DenseMapTest.cpp 21.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
//===- llvm/unittest/ADT/DenseMapMap.cpp - DenseMap unit tests --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "gtest/gtest.h"
#include <map>
#include <set>

using namespace llvm;

namespace {

uint32_t getTestKey(int i, uint32_t *) { return i; }
uint32_t getTestValue(int i, uint32_t *) { return 42 + i; }

uint32_t *getTestKey(int i, uint32_t **) {
  static uint32_t dummy_arr1[8192];
  assert(i < 8192 && "Only support 8192 dummy keys.");
  return &dummy_arr1[i];
}
uint32_t *getTestValue(int i, uint32_t **) {
  static uint32_t dummy_arr1[8192];
  assert(i < 8192 && "Only support 8192 dummy keys.");
  return &dummy_arr1[i];
}

/// A test class that tries to check that construction and destruction
/// occur correctly.
class CtorTester {
  static std::set<CtorTester *> Constructed;
  int Value;

public:
  explicit CtorTester(int Value = 0) : Value(Value) {
    EXPECT_TRUE(Constructed.insert(this).second);
  }
  CtorTester(uint32_t Value) : Value(Value) {
    EXPECT_TRUE(Constructed.insert(this).second);
  }
  CtorTester(const CtorTester &Arg) : Value(Arg.Value) {
    EXPECT_TRUE(Constructed.insert(this).second);
  }
  CtorTester &operator=(const CtorTester &) = default;
  ~CtorTester() {
    EXPECT_EQ(1u, Constructed.erase(this));
  }
  operator uint32_t() const { return Value; }

  int getValue() const { return Value; }
  bool operator==(const CtorTester &RHS) const { return Value == RHS.Value; }
};

std::set<CtorTester *> CtorTester::Constructed;

struct CtorTesterMapInfo {
  static inline CtorTester getEmptyKey() { return CtorTester(-1); }
  static inline CtorTester getTombstoneKey() { return CtorTester(-2); }
  static unsigned getHashValue(const CtorTester &Val) {
    return Val.getValue() * 37u;
  }
  static bool isEqual(const CtorTester &LHS, const CtorTester &RHS) {
    return LHS == RHS;
  }
};

CtorTester getTestKey(int i, CtorTester *) { return CtorTester(i); }
CtorTester getTestValue(int i, CtorTester *) { return CtorTester(42 + i); }

// Test fixture, with helper functions implemented by forwarding to global
// function overloads selected by component types of the type parameter. This
// allows all of the map implementations to be tested with shared
// implementations of helper routines.
template <typename T>
class DenseMapTest : public ::testing::Test {
protected:
  T Map;

  static typename T::key_type *const dummy_key_ptr;
  static typename T::mapped_type *const dummy_value_ptr;

  typename T::key_type getKey(int i = 0) {
    return getTestKey(i, dummy_key_ptr);
  }
  typename T::mapped_type getValue(int i = 0) {
    return getTestValue(i, dummy_value_ptr);
  }
};

template <typename T>
typename T::key_type *const DenseMapTest<T>::dummy_key_ptr = nullptr;
template <typename T>
typename T::mapped_type *const DenseMapTest<T>::dummy_value_ptr = nullptr;

// Register these types for testing.
typedef ::testing::Types<DenseMap<uint32_t, uint32_t>,
                         DenseMap<uint32_t *, uint32_t *>,
                         DenseMap<CtorTester, CtorTester, CtorTesterMapInfo>,
                         SmallDenseMap<uint32_t, uint32_t>,
                         SmallDenseMap<uint32_t *, uint32_t *>,
                         SmallDenseMap<CtorTester, CtorTester, 4,
                                       CtorTesterMapInfo>
                         > DenseMapTestTypes;
TYPED_TEST_CASE(DenseMapTest, DenseMapTestTypes);

// Empty map tests
TYPED_TEST(DenseMapTest, EmptyIntMapTest) {
  // Size tests
  EXPECT_EQ(0u, this->Map.size());
  EXPECT_TRUE(this->Map.empty());

