helper in order to partially
// specialize the implementation of MatcherCast() (C++ allows
// class/struct templates to be partially specialized, but not
// function templates.).

// This general version is used when MatcherCast()'s argument is a
// polymorphic matcher (i.e. something that can be converted to a
// Matcher but is not one yet; for example, Eq(value)) or a value (for
// example, "hello").
template <typename T, typename M>
class MatcherCastImpl {
 public:
  static Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
    // M can be a polymorhic matcher, in which case we want to use
    // its conversion operator to create Matcher<T>.  Or it can be a value
    // that should be passed to the Matcher<T>'s constructor.
    //
    // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
    // polymorphic matcher because it'll be ambiguous if T has an implicit
    // constructor from M (this usually happens when T has an implicit
    // constructor from any type).
    //
    // It won't work to unconditionally implict_cast
    // polymorphic_matcher_or_value to Matcher<T> because it won't trigger
    // a user-defined conversion from M to T if one exists (assuming M is
    // a value).
    return CastImpl(
        polymorphic_matcher_or_value,
        BooleanConstant<
            internal::ImplicitlyConvertible<M, Matcher<T> >::value>());
  }

 private:
  static Matcher<T> CastImpl(const M& value, BooleanConstant<false>) {
    // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
    // matcher.  It must be a value then.  Use direct initialization to create
    // a matcher.
    return Matcher<T>(ImplicitCast_<T>(value));
  }

  static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value,
                             BooleanConstant<true>) {
    // M is implicitly convertible to Matcher<T>, which means that either
    // M is a polymorhpic matcher or Matcher<T> has an implicit constructor
    // from M.  In both cases using the implicit conversion will produce a
    // matcher.
    //
    // Even if T has an implicit constructor from M, it won't be called because
    // creating Matcher<T> would require a chain of two user-defined conversions
    // (first to create T from M and then to create Matcher<T> from T).
    return polymorphic_matcher_or_value;
  }
};

// This more specialized version is used when MatcherCast()'s argument
// is already a Matcher.  This only compiles when type T can be
// statically converted to type U.
template <typename T, typename U>
class MatcherCastImpl<T, Matcher<U> > {
 public:
  static Matcher<T> Cast(const Matcher<U>& source_matcher) {
    return Matcher<T>(new Impl(source_matcher));
  }

 private:
  class Impl : public MatcherInterface<T> {
   public:
    explicit Impl(const Matcher<U>& source_matcher)
        : source_matcher_(source_matcher) {}

    // We delegate the matching logic to the source matcher.
    virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
      return source_matcher_.MatchAndExplain(static_cast<U>(x), listener);
    }

    virtual void DescribeTo(::std::ostream* os) const {
      source_matcher_.DescribeTo(os);
    }

    virtual void DescribeNegationTo(::std::ostream* os) const {
      source_matcher_.DescribeNegationTo(os);
    }

   private:
    const Matcher<U> source_matcher_;

    GTEST_DISALLOW_ASSIGN_(Impl);
  };
};

// This even more specialized version is used for efficiently casting
// a matcher to its own type.
template <typename T>
class MatcherCastImpl<T, Matcher<T> > {
 public:
  static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
};

}  // namespace internal

// In order to be safe and clear, casting between different matcher
// types is done explicitly via MatcherCast<T>(m), which takes a
// matcher m and returns a Matcher<T>.  It compiles only when T can be
// statically converted to the argument type of m.
template <typename T, typename M>
inline Matcher<T> MatcherCast(const M& matcher) {
  return internal::MatcherCastImpl<T, M>::Cast(matcher);
}

// Implements SafeMatcherCast().
//
// We use an intermediate class to do the actual safe casting as Nokia's
// Symbian compiler cannot decide between
// template <T, M> ... (M) and
// template <T, U> ... (const Matcher<U>&)
// for function templates but can for member function templates.
template <typename T>
class SafeMatcherCastImpl {
 public:
  // This overload handles polymorphic matchers and values only since
  // monomorphic matchers are handled by the next one.
  template <typename M>
  static inline Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
    return internal::MatcherCastImpl<T, M>::Cast(polymorphic_matcher_or_value);
  }

  // This overload handles monomorphic matchers.
  //
  // In general, if type T can be implicitly converted to type U, we can
  // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
  // contravariant): just keep a copy of the original Matcher<U>, convert the
  // argument from type T to U, and then pass it to the underlying Matcher<U>.
  // The only exception is when U is a reference and T is not, as the
  // underlying Matcher<U> may be interested in the argument's address, which
  // is not preserved in the conversion from T to U.
  template <typename U>
  static inline Matcher<T> Cast(const Matcher<U>& matcher) {
    // Enforce that T can be implicitly converted to U.
    GTEST_COMPILE_ASSERT_((internal::ImplicitlyConvertible<T, U>::value),
                          T_must_be_implicitly_convertible_to_U);
    // Enforce that we are not converting a non-reference type T to a reference
    // type U.
    GTEST_COMPILE_ASSERT_(
        internal::is_reference<T>::value || !internal::is_reference<U>::value,
        cannot_convert_non_referentce_arg_to_reference);
    // In case both T and U are arithmetic types, enforce that the
    // conversion is not lossy.
    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
    const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
    const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
    GTEST_COMPILE_ASSERT_(
        kTIsOther || kUIsOther ||
        (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
        conversion_of_arithmetic_types_must_be_lossless);
    return MatcherCast<T>(matcher);
  }
};

template <typename T, typename M>
inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher) {
  return SafeMatcherCastImpl<T>::Cast(polymorphic_matcher);
}

// A<T>() returns a matcher that matches any value of type T.
template <typename T>
Matcher<T> A();

// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
// and MUST NOT BE USED IN USER CODE!!!
namespace internal {

// If the explanation is not empty, prints it to the ostream.
inline void PrintIfNotEmpty(const internal::string& explanation,
                            ::std::ostream* os) {
  if (explanation != "" && os != NULL) {
    *os << ", " << explanation;
  }
}

// Returns true if the given type name is easy to read by a human.
// This is used to decide whether printing the type of a value might
// be helpful.
inline bool IsReadableTypeName(const string& type_name) {
  // We consider a type name readable if it's short or doesn't contain
  // a template or function type.
  return (type_name.length() <= 20 ||
          type_name.find_first_of("<(") == string::npos);
}

// Matches the value against the given matcher, prints the value and explains
// the match result to the listener. Returns the match result.
// 'listener' must not be NULL.
// Value cannot be passed by const reference, because some matchers take a
// non-const argument.
template <typename Value, typename T>
bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
                          MatchResultListener* listener) {
  if (!listener->IsInterested()) {
    // If the listener is not interested, we do not need to construct the
    // inner explanation.
    return matcher.Matches(value);
  }

  StringMatchResultListener inner_listener;
  const bool match = matcher.MatchAndExplain(value, &inner_listener);

  UniversalPrint(value, listener->stream());
#if GTEST_HAS_RTTI
  const string& type_name = GetTypeName<Value>();
  if (IsReadableTypeName(type_name))
    *listener->stream() << " (of type " << type_name << ")";
#endif
  PrintIfNotEmpty(inner_listener.str(), listener->stream());

  return match;
}

// An internal helper class for doing compile-time loop on a tuple's
// fields.
template <size_t N>
class TuplePrefix {
 public:
  // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
  // iff the first N fields of matcher_tuple matches the first N
  // fields of value_tuple, respectively.
  template <typename MatcherTuple, typename ValueTuple>
  static bool Matches(const MatcherTuple& matcher_tuple,
                      const ValueTuple& value_tuple) {
    return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple)
        && get<N - 1>(matcher_tuple).Matches(get<N - 1>(value_tuple));
  }

  // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
  // describes failures in matching the first N fields of matchers
  // against the first N fields of values.  If there is no failure,
  // nothing will be streamed to os.
  template <typename MatcherTuple, typename ValueTuple>
  static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
                                     const ValueTuple& values,
                                     ::std::ostream* os) {
    // First, describes failures in the first N - 1 fields.
    TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);

    // Then describes the failure (if any) in the (N - 1)-th (0-based)
    // field.
    typename tuple_element<N - 1, MatcherTuple>::type matcher =
        get<N - 1>(matchers);
    typedef typename tuple_element<N - 1, ValueTuple>::type Value;
    Value value = get<N - 1>(values);
    StringMatchResultListener listener;
    if (!matcher.MatchAndExplain(value, &listener)) {
      // TODO(wan): include in the message the name of the parameter
      // as used in MOCK_METHOD*() when possible.
      *os << "  Expected arg #" << N - 1 << ": ";
      get<N - 1>(matchers).DescribeTo(os);
      *os << "\n           Actual: ";
      // We remove the reference in type Value to prevent the
      // universal printer from printing the address of value, which
      // isn't interesting to the user most of the time.  The
      // matcher's MatchAndExplain() method handles the case when
      // the address is interesting.
      internal::UniversalPrint(value, os);
      PrintIfNotEmpty(listener.str(), os);
      *os << "\n";
    }
  }
};

// The base case.
template <>
class TuplePrefix<0> {
 public:
  template <typename MatcherTuple, typename ValueTuple>
  static bool Matches(const MatcherTuple& /* matcher_tuple */,
                      const ValueTuple& /* value_tuple */) {
    return true;
  }

  template <typename MatcherTuple, typename ValueTuple>
  static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
                                     const ValueTuple& /* values */,
                                     ::std::ostream* /* os */) {}
};

// TupleMatches(matcher_tuple, value_tuple) returns true iff all
// matchers in matcher_tuple match the corresponding fields in
// value_tuple.  It is a compiler error if matcher_tuple and
// value_tuple have different number of fields or incompatible field
// types.
template <typename MatcherTuple, typename ValueTuple>
bool TupleMatches(const MatcherTuple& matcher_tuple,
                  const ValueTuple& value_tuple) {
  // Makes sure that matcher_tuple and value_tuple have the same
  // number of fields.
  GTEST_COMPILE_ASSERT_(tuple_size<MatcherTuple>::value ==
                        tuple_size<ValueTuple>::value,
                        matcher_and_value_have_different_numbers_of_fields);
  return TuplePrefix<tuple_size<ValueTuple>::value>::
      Matches(matcher_tuple, value_tuple);
}

// Describes failures in matching matchers against values.  If there
// is no failure, nothing will be streamed to os.
template <typename MatcherTuple, typename ValueTuple>
void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
                                const ValueTuple& values,
                                ::std::ostream* os) {
  TuplePrefix<tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
      matchers, values, os);
}

// TransformTupleValues and its helper.
//
// TransformTupleValuesHelper hides the internal machinery that
// TransformTupleValues uses to implement a tuple traversal.
template <typename Tuple, typename Func, typename OutIter>
class TransformTupleValuesHelper {
 private:
  typedef ::testing::tuple_size<Tuple> TupleSize;

 public:
  // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'.
  // Returns the final value of 'out' in case the caller needs it.
  static OutIter Run(Func f, const Tuple& t, OutIter out) {
    return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out);
  }

 private:
  template <typename Tup, size_t kRemainingSize>
  struct IterateOverTuple {
    OutIter operator() (Func f, const Tup& t, OutIter out) const {
      *out++ = f(::testing::get<TupleSize::value - kRemainingSize>(t));
      return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out);
    }
  };
  template <typename Tup>
  struct IterateOverTuple<Tup, 0> {
    OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const {
      return out;
    }
  };
};

// Successively invokes 'f(element)' on each element of the tuple 't',
// appending each result to the 'out' iterator. Returns the final value
// of 'out'.
template <typename Tuple, typename Func, typename OutIter>
OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) {
  return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out);
}

// Implements A<T>().
template <typename T>
class AnyMatcherImpl : public MatcherInterface<T> {
 public:
  virtual bool MatchAndExplain(
      T /* x */, MatchResultListener* /* listener */) const { return true; }
  virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; }
  virtual void DescribeNegationTo(::std::ostream* os) const {
    // This is mostly for completeness' safe, as it's not very useful
    // to write Not(A<bool>()).  However we cannot completely rule out
    // such a possibility, and it doesn't hurt to be prepared.
    *os << "never matches";
  }
};

// Implements _, a matcher that matches any value of any
// type.  This is a polymorphic matcher, so we need a template type
// conversion operator to make it appearing as a Matcher<T> for any
// type T.
class AnythingMatcher {
 public:
  template <typename T>
  operator Matcher<T>() const { return A<T>(); }
};

// Implements a matcher that compares a given value with a
// pre-supplied value using one of the ==, <=, <, etc, operators.  The
// two values being compared don't have to have the same type.
//
// The matcher defined here is polymorphic (for example, Eq(5) can be
// used to match an int, a short, a double, etc).  Therefore we use
// a template type conversion operator in the implementation.
//
// The following template definition assumes that the Rhs parameter is
// a "bare" type (i.e. neither 'const T' nor 'T&').
template <typename D, typename Rhs, typename Op>
class ComparisonBase {
 public:
  explicit ComparisonBase(const Rhs& rhs) : rhs_(rhs) {}
  template <typename Lhs>
  operator Matcher<Lhs>() const {
    return MakeMatcher(new Impl<Lhs>(rhs_));
  }

 private:
  template <typename Lhs>
  class Impl : public MatcherInterface<Lhs> {
   public:
    explicit Impl(const Rhs& rhs) : rhs_(rhs) {}
    virtual bool MatchAndExplain(
        Lhs lhs, MatchResultListener* /* listener */) const {
      return Op()(lhs, rhs_);
    }
    virtual void DescribeTo(::std::ostream* os) const {
      *os << D::Desc() << " ";
      UniversalPrint(rhs_, os);
    }
    virtual void DescribeNegationTo(::std::ostream* os) const {
      *os << D::NegatedDesc() <<  " ";
      UniversalPrint(rhs_, os);
    }
   private:
    Rhs rhs_;
    GTEST_DISALLOW_ASSIGN_(Impl);
  };
  Rhs rhs_;
  GTEST_DISALLOW_ASSIGN_(ComparisonBase);
};

template <typename Rhs>
class EqMatcher : public ComparisonBase<EqMatcher<Rhs>, Rhs, AnyEq> {
 public:
  explicit EqMatcher(const Rhs& rhs)
      : ComparisonBase<EqMatcher<Rhs>, Rhs, AnyEq>(rhs) { }
  static const char* Desc() { return "is equal to"; }
  static const char* NegatedDesc() { return "isn't equal to"; }
};
template <typename Rhs>
class NeMatcher : public ComparisonBase<NeMatcher<Rhs>, Rhs, AnyNe> {
 public:
  explicit NeMatcher(const Rhs& rhs)
      : ComparisonBase<NeMatcher<Rhs>, Rhs, AnyNe>(rhs) { }
  static const char* Desc() { return "isn't equal to"; }
  static const char* NegatedDesc() { return "is equal to"; }
};
template <typename Rhs>
class LtMatcher : public ComparisonBase<LtMatcher<Rhs>, Rhs, AnyLt> {
 public:
  explicit LtMatcher(const Rhs& rhs)
      : ComparisonBase<LtMatcher<Rhs>, Rhs, AnyLt>(rhs) { }
  static const char* Desc() { return "is <"; }
  static const char* NegatedDesc() { return "isn't <"; }
};
template <typename Rhs>
class GtMatcher : public ComparisonBase<GtMatcher<Rhs>, Rhs, AnyGt> {
 public:
  explicit GtMatcher(const Rhs& rhs)
      : ComparisonBase<GtMatcher<Rhs>, Rhs, AnyGt>(rhs) { }
  static const char* Desc() { return "is >"; }
  static const char* NegatedDesc() { return "isn't >"; }
};
template <typename Rhs>
class LeMatcher : public ComparisonBase<LeMatcher<Rhs>, Rhs, AnyLe> {
 public:
  explicit LeMatcher(const Rhs& rhs)
      : ComparisonBase<LeMatcher<Rhs>, Rhs, AnyLe>(rhs) { }
  static const char* Desc() { return "is <="; }
  static const char* NegatedDesc() { return "isn't <="; }
};
template <typename Rhs>
class GeMatcher : public ComparisonBase<GeMatcher<Rhs>, Rhs, AnyGe> {
 public:
  explicit GeMatcher(const Rhs& rhs)
      : ComparisonBase<GeMatcher<Rhs>, Rhs, AnyGe>(rhs) { }
  static const char* Desc() { return "is >="; }
  static const char* NegatedDesc() { return "isn't >="; }
};

// Implements the polymorphic IsNull() matcher, which matches any raw or smart
// pointer that is NULL.
class IsNullMatcher {
 public:
  template <typename Pointer>
  bool MatchAndExplain(const Pointer& p,
                       MatchResultListener* /* listener */) const {
#if GTEST_LANG_CXX11
    return p == nullptr;
#else  // GTEST_LANG_CXX11
    return GetRawPointer(p) == NULL;
#endif  // GTEST_LANG_CXX11
  }

  void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
  void DescribeNegationTo(::std::ostream* os) const {
    *os << "isn't NULL";
  }
};

// Implements the polymorphic NotNull() matcher, which matches any raw or smart
// pointer that is not NULL.
class NotNullMatcher {
 public:
  template <typename Pointer>
  bool MatchAndExplain(const Pointer& p,
                       MatchResultListener* /* listener */) const {
#if GTEST_LANG_CXX11
    return p != nullptr;
#else  // GTEST_LANG_CXX11
    return GetRawPointer(p) != NULL;
#endif  // GTEST_LANG_CXX11
  }

  void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
  void DescribeNegationTo(::std::ostream* os) const {
    *os << "is NULL";
  }
};

// Ref(variable) matches any argument that is a reference to
// 'variable'.  This matcher is polymorphic as it can match any
// super type of the type of 'variable'.
//
// The RefMatcher template class implements Ref(variable).  It can
// only be instantiated with a reference type.  This prevents a user
// from mistakenly using Ref(x) to match a non-reference function
// argument.  For example, the following will righteously cause a
// compiler error:
//
//   int n;
//   Matcher<int> m1 = Ref(n);   // This won't compile.
//   Matcher<int&> m2 = Ref(n);  // This will compile.
template <typename T>
class RefMatcher;

template <typename T>
class RefMatcher<T&> {
  // Google Mock is a generic framework and thus needs to support
  // mocking any function types, including those that take non-const
  // reference arguments.  Therefore the template parameter T (and
  // Super below) can be instantiated to either a const type or a
  // non-const type.
 public:
  // RefMatcher() takes a T& instead of const T&, as we want the
  // compiler to catch using Ref(const_value) as a matcher for a
  // non-const reference.
  explicit RefMatcher(T& x) : object_(x) {}  // NOLINT

  template <typename Super>
  operator Matcher<Super&>() const {
    // By passing object_ (type T&) to Impl(), which expects a Super&,
    // we make sure that Super is a super type of T.  In particular,
    // this catches using Ref(const_value) as a matcher for a
    // non-const reference, as you cannot implicitly convert a const
    // reference to a non-const reference.
    return MakeMatcher(new Impl<Super>(object_));
  }

 private:
  template <typename Super>
  class Impl : public MatcherInterface<Super&> {
   public:
    explicit Impl(Super& x) : object_(x) {}  // NOLINT

    // MatchAndExplain() takes a Super& (as opposed to const Super&)
    // in order to match the interface MatcherInterface<Super&>.
    virtual bool MatchAndExplain(
        Super& x, MatchResultListener* listener) const {
      *listener << "which is located @" << static_cast<const void*>(&x);
      return &x == &object_;
    }

    virtual void DescribeTo(::std::ostream* os) const {
      *os << "references the variable ";
      UniversalPrinter<Super&>::Print(object_, os);
    }

    virtual void DescribeNegationTo(::std::ostream* os) const {
      *os << "does not reference the variable ";
      UniversalPrinter<Super&>::Print(object_, os);
    }

   private:
    const Super& object_;

    GTEST_DISALLOW_ASSIGN_(Impl);
  };

  T& object_;

  GTEST_DISALLOW_ASSIGN_(RefMatcher);
};

// Polymorphic helper functions for narrow and wide string matchers.
inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
  return String::CaseInsensitiveCStringEquals(lhs, rhs);
}

inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
                                         const wchar_t* rhs) {
  return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
}

// String comparison for narrow or wide strings that can have embedded NUL
// characters.
template <typename StringType>
bool CaseInsensitiveStringEquals(const StringType& s1,
                                 const StringType& s2) {
  // Are the heads equal?
  if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
    return false;
  }

  // Skip the equal heads.
  const typename StringType::value_type nul = 0;
  const size_t i1 = s1.find(nul), i2 = s2.find(nul);

  // Are we at the end of either s1 or s2?
  if (i1 == StringType::npos || i2 == StringType::npos) {
    return i1 == i2;
  }

  // Are the tails equal?
  return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
}

// String matchers.

// Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
template <typename StringType>
class StrEqualityMatcher {
 public:
  StrEqualityMatcher(const StringType& str, bool expect_eq,
                     bool case_sensitive)
      : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {}

  // Accepts pointer types, particularly:
  //   const char*
  //   char*
  //   const wchar_t*
  //   wchar_t*
  template <typename CharType>
  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
    if (s == NULL) {
      return !expect_eq_;
    }
    return MatchAndExplain(StringType(s), listener);
  }

  // Matches anything that can convert to StringType.
  //
  // This is a template, not just a plain function with const StringType&,
  // because StringPiece has some interfering non-explicit constructors.
  template <typename MatcheeStringType>
  bool MatchAndExplain(const MatcheeStringType& s,
                       MatchResultListener* /* listener */) const {
    const StringType& s2(s);
    const bool eq = case_sensitive_ ? s2 == string_ :
        CaseInsensitiveStringEquals(s2, string_);
    return expect_eq_ == eq;
  }

  void DescribeTo(::std::ostream* os) const {
    DescribeToHelper(expect_eq_, os);
  }

  void DescribeNegationTo(::std::ostream* os) const {
    DescribeToHelper(!expect_eq_, os);
  }

 private:
  void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
    *os << (expect_eq ? "is " : "isn't ");
    *os << "equal to ";
    if (!case_sensitive_) {
      *os << "(ignoring case) ";
    }
    UniversalPrint(string_, os);
  }

  const StringType string_;
  const bool expect_eq_;
  const bool case_sensitive_;

  GTEST_DISALLOW_ASSIGN_(StrEqualityMatcher);
};

// Implements the polymorphic HasSubstr(substring) matcher, which
// can be used as a Matcher<T> as long as T can be converted to a
// string.
template <typename StringType>
class HasSubstrMatcher {
 public:
  explicit HasSubstrMatcher(const StringType& substring)
      : substring_(substring) {}

  // Accepts pointer types, particularly:
  //   const char*
  //   char*
  //   const wchar_t*
  //   wchar_t*
  template <typename CharType>
  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
    return s != NULL && MatchAndExplain(StringType(s), listener);
  }

  // Matches anything that can convert to StringType.
  //
  // This is a template, not just a plain function with const StringType&,
  // because StringPiece has some interfering non-explicit constructors.
  template <typename MatcheeStringType>
  bool MatchAndExplain(const MatcheeStringType& s,
                       MatchResultListener* /* listener */) const {
    const StringType& s2(s);
    return s2.find(substring_) != StringType::npos;
  }

  // Describes what this matcher matches.
  void DescribeTo(::std::ostream* os) const {
    *os << "has substring ";
    UniversalPrint(substring_, os);
  }

  void DescribeNegationTo(::std::ostream* os) const {
    *os << "has no substring ";
    UniversalPrint(substring_, os);
  }

 private:
  const StringType substring_;

  GTEST_DISALLOW_ASSIGN_(HasSubstrMatcher);
};

// Implements the polymorphic StartsWith(substring) matcher, which
// can be used as a Matcher<T> as long as T can be converted to a
// string.
template <typename StringType>
class StartsWithMatcher {
 public:
  explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
  }

  // Accepts pointer types, particularly:
  //   const char*
  //   char*
  //   const wchar_t*
  //   wchar_t*
  template <typename CharType>
  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
    return s != NULL && MatchAndExplain(StringType(s), listener);
  }

  // Matches anything that can convert to StringType.
  //
  // This is a template, not just a plain function with const StringType&,
  // because StringPiece has some interfering non-explicit constructors.
  template <typename MatcheeStringType>
  bool MatchAndExplain(const MatcheeStringType& s,
                       MatchResultListener* /* listener */) const {
    const StringType& s2(s);
    return s2.length() >= prefix_.length() &&
        s2.substr(0, prefix_.length()) == prefix_;
  }

  void DescribeTo(::std::ostream* os) const {
    *os << "starts with ";
    UniversalPrint(prefix_, os);
  }

  void DescribeNegationTo(::std::ostream* os) const {
    *os << "doesn't start with ";
    UniversalPrint(prefix_, os);
  }

 private:
  const StringType prefix_;

  GTEST_DISALLOW_ASSIGN_(StartsWithMatcher);
};

// Implements the polymorphic EndsWith(substring) matcher, which
// can be used as a Matcher<T> as long as T can be converted to a
// string.
template <typename StringType>
class EndsWithMatcher {
 public:
  explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}

  // Accepts pointer types, particularly:
  //   const char*
  //   char*
  //   const wchar_t*
  //   wchar_t*
  template <typename CharType>
  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
    return s != NULL && MatchAndExplain(StringType(s), listener);
  }

  // Matches anything that can convert to StringType.
  //
  // This is a template, not just a plain function with const StringType&,
  // because StringPiece has some interfering non-explicit constructors.
  template <typename MatcheeStringType>
  bool MatchAndExplain(const MatcheeStringType& s,
                       MatchResultListener* /* listener */) const {
    const StringType& s2(s);
    return s2.length() >= suffix_.length() &&
        s2.substr(s2.length() - suffix_.length()) == suffix_;
  }

  void DescribeTo(::std::ostream* os) const {
    *os << "ends with ";
    UniversalPrint(suffix_, os);
  }

  void DescribeNegationTo(::std::ostream* os) const {
    *os << "doesn't end with ";
    UniversalPrint(suffix_, os);
  }

 private:
  const StringType suffix_;

  GTEST_DISALLOW_ASSIGN_(EndsWithMatcher);
};

// Implements polymorphic matchers MatchesRegex(regex) and
// ContainsRegex(regex), which can be used as a Matcher<T> as long as
// T can be converted to a string.
class MatchesRegexMatcher {
 public:
  MatchesRegexMatcher(const RE* regex, bool full_match)
      : regex_(regex), full_match_(full_match) {}

  // Accepts pointer types, particularly:
  //   const char*
  //   char*
  //   const wchar_t*
  //   wchar_t*
  template <typename CharType>
  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
    return s != NULL && MatchAndExplain(internal::string(s), listener);
  }

  // Matches anything that can convert to internal::string.
  //
  // This is a template, not just a plain function with const internal::string&,
  // because StringPiece has some interfering non-explicit constructors.
  template <class MatcheeStringType>
  bool MatchAndExplain(const MatcheeStringType& s,
                       MatchResultListener* /* listener */) const {
    const internal::string& s2(s);
    return full_match_ ? RE::FullMatch(s2, *regex_) :
        RE::PartialMatch(s2, *regex_);
  }

  void DescribeTo(::std::ostream* os) const {
    *os << (full_match_ ? "matches" : "contains")
        << " regular expression ";
    UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
  }

  void DescribeNegationTo(::std::ostream* os) const {
    *os << "doesn't " << (full_match_ ? "match" : "contain")
        << " regular expression ";
    UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
  }

 private:
  const internal::linked_ptr<const RE> regex_;
  const bool full_match_;

  GTEST_DISALLOW_ASSIGN_(MatchesRegexMatcher);
};

// Implements a matcher that compares the two fields of a 2-tuple
// using one of the ==, <=, <, etc, operators.  The two fields being
// compared don't have to have the same type.
//
// The matcher defined here is polymorphic (for example, Eq() can be
// used to match a tuple<int, short>, a tuple<const long&, double>,
// etc).  Therefore we use a template type conversion operator in the
// implementation.
template <typename D, typename Op>
class PairMatchBase {
 public:
  template <typename T1, typename T2>
  operator Matcher< ::testing::tuple<T1, T2> >() const {
    return MakeMatcher(new Impl< ::testing::tuple<T1, T2> >);
  }
  template <typename T1, typename T2>
  operator Matcher<const ::testing::tuple<T1, T2>&>() const {
    return MakeMatcher(new Impl<const ::testing::tuple<T1, T2>&>);
  }

 private:
  static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT
    return os << D::Desc();
  }

  template <typename Tuple>
  class Impl : public MatcherInterface<Tuple> {
   public:
    virtual bool MatchAndExplain(
        Tuple args,
        MatchResultListener* /* listener */) const {
      return Op()(::testing::get<0>(args), ::testing::get<1>(args));
    }
    virtual void DescribeTo(::std::ostream* os) const {
      *os << "are " << GetDesc;
    }
    virtual void DescribeNegationTo(::std::ostream* os) const {
      *os << "aren't " << GetDesc;
    }
  };
};

class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> {
 public:
  static const char* Desc() { return "an equal pair"; }
};
class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> {
 public:
  static const char* Desc() { return "an unequal pair"; }
};
class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> {
 public:
  static const char* Desc() { return "a pair where the first < the second"; }
};
class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> {
 public:
  static const char* Desc() { return "a pair where the first > the second"; }
};
class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> {
 public:
  static const char* Desc() { return "a pair where the first <= the second"; }
};
class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> {
 public:
  static const char* Desc() { return "a pair where the first >= the second"; }
};

// Implements the Not(...) matcher for a particular argument type T.
// We do not nest it inside the NotMatcher class template, as that
// will prevent different instantiations of NotMatcher from sharing
// the same NotMatcherImpl<T> class.
template <typename T>
class NotMatcherImpl : public MatcherInterface<T> {
 public:
  explicit NotMatcherImpl(const Matcher<T>& matcher)
      : matcher_(matcher) {}

  virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
    return !matcher_.MatchAndExplain(x, listener);
  }

  virtual void DescribeTo(::std::ostream* os) const {
    matcher_.DescribeNegationTo(os);
  }

  virtual void DescribeNegationTo(::std::ostream* os) const {
    matcher_.DescribeTo(os);
  }

 private:
  const Matcher<T> matcher_;

  GTEST_DISALLOW_ASSIGN_(NotMatcherImpl);
};

// Implements the Not(m) matcher, which matches a value that doesn't
// match matcher m.
template <typename InnerMatcher>
class NotMatcher {
 public:
  explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}

  // This template type conversion operator allows Not(m) to be used
  // to match any type m can match.
  template <typename T>
  operator Matcher<T>() const {
    return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
  }

 private:
  InnerMatcher matcher_;

  GTEST_DISALLOW_ASSIGN_(NotMatcher);
};

// Implements the AllOf(m1, m2) matcher for a particular argument type
// T. We do not nest it inside the BothOfMatcher class template, as
// that will prevent different instantiations of BothOfMatcher from
// sharing the same BothOfMatcherImpl<T> class.
template <typename T>
class BothOfMatcherImpl : public MatcherInterface<T> {
 public:
  BothOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
      : matcher1_(matcher1), matcher2_(matcher2) {}

  virtual void DescribeTo(::std::ostream* os) const {
    *os << "(";
    matcher1_.DescribeTo(os);
    *os << ") and (";
    matcher2_.DescribeTo(os);
    *os << ")";
  }

  virtual void DescribeNegationTo(::std::ostream* os) const {
    *os << "(";
    matcher1_.DescribeNegationTo(os);
    *os << ") or (";
    matcher2_.DescribeNegationTo(os);
    *os << ")";
  }

  virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
    // If either matcher1_ or matcher2_ doesn't match x, we only need
    // to explain why one of them fails.
    StringMatchResultListener listener1;
    if (!matcher1_.MatchAndExplain(x, &listener1)) {
      *listener << listener1.str();
      return false;
    }