  // Iterator tests
  EXPECT_TRUE(this->Map.begin() == this->Map.end());

  // Lookup tests
  EXPECT_FALSE(this->Map.count(this->getKey()));
  EXPECT_TRUE(this->Map.find(this->getKey()) == this->Map.end());
  EXPECT_EQ(typename TypeParam::mapped_type(),
            this->Map.lookup(this->getKey()));
}

// Constant map tests
TYPED_TEST(DenseMapTest, ConstEmptyMapTest) {
  const TypeParam &ConstMap = this->Map;
  EXPECT_EQ(0u, ConstMap.size());
  EXPECT_TRUE(ConstMap.empty());
  EXPECT_TRUE(ConstMap.begin() == ConstMap.end());
}

// A map with a single entry
TYPED_TEST(DenseMapTest, SingleEntryMapTest) {
  this->Map[this->getKey()] = this->getValue();

  // Size tests
  EXPECT_EQ(1u, this->Map.size());
  EXPECT_FALSE(this->Map.begin() == this->Map.end());
  EXPECT_FALSE(this->Map.empty());

  // Iterator tests
  typename TypeParam::iterator it = this->Map.begin();
  EXPECT_EQ(this->getKey(), it->first);
  EXPECT_EQ(this->getValue(), it->second);
  ++it;
  EXPECT_TRUE(it == this->Map.end());

  // Lookup tests
  EXPECT_TRUE(this->Map.count(this->getKey()));
  EXPECT_TRUE(this->Map.find(this->getKey()) == this->Map.begin());
  EXPECT_EQ(this->getValue(), this->Map.lookup(this->getKey()));
  EXPECT_EQ(this->getValue(), this->Map[this->getKey()]);
}

// Test clear() method
TYPED_TEST(DenseMapTest, ClearTest) {
  this->Map[this->getKey()] = this->getValue();
  this->Map.clear();

  EXPECT_EQ(0u, this->Map.size());
  EXPECT_TRUE(this->Map.empty());
  EXPECT_TRUE(this->Map.begin() == this->Map.end());
}

// Test erase(iterator) method
TYPED_TEST(DenseMapTest, EraseTest) {
  this->Map[this->getKey()] = this->getValue();
  this->Map.erase(this->Map.begin());

  EXPECT_EQ(0u, this->Map.size());
  EXPECT_TRUE(this->Map.empty());
  EXPECT_TRUE(this->Map.begin() == this->Map.end());
}

// Test erase(value) method
TYPED_TEST(DenseMapTest, EraseTest2) {
  this->Map[this->getKey()] = this->getValue();
  this->Map.erase(this->getKey());

  EXPECT_EQ(0u, this->Map.size());
  EXPECT_TRUE(this->Map.empty());
  EXPECT_TRUE(this->Map.begin() == this->Map.end());
}

// Test insert() method
TYPED_TEST(DenseMapTest, InsertTest) {
  this->Map.insert(std::make_pair(this->getKey(), this->getValue()));
  EXPECT_EQ(1u, this->Map.size());
  EXPECT_EQ(this->getValue(), this->Map[this->getKey()]);
}

// Test copy constructor method
TYPED_TEST(DenseMapTest, CopyConstructorTest) {
  this->Map[this->getKey()] = this->getValue();
  TypeParam copyMap(this->Map);

  EXPECT_EQ(1u, copyMap.size());
  EXPECT_EQ(this->getValue(), copyMap[this->getKey()]);
}

// Test copy constructor method where SmallDenseMap isn't small.
TYPED_TEST(DenseMapTest, CopyConstructorNotSmallTest) {
  for (int Key = 0; Key < 5; ++Key)
    this->Map[this->getKey(Key)] = this->getValue(Key);
  TypeParam copyMap(this->Map);

  EXPECT_EQ(5u, copyMap.size());
  for (int Key = 0; Key < 5; ++Key)
    EXPECT_EQ(this->getValue(Key), copyMap[this->getKey(Key)]);
}