    StringMatchResultListener listener2;
    if (!matcher2_.MatchAndExplain(x, &listener2)) {
      *listener << listener2.str();
      return false;
    }

    // Otherwise we need to explain why *both* of them match.
    const internal::string s1 = listener1.str();
    const internal::string s2 = listener2.str();

    if (s1 == "") {
      *listener << s2;
    } else {
      *listener << s1;
      if (s2 != "") {
        *listener << ", and " << s2;
      }
    }
    return true;
  }

 private:
  const Matcher<T> matcher1_;
  const Matcher<T> matcher2_;

  GTEST_DISALLOW_ASSIGN_(BothOfMatcherImpl);
};

#if GTEST_LANG_CXX11
// MatcherList provides mechanisms for storing a variable number of matchers in
// a list structure (ListType) and creating a combining matcher from such a
// list.
// The template is defined recursively using the following template paramters:
//   * kSize is the length of the MatcherList.
//   * Head is the type of the first matcher of the list.
//   * Tail denotes the types of the remaining matchers of the list.
template <int kSize, typename Head, typename... Tail>
struct MatcherList {
  typedef MatcherList<kSize - 1, Tail...> MatcherListTail;
  typedef ::std::pair<Head, typename MatcherListTail::ListType> ListType;

  // BuildList stores variadic type values in a nested pair structure.
  // Example:
  // MatcherList<3, int, string, float>::BuildList(5, "foo", 2.0) will return
  // the corresponding result of type pair<int, pair<string, float>>.
  static ListType BuildList(const Head& matcher, const Tail&... tail) {
    return ListType(matcher, MatcherListTail::BuildList(tail...));
  }

  // CreateMatcher<T> creates a Matcher<T> from a given list of matchers (built
  // by BuildList()). CombiningMatcher<T> is used to combine the matchers of the
  // list. CombiningMatcher<T> must implement MatcherInterface<T> and have a
  // constructor taking two Matcher<T>s as input.
  template <typename T, template <typename /* T */> class CombiningMatcher>
  static Matcher<T> CreateMatcher(const ListType& matchers) {
    return Matcher<T>(new CombiningMatcher<T>(
        SafeMatcherCast<T>(matchers.first),
        MatcherListTail::template CreateMatcher<T, CombiningMatcher>(
            matchers.second)));
  }
};

// The following defines the base case for the recursive definition of
// MatcherList.
template <typename Matcher1, typename Matcher2>
struct MatcherList<2, Matcher1, Matcher2> {
  typedef ::std::pair<Matcher1, Matcher2> ListType;

  static ListType BuildList(const Matcher1& matcher1,
                            const Matcher2& matcher2) {
    return ::std::pair<Matcher1, Matcher2>(matcher1, matcher2);
  }

  template <typename T, template <typename /* T */> class CombiningMatcher>
  static Matcher<T> CreateMatcher(const ListType& matchers) {
    return Matcher<T>(new CombiningMatcher<T>(
        SafeMatcherCast<T>(matchers.first),
        SafeMatcherCast<T>(matchers.second)));
  }
};

// VariadicMatcher is used for the variadic implementation of
// AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...).
// CombiningMatcher<T> is used to recursively combine the provided matchers
// (of type Args...).
template <template <typename T> class CombiningMatcher, typename... Args>
class VariadicMatcher {
 public:
  VariadicMatcher(const Args&... matchers)  // NOLINT
      : matchers_(MatcherListType::BuildList(matchers...)) {}

  // This template type conversion operator allows an
  // VariadicMatcher<Matcher1, Matcher2...> object to match any type that
  // all of the provided matchers (Matcher1, Matcher2, ...) can match.
  template <typename T>
  operator Matcher<T>() const {
    return MatcherListType::template CreateMatcher<T, CombiningMatcher>(
        matchers_);
  }

 private:
  typedef MatcherList<sizeof...(Args), Args...> MatcherListType;

  const typename MatcherListType::ListType matchers_;

  GTEST_DISALLOW_ASSIGN_(VariadicMatcher);
};

template <typename... Args>
using AllOfMatcher = VariadicMatcher<BothOfMatcherImpl, Args...>;

#endif  // GTEST_LANG_CXX11

// Used for implementing the AllOf(m_1, ..., m_n) matcher, which
// matches a value that matches all of the matchers m_1, ..., and m_n.
template <typename Matcher1, typename Matcher2>
class BothOfMatcher {
 public:
  BothOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
      : matcher1_(matcher1), matcher2_(matcher2) {}

  // This template type conversion operator allows a
  // BothOfMatcher<Matcher1, Matcher2> object to match any type that
  // both Matcher1 and Matcher2 can match.
  template <typename T>
  operator Matcher<T>() const {
    return Matcher<T>(new BothOfMatcherImpl<T>(SafeMatcherCast<T>(matcher1_),
                                               SafeMatcherCast<T>(matcher2_)));
  }

 private:
  Matcher1 matcher1_;
  Matcher2 matcher2_;

  GTEST_DISALLOW_ASSIGN_(BothOfMatcher);
};

// Implements the AnyOf(m1, m2) matcher for a particular argument type
// T.  We do not nest it inside the AnyOfMatcher class template, as
// that will prevent different instantiations of AnyOfMatcher from
// sharing the same EitherOfMatcherImpl<T> class.
template <typename T>
class EitherOfMatcherImpl : public MatcherInterface<T> {
 public:
  EitherOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
      : matcher1_(matcher1), matcher2_(matcher2) {}

  virtual void DescribeTo(::std::ostream* os) const {
    *os << "(";
    matcher1_.DescribeTo(os);
    *os << ") or (";
    matcher2_.DescribeTo(os);
    *os << ")";
  }

  virtual void DescribeNegationTo(::std::ostream* os) const {
    *os << "(";
    matcher1_.DescribeNegationTo(os);
    *os << ") and (";
    matcher2_.DescribeNegationTo(os);
    *os << ")";
  }

  virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
    // If either matcher1_ or matcher2_ matches x, we just need to
    // explain why *one* of them matches.
    StringMatchResultListener listener1;
    if (matcher1_.MatchAndExplain(x, &listener1)) {
      *listener << listener1.str();
      return true;
    }

    StringMatchResultListener listener2;
    if (matcher2_.MatchAndExplain(x, &listener2)) {
      *listener << listener2.str();
      return true;
    }

    // Otherwise we need to explain why *both* of them fail.
    const internal::string s1 = listener1.str();
    const internal::string s2 = listener2.str();

    if (s1 == "") {
      *listener << s2;
    } else {
      *listener << s1;
      if (s2 != "") {
        *listener << ", and " << s2;
      }
    }
    return false;
  }

 private:
  const Matcher<T> matcher1_;
  const Matcher<T> matcher2_;

  GTEST_DISALLOW_ASSIGN_(EitherOfMatcherImpl);
};

#if GTEST_LANG_CXX11
// AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...).
template <typename... Args>
using AnyOfMatcher = VariadicMatcher<EitherOfMatcherImpl, Args...>;

#endif  // GTEST_LANG_CXX11

// Used for implementing the AnyOf(m_1, ..., m_n) matcher, which
// matches a value that matches at least one of the matchers m_1, ...,
// and m_n.
template <typename Matcher1, typename Matcher2>
class EitherOfMatcher {
 public:
  EitherOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
      : matcher1_(matcher1), matcher2_(matcher2) {}

  // This template type conversion operator allows a
  // EitherOfMatcher<Matcher1, Matcher2> object to match any type that
  // both Matcher1 and Matcher2 can match.
  template <typename T>
  operator Matcher<T>() const {
    return Matcher<T>(new EitherOfMatcherImpl<T>(
        SafeMatcherCast<T>(matcher1_), SafeMatcherCast<T>(matcher2_)));
  }

 private:
  Matcher1 matcher1_;
  Matcher2 matcher2_;

  GTEST_DISALLOW_ASSIGN_(EitherOfMatcher);
};

// Used for implementing Truly(pred), which turns a predicate into a
// matcher.
template <typename Predicate>
class TrulyMatcher {
 public:
  explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}

  // This method template allows Truly(pred) to be used as a matcher
  // for type T where T is the argument type of predicate 'pred'.  The
  // argument is passed by reference as the predicate may be
  // interested in the address of the argument.
  template <typename T>
  bool MatchAndExplain(T& x,  // NOLINT
                       MatchResultListener* /* listener */) const {
    // Without the if-statement, MSVC sometimes warns about converting
    // a value to bool (warning 4800).
    //
    // We cannot write 'return !!predicate_(x);' as that doesn't work
    // when predicate_(x) returns a class convertible to bool but
    // having no operator!().
    if (predicate_(x))
      return true;
    return false;
  }

  void DescribeTo(::std::ostream* os) const {
    *os << "satisfies the given predicate";
  }

  void DescribeNegationTo(::std::ostream* os) const {
    *os << "doesn't satisfy the given predicate";
  }

 private:
  Predicate predicate_;

  GTEST_DISALLOW_ASSIGN_(TrulyMatcher);
};

// Used for implementing Matches(matcher), which turns a matcher into
// a predicate.
template <typename M>
class MatcherAsPredicate {
 public:
  explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}

  // This template operator() allows Matches(m) to be used as a
  // predicate on type T where m is a matcher on type T.
  //
  // The argument x is passed by reference instead of by value, as
  // some matcher may be interested in its address (e.g. as in
  // Matches(Ref(n))(x)).
  template <typename T>
  bool operator()(const T& x) const {
    // We let matcher_ commit to a particular type here instead of
    // when the MatcherAsPredicate object was constructed.  This
    // allows us to write Matches(m) where m is a polymorphic matcher
    // (e.g. Eq(5)).
    //
    // If we write Matcher<T>(matcher_).Matches(x) here, it won't
    // compile when matcher_ has type Matcher<const T&>; if we write
    // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
    // when matcher_ has type Matcher<T>; if we just write
    // matcher_.Matches(x), it won't compile when matcher_ is
    // polymorphic, e.g. Eq(5).
    //
    // MatcherCast<const T&>() is necessary for making the code work
    // in all of the above situations.
    return MatcherCast<const T&>(matcher_).Matches(x);
  }

 private:
  M matcher_;

  GTEST_DISALLOW_ASSIGN_(MatcherAsPredicate);
};

// For implementing ASSERT_THAT() and EXPECT_THAT().  The template
// argument M must be a type that can be converted to a matcher.
template <typename M>
class PredicateFormatterFromMatcher {
 public:
  explicit PredicateFormatterFromMatcher(M m) : matcher_(internal::move(m)) {}

  // This template () operator allows a PredicateFormatterFromMatcher
  // object to act as a predicate-formatter suitable for using with
  // Google Test's EXPECT_PRED_FORMAT1() macro.
  template <typename T>
  AssertionResult operator()(const char* value_text, const T& x) const {
    // We convert matcher_ to a Matcher<const T&> *now* instead of
    // when the PredicateFormatterFromMatcher object was constructed,
    // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
    // know which type to instantiate it to until we actually see the
    // type of x here.
    //
    // We write SafeMatcherCast<const T&>(matcher_) instead of
    // Matcher<const T&>(matcher_), as the latter won't compile when
    // matcher_ has type Matcher<T> (e.g. An<int>()).
    // We don't write MatcherCast<const T&> either, as that allows
    // potentially unsafe downcasting of the matcher argument.
    const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_);
    StringMatchResultListener listener;
    if (MatchPrintAndExplain(x, matcher, &listener))
      return AssertionSuccess();

    ::std::stringstream ss;
    ss << "Value of: " << value_text << "\n"
       << "Expected: ";
    matcher.DescribeTo(&ss);
    ss << "\n  Actual: " << listener.str();
    return AssertionFailure() << ss.str();
  }

 private:
  const M matcher_;

  GTEST_DISALLOW_ASSIGN_(PredicateFormatterFromMatcher);
};

// A helper function for converting a matcher to a predicate-formatter
// without the user needing to explicitly write the type.  This is
// used for implementing ASSERT_THAT() and EXPECT_THAT().
// Implementation detail: 'matcher' is received by-value to force decaying.
template <typename M>
inline PredicateFormatterFromMatcher<M>
MakePredicateFormatterFromMatcher(M matcher) {
  return PredicateFormatterFromMatcher<M>(internal::move(matcher));
}

// Implements the polymorphic floating point equality matcher, which matches
// two float values using ULP-based approximation or, optionally, a
// user-specified epsilon.  The template is meant to be instantiated with
// FloatType being either float or double.
template <typename FloatType>
class FloatingEqMatcher {
 public:
  // Constructor for FloatingEqMatcher.
  // The matcher's input will be compared with expected.  The matcher treats two
  // NANs as equal if nan_eq_nan is true.  Otherwise, under IEEE standards,
  // equality comparisons between NANs will always return false.  We specify a
  // negative max_abs_error_ term to indicate that ULP-based approximation will
  // be used for comparison.
  FloatingEqMatcher(FloatType expected, bool nan_eq_nan) :
    expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {
  }

  // Constructor that supports a user-specified max_abs_error that will be used
  // for comparison instead of ULP-based approximation.  The max absolute
  // should be non-negative.
  FloatingEqMatcher(FloatType expected, bool nan_eq_nan,
                    FloatType max_abs_error)
      : expected_(expected),
        nan_eq_nan_(nan_eq_nan),
        max_abs_error_(max_abs_error) {
    GTEST_CHECK_(max_abs_error >= 0)
        << ", where max_abs_error is" << max_abs_error;
  }

  // Implements floating point equality matcher as a Matcher<T>.
  template <typename T>
  class Impl : public MatcherInterface<T> {
   public:
    Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error)
        : expected_(expected),
          nan_eq_nan_(nan_eq_nan),
          max_abs_error_(max_abs_error) {}

    virtual bool MatchAndExplain(T value,
                                 MatchResultListener* listener) const {
      const FloatingPoint<FloatType> actual(value), expected(expected_);

      // Compares NaNs first, if nan_eq_nan_ is true.
      if (actual.is_nan() || expected.is_nan()) {
        if (actual.is_nan() && expected.is_nan()) {
          return nan_eq_nan_;
        }
        // One is nan; the other is not nan.
        return false;
      }
      if (HasMaxAbsError()) {
        // We perform an equality check so that inf will match inf, regardless
        // of error bounds.  If the result of value - expected_ would result in
        // overflow or if either value is inf, the default result is infinity,
        // which should only match if max_abs_error_ is also infinity.
        if (value == expected_) {
          return true;
        }

        const FloatType diff = value - expected_;
        if (fabs(diff) <= max_abs_error_) {
          return true;
        }

        if (listener->IsInterested()) {
          *listener << "which is " << diff << " from " << expected_;
        }
        return false;
      } else {
        return actual.AlmostEquals(expected);
      }
    }

    virtual void DescribeTo(::std::ostream* os) const {
      // os->precision() returns the previously set precision, which we
      // store to restore the ostream to its original configuration
      // after outputting.
      const ::std::streamsize old_precision = os->precision(
          ::std::numeric_limits<FloatType>::digits10 + 2);
      if (FloatingPoint<FloatType>(expected_).is_nan()) {
        if (nan_eq_nan_) {
          *os << "is NaN";
        } else {
          *os << "never matches";
        }
      } else {
        *os << "is approximately " << expected_;
        if (HasMaxAbsError()) {
          *os << " (absolute error <= " << max_abs_error_ << ")";
        }
      }
      os->precision(old_precision);
    }

    virtual void DescribeNegationTo(::std::ostream* os) const {
      // As before, get original precision.
      const ::std::streamsize old_precision = os->precision(
          ::std::numeric_limits<FloatType>::digits10 + 2);
      if (FloatingPoint<FloatType>(expected_).is_nan()) {
        if (nan_eq_nan_) {
          *os << "isn't NaN";
        } else {
          *os << "is anything";
        }
      } else {
        *os << "isn't approximately " << expected_;
        if (HasMaxAbsError()) {
          *os << " (absolute error > " << max_abs_error_ << ")";
        }
      }
      // Restore original precision.
      os->precision(old_precision);
    }

   private:
    bool HasMaxAbsError() const {
      return max_abs_error_ >= 0;
    }

    const FloatType expected_;
    const bool nan_eq_nan_;
    // max_abs_error will be used for value comparison when >= 0.
    const FloatType max_abs_error_;

    GTEST_DISALLOW_ASSIGN_(Impl);
  };

  // The following 3 type conversion operators allow FloatEq(expected) and
  // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a
  // Matcher<const float&>, or a Matcher<float&>, but nothing else.
  // (While Google's C++ coding style doesn't allow arguments passed
  // by non-const reference, we may see them in code not conforming to
  // the style.  Therefore Google Mock needs to support them.)
  operator Matcher<FloatType>() const {
    return MakeMatcher(
        new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_));
  }

  operator Matcher<const FloatType&>() const {
    return MakeMatcher(
        new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
  }

  operator Matcher<FloatType&>() const {
    return MakeMatcher(
        new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
  }

 private:
  const FloatType expected_;
  const bool nan_eq_nan_;
  // max_abs_error will be used for value comparison when >= 0.
  const FloatType max_abs_error_;

  GTEST_DISALLOW_ASSIGN_(FloatingEqMatcher);
};

// Implements the Pointee(m) matcher for matching a pointer whose
// pointee matches matcher m.  The pointer can be either raw or smart.
template <typename InnerMatcher>
class PointeeMatcher {
 public:
  explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}

  // This type conversion operator template allows Pointee(m) to be
  // used as a matcher for any pointer type whose pointee type is
  // compatible with the inner matcher, where type Pointer can be
  // either a raw pointer or a smart pointer.
  //
  // The reason we do this instead of relying on
  // MakePolymorphicMatcher() is that the latter is not flexible
  // enough for implementing the DescribeTo() method of Pointee().
  template <typename Pointer>
  operator Matcher<Pointer>() const {
    return MakeMatcher(new Impl<Pointer>(matcher_));
  }

 private:
  // The monomorphic implementation that works for a particular pointer type.
  template <typename Pointer>
  class Impl : public MatcherInterface<Pointer> {
   public:
    typedef typename PointeeOf<GTEST_REMOVE_CONST_(  // NOLINT
        GTEST_REMOVE_REFERENCE_(Pointer))>::type Pointee;

    explicit Impl(const InnerMatcher& matcher)
        : matcher_(MatcherCast<const Pointee&>(matcher)) {}

    virtual void DescribeTo(::std::ostream* os) const {
      *os << "points to a value that ";
      matcher_.DescribeTo(os);
    }

    virtual void DescribeNegationTo(::std::ostream* os) const {
      *os << "does not point to a value that ";
      matcher_.DescribeTo(os);
    }

    virtual bool MatchAndExplain(Pointer pointer,
                                 MatchResultListener* listener) const {
      if (GetRawPointer(pointer) == NULL)
        return false;

      *listener << "which points to ";
      return MatchPrintAndExplain(*pointer, matcher_, listener);
    }

   private:
    const Matcher<const Pointee&> matcher_;

    GTEST_DISALLOW_ASSIGN_(Impl);
  };

  const InnerMatcher matcher_;

  GTEST_DISALLOW_ASSIGN_(PointeeMatcher);
};

// Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or
// reference that matches inner_matcher when dynamic_cast<T> is applied.
// The result of dynamic_cast<To> is forwarded to the inner matcher.
// If To is a pointer and the cast fails, the inner matcher will receive NULL.
// If To is a reference and the cast fails, this matcher returns false
// immediately.
template <typename To>
class WhenDynamicCastToMatcherBase {
 public:
  explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher)
      : matcher_(matcher) {}

  void DescribeTo(::std::ostream* os) const {
    GetCastTypeDescription(os);
    matcher_.DescribeTo(os);
  }

  void DescribeNegationTo(::std::ostream* os) const {
    GetCastTypeDescription(os);
    matcher_.DescribeNegationTo(os);
  }

 protected:
  const Matcher<To> matcher_;

  static string GetToName() {
#if GTEST_HAS_RTTI
    return GetTypeName<To>();
#else  // GTEST_HAS_RTTI
    return "the target type";
#endif  // GTEST_HAS_RTTI
  }

 private:
  static void GetCastTypeDescription(::std::ostream* os) {
    *os << "when dynamic_cast to " << GetToName() << ", ";
  }

  GTEST_DISALLOW_ASSIGN_(WhenDynamicCastToMatcherBase);
};

// Primary template.
// To is a pointer. Cast and forward the result.
template <typename To>
class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> {
 public:
  explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher)
      : WhenDynamicCastToMatcherBase<To>(matcher) {}

  template <typename From>
  bool MatchAndExplain(From from, MatchResultListener* listener) const {
    // TODO(sbenza): Add more detail on failures. ie did the dyn_cast fail?
    To to = dynamic_cast<To>(from);
    return MatchPrintAndExplain(to, this->matcher_, listener);
  }
};

// Specialize for references.
// In this case we return false if the dynamic_cast fails.
template <typename To>
class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> {
 public:
  explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher)
      : WhenDynamicCastToMatcherBase<To&>(matcher) {}

  template <typename From>
  bool MatchAndExplain(From& from, MatchResultListener* listener) const {
    // We don't want an std::bad_cast here, so do the cast with pointers.
    To* to = dynamic_cast<To*>(&from);
    if (to == NULL) {
      *listener << "which cannot be dynamic_cast to " << this->GetToName();
      return false;
    }
    return MatchPrintAndExplain(*to, this->matcher_, listener);
  }
};

// Implements the Field() matcher for matching a field (i.e. member
// variable) of an object.
template <typename Class, typename FieldType>
class FieldMatcher {
 public:
  FieldMatcher(FieldType Class::*field,
               const Matcher<const FieldType&>& matcher)
      : field_(field), matcher_(matcher) {}

  void DescribeTo(::std::ostream* os) const {
    *os << "is an object whose given field ";
    matcher_.DescribeTo(os);
  }

  void DescribeNegationTo(::std::ostream* os) const {
    *os << "is an object whose given field ";
    matcher_.DescribeNegationTo(os);
  }

  template <typename T>
  bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
    return MatchAndExplainImpl(
        typename ::testing::internal::
            is_pointer<GTEST_REMOVE_CONST_(T)>::type(),
        value, listener);
  }

 private:
  // The first argument of MatchAndExplainImpl() is needed to help
  // Symbian's C++ compiler choose which overload to use.  Its type is
  // true_type iff the Field() matcher is used to match a pointer.
  bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj,
                           MatchResultListener* listener) const {
    *listener << "whose given field is ";
    return MatchPrintAndExplain(obj.*field_, matcher_, listener);
  }

  bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p,
                           MatchResultListener* listener) const {
    if (p == NULL)
      return false;

    *listener << "which points to an object ";
    // Since *p has a field, it must be a class/struct/union type and
    // thus cannot be a pointer.  Therefore we pass false_type() as
    // the first argument.
    return MatchAndExplainImpl(false_type(), *p, listener);
  }

  const FieldType Class::*field_;
  const Matcher<const FieldType&> matcher_;

  GTEST_DISALLOW_ASSIGN_(FieldMatcher);
};

// Implements the Property() matcher for matching a property
// (i.e. return value of a getter method) of an object.
template <typename Class, typename PropertyType>
class PropertyMatcher {
 public:
  // The property may have a reference type, so 'const PropertyType&'
  // may cause double references and fail to compile.  That's why we
  // need GTEST_REFERENCE_TO_CONST, which works regardless of
  // PropertyType being a reference or not.
  typedef GTEST_REFERENCE_TO_CONST_(PropertyType) RefToConstProperty;

  PropertyMatcher(PropertyType (Class::*property)() const,
                  const Matcher<RefToConstProperty>& matcher)
      : property_(property), matcher_(matcher) {}

  void DescribeTo(::std::ostream* os) const {
    *os << "is an object whose given property ";
    matcher_.DescribeTo(os);
  }

  void DescribeNegationTo(::std::ostream* os) const {
    *os << "is an object whose given property ";
    matcher_.DescribeNegationTo(os);
  }

  template <typename T>
  bool MatchAndExplain(const T&value, MatchResultListener* listener) const {
    return MatchAndExplainImpl(
        typename ::testing::internal::
            is_pointer<GTEST_REMOVE_CONST_(T)>::type(),
        value, listener);
  }

 private:
  // The first argument of MatchAndExplainImpl() is needed to help
  // Symbian's C++ compiler choose which overload to use.  Its type is
  // true_type iff the Property() matcher is used to match a pointer.
  bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj,
                           MatchResultListener* listener) const {
    *listener << "whose given property is ";
    // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
    // which takes a non-const reference as argument.
#if defined(_PREFAST_ ) && _MSC_VER == 1800
    // Workaround bug in VC++ 2013's /analyze parser.
    // https://connect.microsoft.com/VisualStudio/feedback/details/1106363/internal-compiler-error-with-analyze-due-to-failure-to-infer-move
    posix::Abort();  // To make sure it is never run.
    return false;
#else
    RefToConstProperty result = (obj.*property_)();
    return MatchPrintAndExplain(result, matcher_, listener);
#endif
  }

  bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p,
                           MatchResultListener* listener) const {
    if (p == NULL)
      return false;

    *listener << "which points to an object ";
    // Since *p has a property method, it must be a class/struct/union
    // type and thus cannot be a pointer.  Therefore we pass
    // false_type() as the first argument.
    return MatchAndExplainImpl(false_type(), *p, listener);
  }

  PropertyType (Class::*property_)() const;
  const Matcher<RefToConstProperty> matcher_;

  GTEST_DISALLOW_ASSIGN_(PropertyMatcher);
};

// Type traits specifying various features of different functors for ResultOf.
// The default template specifies features for functor objects.
// Functor classes have to typedef argument_type and result_type
// to be compatible with ResultOf.
template <typename Functor>
struct CallableTraits {
  typedef typename Functor::result_type ResultType;
  typedef Functor StorageType;

  static void CheckIsValid(Functor /* functor */) {}
  template <typename T>
  static ResultType Invoke(Functor f, T arg) { return f(arg); }
};

// Specialization for function pointers.
template <typename ArgType, typename ResType>
struct CallableTraits<ResType(*)(ArgType)> {
  typedef ResType ResultType;
  typedef ResType(*StorageType)(ArgType);

  static void CheckIsValid(ResType(*f)(ArgType)) {
    GTEST_CHECK_(f != NULL)
        << "NULL function pointer is passed into ResultOf().";
  }
  template <typename T>
  static ResType Invoke(ResType(*f)(ArgType), T arg) {
    return (*f)(arg);
  }
};

// Implements the ResultOf() matcher for matching a return value of a
// unary function of an object.
template <typename Callable>
class ResultOfMatcher {
 public:
  typedef typename CallableTraits<Callable>::ResultType ResultType;

  ResultOfMatcher(Callable callable, const Matcher<ResultType>& matcher)
      : callable_(callable), matcher_(matcher) {
    CallableTraits<Callable>::CheckIsValid(callable_);
  }

  template <typename T>
  operator Matcher<T>() const {
    return Matcher<T>(new Impl<T>(callable_, matcher_));
  }

 private:
  typedef typename CallableTraits<Callable>::StorageType CallableStorageType;

  template <typename T>
  class Impl : public MatcherInterface<T> {
   public:
    Impl(CallableStorageType callable, const Matcher<ResultType>& matcher)
        : callable_(callable), matcher_(matcher) {}

    virtual void DescribeTo(::std::ostream* os) const {
      *os << "is mapped by the given callable to a value that ";
      matcher_.DescribeTo(os);
    }

    virtual void DescribeNegationTo(::std::ostream* os) const {
      *os << "is mapped by the given callable to a value that ";
      matcher_.DescribeNegationTo(os);
    }

    virtual bool MatchAndExplain(T obj, MatchResultListener* listener) const {
      *listener << "which is mapped by the given callable to ";
      // Cannot pass the return value (for example, int) to
      // MatchPrintAndExplain, which takes a non-const reference as argument.
      ResultType result =
          CallableTraits<Callable>::template Invoke<T>(callable_, obj);
      return MatchPrintAndExplain(result, matcher_, listener);
    }

   private:
    // Functors often define operator() as non-const method even though
    // they are actualy stateless. But we need to use them even when
    // 'this' is a const pointer. It's the user's responsibility not to
    // use stateful callables with ResultOf(), which does't guarantee
    // how many times the callable will be invoked.
    mutable CallableStorageType callable_;
    const Matcher<ResultType> matcher_;

    GTEST_DISALLOW_ASSIGN_(Impl);
  };  // class Impl

  const CallableStorageType callable_;
  const Matcher<ResultType> matcher_;

  GTEST_DISALLOW_ASSIGN_(ResultOfMatcher);
};

// Implements a matcher that checks the size of an STL-style container.
template <typename SizeMatcher>
class SizeIsMatcher {
 public:
  explicit SizeIsMatcher(const SizeMatcher& size_matcher)
       : size_matcher_(size_matcher) {
  }

  template <typename Container>
  operator Matcher<Container>() const {
    return MakeMatcher(new Impl<Container>(size_matcher_));
  }

  template <typename Container>
  class Impl : public MatcherInterface<Container> {
   public:
    typedef internal::StlContainerView<
         GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView;
    typedef typename ContainerView::type::size_type SizeType;
    explicit Impl(const SizeMatcher& size_matcher)
        : size_matcher_(MatcherCast<SizeType>(size_matcher)) {}

    virtual void DescribeTo(::std::ostream* os) const {
      *os << "size ";
      size_matcher_.DescribeTo(os);
    }
    virtual void DescribeNegationTo(::std::ostream* os) const {
      *os << "size ";
      size_matcher_.DescribeNegationTo(os);
    }

    virtual bool MatchAndExplain(Container container,
                                 MatchResultListener* listener) const {
      SizeType size = container.size();
      StringMatchResultListener size_listener;
      const bool result = size_matcher_.MatchAndExplain(size, &size_listener);
      *listener
          << "whose size " << size << (result ? " matches" : " doesn't match");
      PrintIfNotEmpty(size_listener.str(), listener->stream());
      return result;
    }

   private:
    const Matcher<SizeType> size_matcher_;
    GTEST_DISALLOW_ASSIGN_(Impl);
  };

 private:
  const SizeMatcher size_matcher_;
  GTEST_DISALLOW_ASSIGN_(SizeIsMatcher);
};

// Implements a matcher that checks the begin()..end() distance of an STL-style
// container.
template <typename DistanceMatcher>
class BeginEndDistanceIsMatcher {
 public:
  explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher)
      : distance_matcher_(distance_matcher) {}

  template <typename Container>
  operator Matcher<Container>() const {
    return MakeMatcher(new Impl<Container>(distance_matcher_));
  }

  template <typename Container>
  class Impl : public MatcherInterface<Container> {
   public:
    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
    typedef internal::StlContainerView<RawContainer> View;
    typedef typename View::type StlContainer;
    typedef typename View::const_reference StlContainerReference;
    typedef decltype(std::begin(
        std::declval<StlContainerReference>())) StlContainerConstIterator;
    typedef typename std::iterator_traits<
        StlContainerConstIterator>::difference_type DistanceType;
    explicit Impl(const DistanceMatcher& distance_matcher)
        : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {}

    virtual void DescribeTo(::std::ostream* os) const {
      *os << "distance between begin() and end() ";
      distance_matcher_.DescribeTo(os);
    }
    virtual void DescribeNegationTo(::std::ostream* os) const {
      *os << "distance between begin() and end() ";
      distance_matcher_.DescribeNegationTo(os);
    }

    virtual bool MatchAndExplain(Container container,
                                 MatchResultListener* listener) const {
#if GTEST_HAS_STD_BEGIN_AND_END_
      using std::begin;
      using std::end;
      DistanceType distance = std::distance(begin(container), end(container));
#else
      DistanceType distance = std::distance(container.begin(), container.end());
#endif
      StringMatchResultListener distance_listener;
      const bool result =
          distance_matcher_.MatchAndExplain(distance, &distance_listener);
      *listener << "whose distance between begin() and end() " << distance
                << (result ? " matches" : " doesn't match");
      PrintIfNotEmpty(distance_listener.str(), listener->stream());
      return result;
    }

   private:
    const Matcher<DistanceType> distance_matcher_;
    GTEST_DISALLOW_ASSIGN_(Impl);
  };

 private:
  const DistanceMatcher distance_matcher_;
  GTEST_DISALLOW_ASSIGN_(BeginEndDistanceIsMatcher);
};

// Implements an equality matcher for any STL-style container whose elements
// support ==. This matcher is like Eq(), but its failure explanations provide
// more detailed information that is useful when the container is used as a set.
// The failure message reports elements that are in one of the operands but not
// the other. The failure messages do not report duplicate or out-of-order
// elements in the containers (which don't properly matter to sets, but can
// occur if the containers are vectors or lists, for example).
//
// Uses the container's const_iterator, value_type, operator ==,
// begin(), and end().
template <typename Container>
class ContainerEqMatcher {
 public:
  typedef internal::StlContainerView<Container> View;
  typedef typename View::type StlContainer;
  typedef typename View::const_reference StlContainerReference;

  // We make a copy of expected in case the elements in it are modified
  // after this matcher is created.
  explicit ContainerEqMatcher(const Container& expected)
      : expected_(View::Copy(expected)) {
    // Makes sure the user doesn't instantiate this class template
    // with a const or reference type.
    (void)testing::StaticAssertTypeEq<Container,
        GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>();
  }

  void DescribeTo(::std::ostream* os) const {
    *os << "equals ";
    UniversalPrint(expected_, os);
  }
  void DescribeNegationTo(::std::ostream* os) const {
    *os << "does not equal ";
    UniversalPrint(expected_, os);
  }

  template <typename LhsContainer>
  bool MatchAndExplain(const LhsContainer& lhs,
                       MatchResultListener* listener) const {
    // GTEST_REMOVE_CONST_() is needed to work around an MSVC 8.0 bug
    // that causes LhsContainer to be a const type sometimes.
    typedef internal::StlContainerView<GTEST_REMOVE_CONST_(LhsContainer)>
        LhsView;
    typedef typename LhsView::type LhsStlContainer;
    StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
    if (lhs_stl_container == expected_)
      return true;

    ::std::ostream* const os = listener->stream();
    if (os != NULL) {
      // Something is different. Check for extra values first.
      bool printed_header = false;
      for (typename LhsStlContainer::const_iterator it =
               lhs_stl_container.begin();
           it != lhs_stl_container.end(); ++it) {
        if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) ==
            expected_.end()) {
          if (printed_header) {
            *os << ", ";
          } else {
            *os << "which has these unexpected elements: ";
            printed_header = true;
          }
          UniversalPrint(*it, os);
        }
      }

      // Now check for missing values.
      bool printed_header2 = false;
      for (typename StlContainer::const_iterator it = expected_.begin();
           it != expected_.end(); ++it) {
        if (internal::ArrayAwareFind(
                lhs_stl_container.begin(), lhs_stl_container.end(), *it) ==
            lhs_stl_container.end()) {
          if (printed_header2) {
            *os << ", ";
          } else {
            *os << (printed_header ? ",\nand" : "which")
                << " doesn't have these expected elements: ";
            printed_header2 = true;
          }
          UniversalPrint(*it, os);
        }
      }
    }

    return false;
  }

 private:
  const StlContainer expected_;

  GTEST_DISALLOW_ASSIGN_(ContainerEqMatcher);
};

// A comparator functor that uses the < operator to compare two values.
struct LessComparator {
  template <typename T, typename U>
  bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; }
};

// Implements WhenSortedBy(comparator, container_matcher).
template <typename Comparator, typename ContainerMatcher>
class WhenSortedByMatcher {
 public:
  WhenSortedByMatcher(const Comparator& comparator,
                      const ContainerMatcher& matcher)
      : comparator_(comparator), matcher_(matcher) {}

  template <typename LhsContainer>
  operator Matcher<LhsContainer>() const {
    return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
  }

  template <typename LhsContainer>
  class Impl : public MatcherInterface<LhsContainer> {
   public:
    typedef internal::StlContainerView<
         GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
    typedef typename LhsView::type LhsStlContainer;
    typedef typename LhsView::const_reference LhsStlContainerReference;
    // Transforms std::pair<const Key, Value> into std::pair<Key, Value>
    // so that we can match associative containers.
    typedef typename RemoveConstFromKey<
        typename LhsStlContainer::value_type>::type LhsValue;

    Impl(const Comparator& comparator, const ContainerMatcher& matcher)
        : comparator_(comparator), matcher_(matcher) {}

    virtual void DescribeTo(::std::ostream* os) const {
      *os << "(when sorted) ";
      matcher_.DescribeTo(os);
    }

    virtual void DescribeNegationTo(::std::ostream* os) const {
      *os << "(when sorted) ";
      matcher_.DescribeNegationTo(os);
    }

    virtual bool MatchAndExplain(LhsContainer lhs,
                                 MatchResultListener* listener) const {
      LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
      ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
                                               lhs_stl_container.end());
      ::std::sort(
           sorted_container.begin(), sorted_container.end(), comparator_);

      if (!listener->IsInterested()) {
        // If the listener is not interested, we do not need to
        // construct the inner explanation.
        return matcher_.Matches(sorted_container);
      }

      *listener << "which is ";
      UniversalPrint(sorted_container, listener->stream());
      *listener << " when sorted";

      StringMatchResultListener inner_listener;
      const bool match = matcher_.MatchAndExplain(sorted_container,
                                                  &inner_listener);
      PrintIfNotEmpty(inner_listener.str(), listener->stream());
      return match;
    }

   private:
    const Comparator comparator_;
    const Matcher<const ::std::vector<LhsValue>&> matcher_;

    GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
  };

 private:
  const Comparator comparator_;
  const ContainerMatcher matcher_;

  GTEST_DISALLOW_ASSIGN_(WhenSortedByMatcher);
};

// Implements Pointwise(tuple_matcher, rhs_container).  tuple_matcher
// must be able to be safely cast to Matcher<tuple<const T1&, const
// T2&> >, where T1 and T2 are the types of elements in the LHS
// container and the RHS container respectively.
template <typename TupleMatcher, typename RhsContainer>
class PointwiseMatcher {
 public:
  typedef internal::StlContainerView<RhsContainer> RhsView;
  typedef typename RhsView::type RhsStlContainer;
  typedef typename RhsStlContainer::value_type RhsValue;

  // Like ContainerEq, we make a copy of rhs in case the elements in
  // it are modified after this matcher is created.
  PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
      : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {
    // Makes sure the user doesn't instantiate this class template
    // with a const or reference type.
    (void)testing::StaticAssertTypeEq<RhsContainer,
        GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>();
  }

  template <typename LhsContainer>
  operator Matcher<LhsContainer>() const {
    return MakeMatcher(new Impl<LhsContainer>(tuple_matcher_, rhs_));
  }

  template <typename LhsContainer>
  class Impl : public MatcherInterface<LhsContainer> {
   public:
    typedef internal::StlContainerView<
         GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
    typedef typename LhsView::type LhsStlContainer;
    typedef typename LhsView::const_reference LhsStlContainerReference;
    typedef typename LhsStlContainer::value_type LhsValue;
    // We pass the LHS value and the RHS value to the inner matcher by
    // reference, as they may be expensive to copy.  We must use tuple
    // instead of pair here, as a pair cannot hold references (C++ 98,
    // 20.2.2 [lib.pairs]).
    typedef ::testing::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;

    Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
        // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
        : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
          rhs_(rhs) {}

    virtual void DescribeTo(::std::ostream* os) const {
      *os << "contains " << rhs_.size()
          << " values, where each value and its corresponding value in ";
      UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
      *os << " ";
      mono_tuple_matcher_.DescribeTo(os);
    }
    virtual void DescribeNegationTo(::std::ostream* os) const {
      *os << "doesn't contain exactly " << rhs_.size()
          << " values, or contains a value x at some index i"
          << " where x and the i-th value of ";
      UniversalPrint(rhs_, os);
      *os << " ";
      mono_tuple_matcher_.DescribeNegationTo(os);
    }

    virtual bool MatchAndExplain(LhsContainer lhs,
                                 MatchResultListener* listener) const {
      LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
      const size_t actual_size = lhs_stl_container.size();
      if (actual_size != rhs_.size()) {
        *listener << "which contains " << actual_size << " values";
        return false;
      }

      typename LhsStlContainer::const_iterator left = lhs_stl_container.begin();
      typename RhsStlContainer::const_iterator right = rhs_.begin();
      for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
        const InnerMatcherArg value_pair(*left, *right);

        if (listener->IsInterested()) {
          StringMatchResultListener inner_listener;
          if (!mono_tuple_matcher_.MatchAndExplain(
                  value_pair, &inner_listener)) {
            *listener << "where the value pair (";
            UniversalPrint(*left, listener->stream());
            *listener << ", ";
            UniversalPrint(*right, listener->stream());
            *listener << ") at index #" << i << " don't match";
            PrintIfNotEmpty(inner_listener.str(), listener->stream());
            return false;
          }
        } else {
          if (!mono_tuple_matcher_.Matches(value_pair))
            return false;
        }
      }

      return true;
    }

   private:
    const Matcher<InnerMatcherArg> mono_tuple_matcher_;
    const RhsStlContainer rhs_;

    GTEST_DISALLOW_ASSIGN_(Impl);
  };

 private:
  const TupleMatcher tuple_matcher_;
  const RhsStlContainer rhs_;

  GTEST_DISALLOW_ASSIGN_(PointwiseMatcher);
};

// Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
template <typename Container>
class QuantifierMatcherImpl : public MatcherInterface<Container> {
 public:
  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
  typedef StlContainerView<RawContainer> View;
  typedef typename View::type StlContainer;
  typedef typename View::const_reference StlContainerReference;
  typedef typename StlContainer::value_type Element;

  template <typename InnerMatcher>
  explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
      : inner_matcher_(
           testing::SafeMatcherCast<const Element&>(inner_matcher)) {}

  // Checks whether:
  // * All elements in the container match, if all_elements_should_match.
  // * Any element in the container matches, if !all_elements_should_match.
  bool MatchAndExplainImpl(bool all_elements_should_match,
                           Container container,
                           MatchResultListener* listener) const {
    StlContainerReference stl_container = View::ConstReference(container);
    size_t i = 0;
    for (typename StlContainer::const_iterator it = stl_container.begin();
         it != stl_container.end(); ++it, ++i) {
      StringMatchResultListener inner_listener;
      const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);

      if (matches != all_elements_should_match) {
        *listener << "whose element #" << i
                  << (matches ? " matches" : " doesn't match");
        PrintIfNotEmpty(inner_listener.str(), listener->stream());
        return !all_elements_should_match;
      }
    }
    return all_elements_should_match;
  }

 protected:
  const Matcher<const Element&> inner_matcher_;

  GTEST_DISALLOW_ASSIGN_(QuantifierMatcherImpl);
};

// Implements Contains(element_matcher) for the given argument type Container.
// Symmetric to EachMatcherImpl.
template <typename Container>
class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
 public:
  template <typename InnerMatcher>
  explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
      : QuantifierMatcherImpl<Container>(inner_matcher) {}

  // Describes what this matcher does.
  virtual void DescribeTo(::std::ostream* os) const {
    *os << "contains at least one element that ";
    this->inner_matcher_.DescribeTo(os);
  }

  virtual void DescribeNegationTo(::std::ostream* os) const {
    *os << "doesn't contain any element that ";
    this->inner_matcher_.DescribeTo(os);
  }

  virtual bool MatchAndExplain(Container container,
                               MatchResultListener* listener) const {
    return this->MatchAndExplainImpl(false, container, listener);
  }

 private:
  GTEST_DISALLOW_ASSIGN_(ContainsMatcherImpl);
};

// Implements Each(element_matcher) for the given argument type Container.
// Symmetric to ContainsMatcherImpl.
template <typename Container>
class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
 public:
  template <typename InnerMatcher>
  explicit EachMatcherImpl(InnerMatcher inner_matcher)
      : QuantifierMatcherImpl<Container>(inner_matcher) {}

  // Describes what this matcher does.
  virtual void DescribeTo(::std::ostream* os) const {
    *os << "only contains elements that ";
    this->inner_matcher_.DescribeTo(os);
  }

  virtual void DescribeNegationTo(::std::ostream* os) const {
    *os << "contains some element that ";
    this->inner_matcher_.DescribeNegationTo(os);
  }

  virtual bool MatchAndExplain(Container container,
                               MatchResultListener* listener) const {
    return this->MatchAndExplainImpl(true, container, listener);
  }

 private:
  GTEST_DISALLOW_ASSIGN_(EachMatcherImpl);
};

// Implements polymorphic Contains(element_matcher).
template <typename M>
class ContainsMatcher {
 public:
  explicit ContainsMatcher(M m) : inner_matcher_(m) {}

  template <typename Container>
  operator Matcher<Container>() const {
    return MakeMatcher(new ContainsMatcherImpl<Container>(inner_matcher_));
  }

 private:
  const M inner_matcher_;

  GTEST_DISALLOW_ASSIGN_(ContainsMatcher);
};

// Implements polymorphic Each(element_matcher).
template <typename M>
class EachMatcher {
 public:
  explicit EachMatcher(M m) : inner_matcher_(m) {}

  template <typename Container>
  operator Matcher<Container>() const {
    return MakeMatcher(new EachMatcherImpl<Container>(inner_matcher_));
  }

 private:
  const M inner_matcher_;

  GTEST_DISALLOW_ASSIGN_(EachMatcher);
};

// Implements Key(inner_matcher) for the given argument pair type.
// Key(inner_matcher) matches an std::pair whose 'first' field matches
// inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
// std::map that contains at least one element whose key is >= 5.
template <typename PairType>
class KeyMatcherImpl : public MatcherInterface<PairType> {
 public:
  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
  typedef typename RawPairType::first_type KeyType;

  template <typename InnerMatcher>
  explicit KeyMatcherImpl(InnerMatcher inner_matcher)
      : inner_matcher_(
          testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {
  }

  // Returns true iff 'key_value.first' (the key) matches the inner matcher.
  virtual bool MatchAndExplain(PairType key_value,
                               MatchResultListener* listener) const {
    StringMatchResultListener inner_listener;
    const bool match = inner_matcher_.MatchAndExplain(key_value.first,
                                                      &inner_listener);
    const internal::string explanation = inner_listener.str();
    if (explanation != "") {
      *listener << "whose first field is a value " << explanation;
    }
    return match;
  }

  // Describes what this matcher does.
  virtual void DescribeTo(::std::ostream* os) const {
    *os << "has a key that ";
    inner_matcher_.DescribeTo(os);
  }

  // Describes what the negation of this matcher does.
  virtual void DescribeNegationTo(::std::ostream* os) const {
    *os << "doesn't have a key that ";
    inner_matcher_.DescribeTo(os);
  }

 private:
  const Matcher<const KeyType&> inner_matcher_;

  GTEST_DISALLOW_ASSIGN_(KeyMatcherImpl);
};

// Implements polymorphic Key(matcher_for_key).
template <typename M>
class KeyMatcher {
 public:
  explicit KeyMatcher(M m) : matcher_for_key_(m) {}

  template <typename PairType>
  operator Matcher<PairType>() const {
    return MakeMatcher(new KeyMatcherImpl<PairType>(matcher_for_key_));
  }

 private:
  const M matcher_for_key_;

  GTEST_DISALLOW_ASSIGN_(KeyMatcher);
};

// Implements Pair(first_matcher, second_matcher) for the given argument pair
// type with its two matchers. See Pair() function below.
template <typename PairType>
class PairMatcherImpl : public MatcherInterface<PairType> {
 public:
  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
  typedef typename RawPairType::first_type FirstType;
  typedef typename RawPairType::second_type SecondType;

  template <typename FirstMatcher, typename SecondMatcher>
  PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
      : first_matcher_(
            testing::SafeMatcherCast<const FirstType&>(first_matcher)),
        second_matcher_(
            testing::SafeMatcherCast<const SecondType&>(second_matcher)) {
  }

  // Describes what this matcher does.
  virtual void DescribeTo(::std::ostream* os) const {
    *os << "has a first field that ";
    first_matcher_.DescribeTo(os);
    *os << ", and has a second field that ";
    second_matcher_.DescribeTo(os);
  }

  // Describes what the negation of this matcher does.
  virtual void DescribeNegationTo(::std::ostream* os) const {
    *os << "has a first field that ";
    first_matcher_.DescribeNegationTo(os);
    *os << ", or has a second field that ";
    second_matcher_.DescribeNegationTo(os);
  }

  // Returns true iff 'a_pair.first' matches first_matcher and 'a_pair.second'
  // matches second_matcher.
  virtual bool MatchAndExplain(PairType a_pair,
                               MatchResultListener* listener) const {
    if (!listener->IsInterested()) {
      // If the listener is not interested, we don't need to construct the
      // explanation.
      return first_matcher_.Matches(a_pair.first) &&
             second_matcher_.Matches(a_pair.second);
    }
    StringMatchResultListener first_inner_listener;
    if (!first_matcher_.MatchAndExplain(a_pair.first,
                                        &first_inner_listener)) {
      *listener << "whose first field does not match";
      PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
      return false;
    }
    StringMatchResultListener second_inner_listener;
    if (!second_matcher_.MatchAndExplain(a_pair.second,
                                         &second_inner_listener)) {
      *listener << "whose second field does not match";
      PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
      return false;
    }
    ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
                   listener);
    return true;
  }

 private:
  void ExplainSuccess(const internal::string& first_explanation,
                      const internal::string& second_explanation,
                      MatchResultListener* listener) const {
    *listener << "whose both fields match";
    if (first_explanation != "") {
      *listener << ", where the first field is a value " << first_explanation;
    }
    if (second_explanation != "") {
      *listener << ", ";
      if (first_explanation != "") {
        *listener << "and ";
      } else {
        *listener << "where ";
      }
      *listener << "the second field is a value " << second_explanation;
    }
  }

  const Matcher<const FirstType&> first_matcher_;
  const Matcher<const SecondType&> second_matcher_;

  GTEST_DISALLOW_ASSIGN_(PairMatcherImpl);
};

// Implements polymorphic Pair(first_matcher, second_matcher).
template <typename FirstMatcher, typename SecondMatcher>
class PairMatcher {
 public:
  PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
      : first_matcher_(first_matcher), second_matcher_(second_matcher) {}

  template <typename PairType>
  operator Matcher<PairType> () const {
    return MakeMatcher(
        new PairMatcherImpl<PairType>(
            first_matcher_, second_matcher_));
  }

 private:
  const FirstMatcher first_matcher_;
  const SecondMatcher second_matcher_;

  GTEST_DISALLOW_ASSIGN_(PairMatcher);
};

// Implements ElementsAre() and ElementsAreArray().
template <typename Container>
class ElementsAreMatcherImpl : public MatcherInterface<Container> {
 public:
  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
  typedef internal::StlContainerView<RawContainer> View;
  typedef typename View::type StlContainer;
  typedef typename View::const_reference StlContainerReference;
  typedef decltype(std::begin(
      std::declval<StlContainerReference>())) StlContainerConstIterator;
  typedef std::remove_reference_t<decltype(
      *std::declval<StlContainerConstIterator &>())>
      Element;

  // Constructs the matcher from a sequence of element values or
  // element matchers.
  template <typename InputIter>
  ElementsAreMatcherImpl(InputIter first, InputIter last) {
    while (first != last) {
      matchers_.push_back(MatcherCast<const Element&>(*first++));
    }
  }

  // Describes what this matcher does.
  virtual void DescribeTo(::std::ostream* os) const {
    if (count() == 0) {
      *os << "is empty";
    } else if (count() == 1) {
      *os << "has 1 element that ";
      matchers_[0].DescribeTo(os);
    } else {
      *os << "has " << Elements(count()) << " where\n";
      for (size_t i = 0; i != count(); ++i) {
        *os << "element #" << i << " ";
        matchers_[i].DescribeTo(os);
        if (i + 1 < count()) {
          *os << ",\n";
        }
      }
    }
  }

  // Describes what the negation of this matcher does.
  virtual void DescribeNegationTo(::std::ostream* os) const {
    if (count() == 0) {
      *os << "isn't empty";
      return;
    }

    *os << "doesn't have " << Elements(count()) << ", or\n";
    for (size_t i = 0; i != count(); ++i) {
      *os << "element #" << i << " ";
      matchers_[i].DescribeNegationTo(os);
      if (i + 1 < count()) {
        *os << ", or\n";
      }
    }
  }

  virtual bool MatchAndExplain(Container container,
                               MatchResultListener* listener) const {
    // To work with stream-like "containers", we must only walk
    // through the elements in one pass.

    const bool listener_interested = listener->IsInterested();

    // explanations[i] is the explanation of the element at index i.
    ::std::vector<internal::string> explanations(count());
    StlContainerReference stl_container = View::ConstReference(container);
    StlContainerConstIterator it = stl_container.begin();
    size_t exam_pos = 0;
    bool mismatch_found = false;  // Have we found a mismatched element yet?

    // Go through the elements and matchers in pairs, until we reach
    // the end of either the elements or the matchers, or until we find a
    // mismatch.
    for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) {
      bool match;  // Does the current element match the current matcher?
      if (listener_interested) {
        StringMatchResultListener s;
        match = matchers_[exam_pos].MatchAndExplain(*it, &s);
        explanations[exam_pos] = s.str();
      } else {
        match = matchers_[exam_pos].Matches(*it);
      }

      if (!match) {
        mismatch_found = true;
        break;
      }
    }
    // If mismatch_found is true, 'exam_pos' is the index of the mismatch.

    // Find how many elements the actual container has.  We avoid
    // calling size() s.t. this code works for stream-like "containers"
    // that don't define size().
    size_t actual_count = exam_pos;
    for (; it != stl_container.end(); ++it) {
      ++actual_count;
    }

    if (actual_count != count()) {
      // The element count doesn't match.  If the container is empty,
      // there's no need to explain anything as Google Mock already
      // prints the empty container.  Otherwise we just need to show
      // how many elements there actually are.
      if (listener_interested && (actual_count != 0)) {
        *listener << "which has " << Elements(actual_count);
      }
      return false;
    }

    if (mismatch_found) {
      // The element count matches, but the exam_pos-th element doesn't match.
      if (listener_interested) {
        *listener << "whose element #" << exam_pos << " doesn't match";
        PrintIfNotEmpty(explanations[exam_pos], listener->stream());
      }
      return false;
    }

    // Every element matches its expectation.  We need to explain why
    // (the obvious ones can be skipped).
    if (listener_interested) {
      bool reason_printed = false;
      for (size_t i = 0; i != count(); ++i) {
        const internal::string& s = explanations[i];
        if (!s.empty()) {
          if (reason_printed) {
            *listener << ",\nand ";
          }
          *listener << "whose element #" << i << " matches, " << s;
          reason_printed = true;
        }
      }
    }
    return true;
  }

 private:
  static Message Elements(size_t count) {
    return Message() << count << (count == 1 ? " element" : " elements");
  }

  size_t count() const { return matchers_.size(); }

  ::std::vector<Matcher<const Element&> > matchers_;

  GTEST_DISALLOW_ASSIGN_(ElementsAreMatcherImpl);
};

// Connectivity matrix of (elements X matchers), in element-major order.
// Initially, there are no edges.
// Use NextGraph() to iterate over all possible edge configurations.
// Use Randomize() to generate a random edge configuration.
class GTEST_API_ MatchMatrix {
 public:
  MatchMatrix(size_t num_elements, size_t num_matchers)
      : num_elements_(num_elements),
        num_matchers_(num_matchers),
        matched_(num_elements_* num_matchers_, 0) {
  }

  size_t LhsSize() const { return num_elements_; }
  size_t RhsSize() const { return num_matchers_; }
  bool HasEdge(size_t ilhs, size_t irhs) const {
    return matched_[SpaceIndex(ilhs, irhs)] == 1;
  }
  void SetEdge(size_t ilhs, size_t irhs, bool b) {
    matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0;
  }

  // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number,
  // adds 1 to that number; returns false if incrementing the graph left it
  // empty.
  bool NextGraph();

  void Randomize();

  string DebugString() const;

 private:
  size_t SpaceIndex(size_t ilhs, size_t irhs) const {
    return ilhs * num_matchers_ + irhs;
  }

  size_t num_elements_;
  size_t num_matchers_;

  // Each element is a char interpreted as bool. They are stored as a
  // flattened array in lhs-major order, use 'SpaceIndex()' to translate
  // a (ilhs, irhs) matrix coordinate into an offset.
  ::std::vector<char> matched_;
};

typedef ::std::pair<size_t, size_t> ElementMatcherPair;
typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs;

// Returns a maximum bipartite matching for the specified graph 'g'.
// The matching is represented as a vector of {element, matcher} pairs.
GTEST_API_ ElementMatcherPairs
FindMaxBipartiteMatching(const MatchMatrix& g);

GTEST_API_ bool FindPairing(const MatchMatrix& matrix,
                            MatchResultListener* listener);

// Untyped base class for implementing UnorderedElementsAre.  By
// putting logic that's not specific to the element type here, we
// reduce binary bloat and increase compilation speed.
class GTEST_API_ UnorderedElementsAreMatcherImplBase {
 protected:
  // A vector of matcher describers, one for each element matcher.
  // Does not own the describers (and thus can be used only when the
  // element matchers are alive).
  typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec;

  // Describes this UnorderedElementsAre matcher.
  void DescribeToImpl(::std::ostream* os) const;

  // Describes the negation of this UnorderedElementsAre matcher.
  void DescribeNegationToImpl(::std::ostream* os) const;

  bool VerifyAllElementsAndMatchersAreMatched(
      const ::std::vector<string>& element_printouts,
      const MatchMatrix& matrix,
      MatchResultListener* listener) const;

  MatcherDescriberVec& matcher_describers() {
    return matcher_describers_;
  }

  static Message Elements(size_t n) {
    return Message() << n << " element" << (n == 1 ? "" : "s");
  }

 private:
  MatcherDescriberVec matcher_describers_;

  GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImplBase);
};

// Implements unordered ElementsAre and unordered ElementsAreArray.
template <typename Container>
class UnorderedElementsAreMatcherImpl
    : public MatcherInterface<Container>,
      public UnorderedElementsAreMatcherImplBase {
 public:
  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
  typedef internal::StlContainerView<RawContainer> View;
  typedef typename View::type StlContainer;
  typedef typename View::const_reference StlContainerReference;
  typedef decltype(std::begin(
      std::declval<StlContainerReference>())) StlContainerConstIterator;
  typedef std::remove_reference_t<decltype(
      *std::declval<StlContainerConstIterator &>())>
      Element;

  // Constructs the matcher from a sequence of element values or
  // element matchers.
  template <typename InputIter>
  UnorderedElementsAreMatcherImpl(InputIter first, InputIter last) {
    for (; first != last; ++first) {
      matchers_.push_back(MatcherCast<const Element&>(*first));
      matcher_describers().push_back(matchers_.back().GetDescriber());
    }
  }

  // Describes what this matcher does.
  virtual void DescribeTo(::std::ostream* os) const {
    return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os);
  }

  // Describes what the negation of this matcher does.
  virtual void DescribeNegationTo(::std::ostream* os) const {
    return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os);
  }

  virtual bool MatchAndExplain(Container container,
                               MatchResultListener* listener) const {
    StlContainerReference stl_container = View::ConstReference(container);
    ::std::vector<string> element_printouts;
    MatchMatrix matrix = AnalyzeElements(stl_container.begin(),
                                         stl_container.end(),
                                         &element_printouts,
                                         listener);

    const size_t actual_count = matrix.LhsSize();
    if (actual_count == 0 && matchers_.empty()) {
      return true;
    }
    if (actual_count != matchers_.size()) {
      // The element count doesn't match.  If the container is empty,
      // there's no need to explain anything as Google Mock already
      // prints the empty container. Otherwise we just need to show
      // how many elements there actually are.
      if (actual_count != 0 && listener->IsInterested()) {
        *listener << "which has " << Elements(actual_count);
      }
      return false;
    }

    return VerifyAllElementsAndMatchersAreMatched(element_printouts,
                                                  matrix, listener) &&
           FindPairing(matrix, listener);
  }

 private:
  typedef ::std::vector<Matcher<const Element&> > MatcherVec;

  template <typename ElementIter>
  MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last,
                              ::std::vector<string>* element_printouts,
                              MatchResultListener* listener) const {
    element_printouts->clear();
    ::std::vector<char> did_match;
    size_t num_elements = 0;
    for (; elem_first != elem_last; ++num_elements, ++elem_first) {
      if (listener->IsInterested()) {
        element_printouts->push_back(PrintToString(*elem_first));
      }
      for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
        did_match.push_back(Matches(matchers_[irhs])(*elem_first));
      }
    }

    MatchMatrix matrix(num_elements, matchers_.size());
    ::std::vector<char>::const_iterator did_match_iter = did_match.begin();
    for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) {
      for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
        matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0);
      }
    }
    return matrix;
  }

  MatcherVec matchers_;

  GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImpl);
};

// Functor for use in TransformTuple.
// Performs MatcherCast<Target> on an input argument of any type.
template <typename Target>
struct CastAndAppendTransform {
  template <typename Arg>
  Matcher<Target> operator()(const Arg& a) const {
    return MatcherCast<Target>(a);
  }
};

// Implements UnorderedElementsAre.
template <typename MatcherTuple>
class UnorderedElementsAreMatcher {
 public:
  explicit UnorderedElementsAreMatcher(const MatcherTuple& args)
      : matchers_(args) {}

  template <typename Container>
  operator Matcher<Container>() const {
    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
    typedef internal::StlContainerView<RawContainer> View;
    typedef typename View::const_reference StlContainerReference;
    typedef decltype(std::begin(
        std::declval<StlContainerReference>())) StlContainerConstIterator;
    typedef std::remove_reference_t<decltype(
        *std::declval<StlContainerConstIterator &>())>
        Element;
    typedef ::std::vector<Matcher<const Element&> > MatcherVec;
    MatcherVec matchers;
    matchers.reserve(::testing::tuple_size<MatcherTuple>::value);
    TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
                         ::std::back_inserter(matchers));
    return MakeMatcher(new UnorderedElementsAreMatcherImpl<Container>(
                           matchers.begin(), matchers.end()));
  }

 private:
  const MatcherTuple matchers_;
  GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcher);
};

// Implements ElementsAre.
template <typename MatcherTuple>
class ElementsAreMatcher {
 public:
  explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}

  template <typename Container>
  operator Matcher<Container>() const {
    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
    typedef internal::StlContainerView<RawContainer> View;
    typedef typename View::const_reference StlContainerReference;
    typedef decltype(std::begin(
        std::declval<StlContainerReference>())) StlContainerConstIterator;
    typedef std::remove_reference_t<decltype(
        *std::declval<StlContainerConstIterator &>())>
        Element;
    typedef ::std::vector<Matcher<const Element&> > MatcherVec;
    MatcherVec matchers;
    matchers.reserve(::testing::tuple_size<MatcherTuple>::value);
    TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
                         ::std::back_inserter(matchers));
    return MakeMatcher(new ElementsAreMatcherImpl<Container>(
                           matchers.begin(), matchers.end()));
  }

 private:
  const MatcherTuple matchers_;
  GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher);
};

// Implements UnorderedElementsAreArray().
template <typename T>
class UnorderedElementsAreArrayMatcher {
 public:
  UnorderedElementsAreArrayMatcher() {}

  template <typename Iter>
  UnorderedElementsAreArrayMatcher(Iter first, Iter last)
      : matchers_(first, last) {}

  template <typename Container>
  operator Matcher<Container>() const {
    return MakeMatcher(
        new UnorderedElementsAreMatcherImpl<Container>(matchers_.begin(),
                                                       matchers_.end()));
  }

 private:
  ::std::vector<T> matchers_;

  GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreArrayMatcher);
};

// Implements ElementsAreArray().
template <typename T>
class ElementsAreArrayMatcher {
 public:
  template <typename Iter>
  ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}

  template <typename Container>
  operator Matcher<Container>() const {
    return MakeMatcher(new ElementsAreMatcherImpl<Container>(
        matchers_.begin(), matchers_.end()));
  }

 private:
  const ::std::vector<T> matchers_;

  GTEST_DISALLOW_ASSIGN_(ElementsAreArrayMatcher);
};

// Given a 2-tuple matcher tm of type Tuple2Matcher and a value second
// of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm,
// second) is a polymorphic matcher that matches a value x iff tm
// matches tuple (x, second).  Useful for implementing
// UnorderedPointwise() in terms of UnorderedElementsAreArray().
//
// BoundSecondMatcher is copyable and assignable, as we need to put
// instances of this class in a vector when implementing
// UnorderedPointwise().
template <typename Tuple2Matcher, typename Second>
class BoundSecondMatcher {
 public:
  BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second)
      : tuple2_matcher_(tm), second_value_(second) {}

  template <typename T>
  operator Matcher<T>() const {
    return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_));
  }

  // We have to define this for UnorderedPointwise() to compile in
  // C++98 mode, as it puts BoundSecondMatcher instances in a vector,
  // which requires the elements to be assignable in C++98.  The
  // compiler cannot generate the operator= for us, as Tuple2Matcher
  // and Second may not be assignable.
  //
  // However, this should never be called, so the implementation just
  // need to assert.
  void operator=(const BoundSecondMatcher& /*rhs*/) {
    GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned.";
  }

  BoundSecondMatcher(const BoundSecondMatcher &) = default;

 private:
  template <typename T>
  class Impl : public MatcherInterface<T> {
   public:
    typedef ::testing::tuple<T, Second> ArgTuple;

    Impl(const Tuple2Matcher& tm, const Second& second)
        : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)),
          second_value_(second) {}

    virtual void DescribeTo(::std::ostream* os) const {
      *os << "and ";
      UniversalPrint(second_value_, os);
      *os << " ";
      mono_tuple2_matcher_.DescribeTo(os);
    }

    virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
      return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_),
                                                  listener);
    }

   private:
    const Matcher<const ArgTuple&> mono_tuple2_matcher_;
    const Second second_value_;

    GTEST_DISALLOW_ASSIGN_(Impl);
  };

  const Tuple2Matcher tuple2_matcher_;
  const Second second_value_;
};

// Given a 2-tuple matcher tm and a value second,
// MatcherBindSecond(tm, second) returns a matcher that matches a
// value x iff tm matches tuple (x, second).  Useful for implementing
// UnorderedPointwise() in terms of UnorderedElementsAreArray().
template <typename Tuple2Matcher, typename Second>
BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond(
    const Tuple2Matcher& tm, const Second& second) {
  return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second);
}

// Returns the description for a matcher defined using the MATCHER*()
// macro where the user-supplied description string is "", if
// 'negation' is false; otherwise returns the description of the
// negation of the matcher.  'param_values' contains a list of strings
// that are the print-out of the matcher's parameters.
GTEST_API_ string FormatMatcherDescription(bool negation,
                                           const char* matcher_name,
                                           const Strings& param_values);

}  // namespace internal

// ElementsAreArray(first, last)
// ElementsAreArray(pointer, count)
// ElementsAreArray(array)
// ElementsAreArray(container)
// ElementsAreArray({ e1, e2, ..., en })
//
// The ElementsAreArray() functions are like ElementsAre(...), except
// that they are given a homogeneous sequence rather than taking each
// element as a function argument. The sequence can be specified as an
// array, a pointer and count, a vector, an initializer list, or an
// STL iterator range. In each of these cases, the underlying sequence
// can be either a sequence of values or a sequence of matchers.
//
// All forms of ElementsAreArray() make a copy of the input matcher sequence.

template <typename Iter>
inline internal::ElementsAreArrayMatcher<
    typename ::std::iterator_traits<Iter>::value_type>
ElementsAreArray(Iter first, Iter last) {
  typedef typename ::std::iterator_traits<Iter>::value_type T;
  return internal::ElementsAreArrayMatcher<T>(first, last);
}

template <typename T>
inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
    const T* pointer, size_t count) {
  return ElementsAreArray(pointer, pointer + count);
}

template <typename T, size_t N>
inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
    const T (&array)[N]) {
  return ElementsAreArray(array, N);
}

template <typename Container>
inline internal::ElementsAreArrayMatcher<typename Container::value_type>
ElementsAreArray(const Container& container) {
  return ElementsAreArray(container.begin(), container.end());
}

#if GTEST_HAS_STD_INITIALIZER_LIST_
template <typename T>
inline internal::ElementsAreArrayMatcher<T>
ElementsAreArray(::std::initializer_list<T> xs) {
  return ElementsAreArray(xs.begin(), xs.end());
}
#endif

// UnorderedElementsAreArray(first, last)
// UnorderedElementsAreArray(pointer, count)
// UnorderedElementsAreArray(array)
// UnorderedElementsAreArray(container)
// UnorderedElementsAreArray({ e1, e2, ..., en })
//
// The UnorderedElementsAreArray() functions are like
// ElementsAreArray(...), but allow matching the elements in any order.
template <typename Iter>
inline internal::UnorderedElementsAreArrayMatcher<
    typename ::std::iterator_traits<Iter>::value_type>
UnorderedElementsAreArray(Iter first, Iter last) {
  typedef typename ::std::iterator_traits<Iter>::value_type T;
  return internal::UnorderedElementsAreArrayMatcher<T>(first, last);
}

template <typename T>
inline internal::UnorderedElementsAreArrayMatcher<T>
UnorderedElementsAreArray(const T* pointer, size_t count) {
  return UnorderedElementsAreArray(pointer, pointer + count);
}

template <typename T, size_t N>
inline internal::UnorderedElementsAreArrayMatcher<T>
UnorderedElementsAreArray(const T (&array)[N]) {
  return UnorderedElementsAreArray(array, N);
}

template <typename Container>
inline internal::UnorderedElementsAreArrayMatcher<
    typename Container::value_type>
UnorderedElementsAreArray(const Container& container) {
  return UnorderedElementsAreArray(container.begin(), container.end());
}

#if GTEST_HAS_STD_INITIALIZER_LIST_
template <typename T>
inline internal::UnorderedElementsAreArrayMatcher<T>
UnorderedElementsAreArray(::std::initializer_list<T> xs) {
  return UnorderedElementsAreArray(xs.begin(), xs.end());
}
#endif

// _ is a matcher that matches anything of any type.
//
// This definition is fine as:
//
//   1. The C++ standard permits using the name _ in a namespace that
//      is not the global namespace or ::std.
//   2. The AnythingMatcher class has no data member or constructor,
//      so it's OK to create global variables of this type.
//   3. c-style has approved of using _ in this case.
const internal::AnythingMatcher _ = {};
// Creates a matcher that matches any value of the given type T.
template <typename T>
inline Matcher<T> A() { return MakeMatcher(new internal::AnyMatcherImpl<T>()); }

// Creates a matcher that matches any value of the given type T.
template <typename T>
inline Matcher<T> An() { return A<T>(); }

// Creates a polymorphic matcher that matches anything equal to x.
// Note: if the parameter of Eq() were declared as const T&, Eq("foo")
// wouldn't compile.
template <typename T>
inline internal::EqMatcher<T> Eq(T x) { return internal::EqMatcher<T>(x); }

// Constructs a Matcher<T> from a 'value' of type T.  The constructed
// matcher matches any value that's equal to 'value'.
template <typename T>
Matcher<T>::Matcher(T value) { *this = Eq(value); }

// Creates a monomorphic matcher that matches anything with type Lhs
// and equal to rhs.  A user may need to use this instead of Eq(...)
// in order to resolve an overloading ambiguity.
//
// TypedEq<T>(x) is just a convenient short-hand for Matcher<T>(Eq(x))
// or Matcher<T>(x), but more readable than the latter.
//
// We could define similar monomorphic matchers for other comparison
// operations (e.g. TypedLt, TypedGe, and etc), but decided not to do
// it yet as those are used much less than Eq() in practice.  A user
// can always write Matcher<T>(Lt(5)) to be explicit about the type,
// for example.
template <typename Lhs, typename Rhs>
inline Matcher<Lhs> TypedEq(const Rhs& rhs) { return Eq(rhs); }

// Creates a polymorphic matcher that matches anything >= x.
template <typename Rhs>
inline internal::GeMatcher<Rhs> Ge(Rhs x) {
  return internal::GeMatcher<Rhs>(x);
}

// Creates a polymorphic matcher that matches anything > x.
template <typename Rhs>
inline internal::GtMatcher<Rhs> Gt(Rhs x) {
  return internal::GtMatcher<Rhs>(x);
}

// Creates a polymorphic matcher that matches anything <= x.
template <typename Rhs>
inline internal::LeMatcher<Rhs> Le(Rhs x) {
  return internal::LeMatcher<Rhs>(x);
}

// Creates a polymorphic matcher that matches anything < x.
template <typename Rhs>
inline internal::LtMatcher<Rhs> Lt(Rhs x) {
  return internal::LtMatcher<Rhs>(x);
}

// Creates a polymorphic matcher that matches anything != x.
template <typename Rhs>
inline internal::NeMatcher<Rhs> Ne(Rhs x) {
  return internal::NeMatcher<Rhs>(x);
}

// Creates a polymorphic matcher that matches any NULL pointer.
inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() {
  return MakePolymorphicMatcher(internal::IsNullMatcher());
}

// Creates a polymorphic matcher that matches any non-NULL pointer.
// This is convenient as Not(NULL) doesn't compile (the compiler
// thinks that that expression is comparing a pointer with an integer).
inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
  return MakePolymorphicMatcher(internal::NotNullMatcher());
}

// Creates a polymorphic matcher that matches any argument that
// references variable x.
template <typename T>
inline internal::RefMatcher<T&> Ref(T& x) {  // NOLINT
  return internal::RefMatcher<T&>(x);
}

// Creates a matcher that matches any double argument approximately
// equal to rhs, where two NANs are considered unequal.
inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
  return internal::FloatingEqMatcher<double>(rhs, false);
}

// Creates a matcher that matches any double argument approximately
// equal to rhs, including NaN values when rhs is NaN.
inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
  return internal::FloatingEqMatcher<double>(rhs, true);
}

// Creates a matcher that matches any double argument approximately equal to
// rhs, up to the specified max absolute error bound, where two NANs are
// considered unequal.  The max absolute error bound must be non-negative.
inline internal::FloatingEqMatcher<double> DoubleNear(
    double rhs, double max_abs_error) {
  return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error);
}

// Creates a matcher that matches any double argument approximately equal to
// rhs, up to the specified max absolute error bound, including NaN values when
// rhs is NaN.  The max absolute error bound must be non-negative.
inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear(
    double rhs, double max_abs_error) {
  return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error);
}

// Creates a matcher that matches any float argument approximately
// equal to rhs, where two NANs are considered unequal.
inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
  return internal::FloatingEqMatcher<float>(rhs, false);
}

// Creates a matcher that matches any float argument approximately
// equal to rhs, including NaN values when rhs is NaN.
inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
  return internal::FloatingEqMatcher<float>(rhs, true);
}

// Creates a matcher that matches any float argument approximately equal to
// rhs, up to the specified max absolute error bound, where two NANs are
// considered unequal.  The max absolute error bound must be non-negative.
inline internal::FloatingEqMatcher<float> FloatNear(
    float rhs, float max_abs_error) {
  return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error);
}

// Creates a matcher that matches any float argument approximately equal to
// rhs, up to the specified max absolute error bound, including NaN values when
// rhs is NaN.  The max absolute error bound must be non-negative.
inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear(
    float rhs, float max_abs_error) {
  return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error);
}

// Creates a matcher that matches a pointer (raw or smart) that points
// to a value that matches inner_matcher.
template <typename InnerMatcher>
inline internal::PointeeMatcher<InnerMatcher> Pointee(
    const InnerMatcher& inner_matcher) {
  return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
}

// Creates a matcher that matches a pointer or reference that matches
// inner_matcher when dynamic_cast<To> is applied.
// The result of dynamic_cast<To> is forwarded to the inner matcher.
// If To is a pointer and the cast fails, the inner matcher will receive NULL.
// If To is a reference and the cast fails, this matcher returns false
// immediately.
template <typename To>
inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> >
WhenDynamicCastTo(const Matcher<To>& inner_matcher) {
  return MakePolymorphicMatcher(
      internal::WhenDynamicCastToMatcher<To>(inner_matcher));
}

// Creates a matcher that matches an object whose given field matches
// 'matcher'.  For example,
//   Field(&Foo::number, Ge(5))
// matches a Foo object x iff x.number >= 5.
template <typename Class, typename FieldType, typename FieldMatcher>
inline PolymorphicMatcher<
  internal::FieldMatcher<Class, FieldType> > Field(
    FieldType Class::*field, const FieldMatcher& matcher) {
  return MakePolymorphicMatcher(
      internal::FieldMatcher<Class, FieldType>(
          field, MatcherCast<const FieldType&>(matcher)));
  // The call to MatcherCast() is required for supporting inner
  // matchers of compatible types.  For example, it allows
  //   Field(&Foo::bar, m)
  // to compile where bar is an int32 and m is a matcher for int64.
}

// Creates a matcher that matches an object whose given property
// matches 'matcher'.  For example,
//   Property(&Foo::str, StartsWith("hi"))
// matches a Foo object x iff x.str() starts with "hi".
template <typename Class, typename PropertyType, typename PropertyMatcher>
inline PolymorphicMatcher<
  internal::PropertyMatcher<Class, PropertyType> > Property(
    PropertyType (Class::*property)() const, const PropertyMatcher& matcher) {
  return MakePolymorphicMatcher(
      internal::PropertyMatcher<Class, PropertyType>(
          property,
          MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher)));
  // The call to MatcherCast() is required for supporting inner
  // matchers of compatible types.  For example, it allows
  //   Property(&Foo::bar, m)
  // to compile where bar() returns an int32 and m is a matcher for int64.
}

// Creates a matcher that matches an object iff the result of applying
// a callable to x matches 'matcher'.
// For example,
//   ResultOf(f, StartsWith("hi"))
// matches a Foo object x iff f(x) starts with "hi".
// callable parameter can be a function, function pointer, or a functor.
// Callable has to satisfy the following conditions:
//   * It is required to keep no state affecting the results of
//     the calls on it and make no assumptions about how many calls
//     will be made. Any state it keeps must be protected from the
//     concurrent access.
//   * If it is a function object, it has to define type result_type.
//     We recommend deriving your functor classes from std::unary_function.
template <typename Callable, typename ResultOfMatcher>
internal::ResultOfMatcher<Callable> ResultOf(
    Callable callable, const ResultOfMatcher& matcher) {
  return internal::ResultOfMatcher<Callable>(
          callable,
          MatcherCast<typename internal::CallableTraits<Callable>::ResultType>(
              matcher));
  // The call to MatcherCast() is required for supporting inner
  // matchers of compatible types.  For example, it allows
  //   ResultOf(Function, m)
  // to compile where Function() returns an int32 and m is a matcher for int64.
}

// String matchers.

// Matches a string equal to str.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
    StrEq(const internal::string& str) {
  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
      str, true, true));
}

// Matches a string not equal to str.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
    StrNe(const internal::string& str) {
  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
      str, false, true));
}

// Matches a string equal to str, ignoring case.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
    StrCaseEq(const internal::string& str) {
  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
      str, true, false));
}

// Matches a string not equal to str, ignoring case.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
    StrCaseNe(const internal::string& str) {
  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
      str, false, false));
}

// Creates a matcher that matches any string, std::string, or C string
// that contains the given substring.
inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::string> >
    HasSubstr(const internal::string& substring) {
  return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::string>(
      substring));
}

// Matches a string that starts with 'prefix' (case-sensitive).
inline PolymorphicMatcher<internal::StartsWithMatcher<internal::string> >
    StartsWith(const internal::string& prefix) {
  return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::string>(
      prefix));
}

// Matches a string that ends with 'suffix' (case-sensitive).
inline PolymorphicMatcher<internal::EndsWithMatcher<internal::string> >
    EndsWith(const internal::string& suffix) {
  return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::string>(
      suffix));
}

// Matches a string that fully matches regular expression 'regex'.
// The matcher takes ownership of 'regex'.
inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
    const internal::RE* regex) {
  return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true));
}
inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
    const internal::string& regex) {
  return MatchesRegex(new internal::RE(regex));
}

// Matches a string that contains regular expression 'regex'.
// The matcher takes ownership of 'regex'.
inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
    const internal::RE* regex) {
  return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false));
}
inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
    const internal::string& regex) {
  return ContainsRegex(new internal::RE(regex));
}

#if GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
// Wide string matchers.

// Matches a string equal to str.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
    StrEq(const internal::wstring& str) {
  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
      str, true, true));
}

// Matches a string not equal to str.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
    StrNe(const internal::wstring& str) {
  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
      str, false, true));
}

// Matches a string equal to str, ignoring case.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
    StrCaseEq(const internal::wstring& str) {
  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
      str, true, false));
}

// Matches a string not equal to str, ignoring case.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
    StrCaseNe(const internal::wstring& str) {
  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
      str, false, false));
}

// Creates a matcher that matches any wstring, std::wstring, or C wide string
// that contains the given substring.
inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::wstring> >
    HasSubstr(const internal::wstring& substring) {
  return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::wstring>(
      substring));
}

// Matches a string that starts with 'prefix' (case-sensitive).
inline PolymorphicMatcher<internal::StartsWithMatcher<internal::wstring> >
    StartsWith(const internal::wstring& prefix) {
  return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::wstring>(
      prefix));
}

// Matches a string that ends with 'suffix' (case-sensitive).
inline PolymorphicMatcher<internal::EndsWithMatcher<internal::wstring> >
    EndsWith(const internal::wstring& suffix) {
  return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::wstring>(
      suffix));
}

#endif  // GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING

// Creates a polymorphic matcher that matches a 2-tuple where the
// first field == the second field.
inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }

// Creates a polymorphic matcher that matches a 2-tuple where the
// first field >= the second field.
inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }

// Creates a polymorphic matcher that matches a 2-tuple where the
// first field > the second field.
inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }

// Creates a polymorphic matcher that matches a 2-tuple where the
// first field <= the second field.
inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }

// Creates a polymorphic matcher that matches a 2-tuple where the
// first field < the second field.
inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }

// Creates a polymorphic matcher that matches a 2-tuple where the
// first field != the second field.
inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }

// Creates a matcher that matches any value of type T that m doesn't
// match.
template <typename InnerMatcher>
inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
  return internal::NotMatcher<InnerMatcher>(m);
}

// Returns a matcher that matches anything that satisfies the given
// predicate.  The predicate can be any unary function or functor
// whose return type can be implicitly converted to bool.
template <typename Predicate>
inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
Truly(Predicate pred) {
  return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
}

// Returns a matcher that matches the container size. The container must
// support both size() and size_type which all STL-like containers provide.
// Note that the parameter 'size' can be a value of type size_type as well as
// matcher. For instance:
//   EXPECT_THAT(container, SizeIs(2));     // Checks container has 2 elements.
//   EXPECT_THAT(container, SizeIs(Le(2));  // Checks container has at most 2.
template <typename SizeMatcher>
inline internal::SizeIsMatcher<SizeMatcher>
SizeIs(const SizeMatcher& size_matcher) {
  return internal::SizeIsMatcher<SizeMatcher>(size_matcher);
}

// Returns a matcher that matches the distance between the container's begin()
// iterator and its end() iterator, i.e. the size of the container. This matcher
// can be used instead of SizeIs with containers such as std::forward_list which
// do not implement size(). The container must provide const_iterator (with
// valid iterator_traits), begin() and end().
template <typename DistanceMatcher>
inline internal::BeginEndDistanceIsMatcher<DistanceMatcher>
BeginEndDistanceIs(const DistanceMatcher& distance_matcher) {
  return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher);
}

// Returns a matcher that matches an equal container.
// This matcher behaves like Eq(), but in the event of mismatch lists the
// values that are included in one container but not the other. (Duplicate
// values and order differences are not explained.)
template <typename Container>
inline PolymorphicMatcher<internal::ContainerEqMatcher<  // NOLINT
                            GTEST_REMOVE_CONST_(Container)> >
    ContainerEq(const Container& rhs) {
  // This following line is for working around a bug in MSVC 8.0,
  // which causes Container to be a const type sometimes.
  typedef GTEST_REMOVE_CONST_(Container) RawContainer;
  return MakePolymorphicMatcher(
      internal::ContainerEqMatcher<RawContainer>(rhs));
}

// Returns a matcher that matches a container that, when sorted using
// the given comparator, matches container_matcher.
template <typename Comparator, typename ContainerMatcher>
inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher>
WhenSortedBy(const Comparator& comparator,
             const ContainerMatcher& container_matcher) {
  return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
      comparator, container_matcher);
}

// Returns a matcher that matches a container that, when sorted using
// the < operator, matches container_matcher.
template <typename ContainerMatcher>
inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
WhenSorted(const ContainerMatcher& container_matcher) {
  return
      internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>(
          internal::LessComparator(), container_matcher);
}

// Matches an STL-style container or a native array that contains the
// same number of elements as in rhs, where its i-th element and rhs's
// i-th element (as a pair) satisfy the given pair matcher, for all i.
// TupleMatcher must be able to be safely cast to Matcher<tuple<const
// T1&, const T2&> >, where T1 and T2 are the types of elements in the
// LHS container and the RHS container respectively.
template <typename TupleMatcher, typename Container>
inline internal::PointwiseMatcher<TupleMatcher,
                                  GTEST_REMOVE_CONST_(Container)>
Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
  // This following line is for working around a bug in MSVC 8.0,
  // which causes Container to be a const type sometimes (e.g. when
  // rhs is a const int[])..
  typedef GTEST_REMOVE_CONST_(Container) RawContainer;
  return internal::PointwiseMatcher<TupleMatcher, RawContainer>(
      tuple_matcher, rhs);
}

#if GTEST_HAS_STD_INITIALIZER_LIST_

// Supports the Pointwise(m, {a, b, c}) syntax.
template <typename TupleMatcher, typename T>
inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise(
    const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) {
  return Pointwise(tuple_matcher, std::vector<T>(rhs));
}

#endif  // GTEST_HAS_STD_INITIALIZER_LIST_

// UnorderedPointwise(pair_matcher, rhs) matches an STL-style
// container or a native array that contains the same number of
// elements as in rhs, where in some permutation of the container, its
// i-th element and rhs's i-th element (as a pair) satisfy the given
// pair matcher, for all i.  Tuple2Matcher must be able to be safely
// cast to Matcher<tuple<const T1&, const T2&> >, where T1 and T2 are
// the types of elements in the LHS container and the RHS container
// respectively.
//
// This is like Pointwise(pair_matcher, rhs), except that the element
// order doesn't matter.
template <typename Tuple2Matcher, typename RhsContainer>
inline internal::UnorderedElementsAreArrayMatcher<
    typename internal::BoundSecondMatcher<
        Tuple2Matcher, typename internal::StlContainerView<GTEST_REMOVE_CONST_(
                           RhsContainer)>::type::value_type> >
UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
                   const RhsContainer& rhs_container) {
  // This following line is for working around a bug in MSVC 8.0,
  // which causes RhsContainer to be a const type sometimes (e.g. when
  // rhs_container is a const int[]).
  typedef GTEST_REMOVE_CONST_(RhsContainer) RawRhsContainer;

  // RhsView allows the same code to handle RhsContainer being a
  // STL-style container and it being a native C-style array.
  typedef typename internal::StlContainerView<RawRhsContainer> RhsView;
  typedef typename RhsView::type RhsStlContainer;
  typedef typename RhsStlContainer::value_type Second;
  const RhsStlContainer& rhs_stl_container =
      RhsView::ConstReference(rhs_container);

  // Create a matcher for each element in rhs_container.
  ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers;
  for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin();
       it != rhs_stl_container.end(); ++it) {
    matchers.push_back(
        internal::MatcherBindSecond(tuple2_matcher, *it));
  }

  // Delegate the work to UnorderedElementsAreArray().
  return UnorderedElementsAreArray(matchers);
}

#if GTEST_HAS_STD_INITIALIZER_LIST_

// Supports the UnorderedPointwise(m, {a, b, c}) syntax.
template <typename Tuple2Matcher, typename T>
inline internal::UnorderedElementsAreArrayMatcher<
    typename internal::BoundSecondMatcher<Tuple2Matcher, T> >
UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
                   std::initializer_list<T> rhs) {
  return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs));
}

#endif  // GTEST_HAS_STD_INITIALIZER_LIST_

// Matches an STL-style container or a native array that contains at
// least one element matching the given value or matcher.
//
// Examples:
//   ::std::set<int> page_ids;
//   page_ids.insert(3);
//   page_ids.insert(1);
//   EXPECT_THAT(page_ids, Contains(1));
//   EXPECT_THAT(page_ids, Contains(Gt(2)));
//   EXPECT_THAT(page_ids, Not(Contains(4)));
//
//   ::std::map<int, size_t> page_lengths;
//   page_lengths[1] = 100;
//   EXPECT_THAT(page_lengths,
//               Contains(::std::pair<const int, size_t>(1, 100)));
//
//   const char* user_ids[] = { "joe", "mike", "tom" };
//   EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
template <typename M>
inline internal::ContainsMatcher<M> Contains(M matcher) {
  return internal::ContainsMatcher<M>(matcher);
}

// Matches an STL-style container or a native array that contains only
// elements matching the given value or matcher.
//
// Each(m) is semantically equivalent to Not(Contains(Not(m))). Only
// the messages are different.
//
// Examples:
//   ::std::set<int> page_ids;
//   // Each(m) matches an empty container, regardless of what m is.
//   EXPECT_THAT(page_ids, Each(Eq(1)));
//   EXPECT_THAT(page_ids, Each(Eq(77)));
//
//   page_ids.insert(3);
//   EXPECT_THAT(page_ids, Each(Gt(0)));
//   EXPECT_THAT(page_ids, Not(Each(Gt(4))));
//   page_ids.insert(1);
//   EXPECT_THAT(page_ids, Not(Each(Lt(2))));
//
//   ::std::map<int, size_t> page_lengths;
//   page_lengths[1] = 100;
//   page_lengths[2] = 200;
//   page_lengths[3] = 300;
//   EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
//   EXPECT_THAT(page_lengths, Each(Key(Le(3))));
//
//   const char* user_ids[] = { "joe", "mike", "tom" };
//   EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
template <typename M>
inline internal::EachMatcher<M> Each(M matcher) {
  return internal::EachMatcher<M>(matcher);
}

// Key(inner_matcher) matches an std::pair whose 'first' field matches
// inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
// std::map that contains at least one element whose key is >= 5.
template <typename M>
inline internal::KeyMatcher<M> Key(M inner_matcher) {
  return internal::KeyMatcher<M>(inner_matcher);
}

// Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
// matches first_matcher and whose 'second' field matches second_matcher.  For
// example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
// to match a std::map<int, string> that contains exactly one element whose key
// is >= 5 and whose value equals "foo".
template <typename FirstMatcher, typename SecondMatcher>
inline internal::PairMatcher<FirstMatcher, SecondMatcher>
Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) {
  return internal::PairMatcher<FirstMatcher, SecondMatcher>(
      first_matcher, second_matcher);
}

// Returns a predicate that is satisfied by anything that matches the
// given matcher.
template <typename M>
inline internal::MatcherAsPredicate<M> Matches(M matcher) {
  return internal::MatcherAsPredicate<M>(matcher);
}

// Returns true iff the value matches the matcher.
template <typename T, typename M>
inline bool Value(const T& value, M matcher) {
  return testing::Matches(matcher)(value);
}

// Matches the value against the given matcher and explains the match
// result to listener.
template <typename T, typename M>
inline bool ExplainMatchResult(
    M matcher, const T& value, MatchResultListener* listener) {
  return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
}

#if GTEST_LANG_CXX11
// Define variadic matcher versions. They are overloaded in
// gmock-generated-matchers.h for the cases supported by pre C++11 compilers.
template <typename... Args>
inline internal::AllOfMatcher<Args...> AllOf(const Args&... matchers) {
  return internal::AllOfMatcher<Args...>(matchers...);
}

template <typename... Args>
inline internal::AnyOfMatcher<Args...> AnyOf(const Args&... matchers) {
  return internal::AnyOfMatcher<Args...>(matchers...);
}

#endif  // GTEST_LANG_CXX11

// AllArgs(m) is a synonym of m.  This is useful in
//
//   EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
//
// which is easier to read than
//
//   EXPECT_CALL(foo, Bar(_, _)).With(Eq());
template <typename InnerMatcher>
inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; }

// These macros allow using matchers to check values in Google Test
// tests.  ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
// succeed iff the value matches the matcher.  If the assertion fails,
// the value and the description of the matcher will be printed.
#define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
    ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
#define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
    ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)

}  // namespace testing

// Include any custom callback matchers added by the local installation.
// We must include this header at the end to make sure it can use the
// declarations from this file.
#include "gmock/internal/custom/gmock-matchers.h"
#endif  // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_