// Test copying from a default-constructed map.
TYPED_TEST(DenseMapTest, CopyConstructorFromDefaultTest) {
  TypeParam copyMap(this->Map);

  EXPECT_TRUE(copyMap.empty());
}

// Test copying from an empty map where SmallDenseMap isn't small.
TYPED_TEST(DenseMapTest, CopyConstructorFromEmptyTest) {
  for (int Key = 0; Key < 5; ++Key)
    this->Map[this->getKey(Key)] = this->getValue(Key);
  this->Map.clear();
  TypeParam copyMap(this->Map);

  EXPECT_TRUE(copyMap.empty());
}

// Test assignment operator method
TYPED_TEST(DenseMapTest, AssignmentTest) {
  this->Map[this->getKey()] = this->getValue();
  TypeParam copyMap = this->Map;

  EXPECT_EQ(1u, copyMap.size());
  EXPECT_EQ(this->getValue(), copyMap[this->getKey()]);

  // test self-assignment.
  copyMap = static_cast<TypeParam &>(copyMap);
  EXPECT_EQ(1u, copyMap.size());
  EXPECT_EQ(this->getValue(), copyMap[this->getKey()]);
}

TYPED_TEST(DenseMapTest, AssignmentTestNotSmall) {
  for (int Key = 0; Key < 5; ++Key)
    this->Map[this->getKey(Key)] = this->getValue(Key);
  TypeParam copyMap = this->Map;

  EXPECT_EQ(5u, copyMap.size());
  for (int Key = 0; Key < 5; ++Key)
    EXPECT_EQ(this->getValue(Key), copyMap[this->getKey(Key)]);

  // test self-assignment.
  copyMap = static_cast<TypeParam &>(copyMap);
  EXPECT_EQ(5u, copyMap.size());
  for (int Key = 0; Key < 5; ++Key)
    EXPECT_EQ(this->getValue(Key), copyMap[this->getKey(Key)]);
}

// Test swap method
TYPED_TEST(DenseMapTest, SwapTest) {
  this->Map[this->getKey()] = this->getValue();
  TypeParam otherMap;

  this->Map.swap(otherMap);
  EXPECT_EQ(0u, this->Map.size());
  EXPECT_TRUE(this->Map.empty());
  EXPECT_EQ(1u, otherMap.size());
  EXPECT_EQ(this->getValue(), otherMap[this->getKey()]);

  this->Map.swap(otherMap);
  EXPECT_EQ(0u, otherMap.size());
  EXPECT_TRUE(otherMap.empty());
  EXPECT_EQ(1u, this->Map.size());
  EXPECT_EQ(this->getValue(), this->Map[this->getKey()]);

  // Make this more interesting by inserting 100 numbers into the map.
  for (int i = 0; i < 100; ++i)
    this->Map[this->getKey(i)] = this->getValue(i);

  this->Map.swap(otherMap);
  EXPECT_EQ(0u, this->Map.size());
  EXPECT_TRUE(this->Map.empty());
  EXPECT_EQ(100u, otherMap.size());
  for (int i = 0; i < 100; ++i)
    EXPECT_EQ(this->getValue(i), otherMap[this->getKey(i)]);

  this->Map.swap(otherMap);
  EXPECT_EQ(0u, otherMap.size());
  EXPECT_TRUE(otherMap.empty());
  EXPECT_EQ(100u, this->Map.size());
  for (int i = 0; i < 100; ++i)
    EXPECT_EQ(this->getValue(i), this->Map[this->getKey(i)]);
}

// A more complex iteration test
TYPED_TEST(DenseMapTest, IterationTest) {
  bool visited[100];
  std::map<typename TypeParam::key_type, unsigned> visitedIndex;

  // Insert 100 numbers into the map
  for (int i = 0; i < 100; ++i) {
    visited[i] = false;
    visitedIndex[this->getKey(i)] = i;

    this->Map[this->getKey(i)] = this->getValue(i);
  }

  // Iterate over all numbers and mark each one found.
  for (typename TypeParam::iterator it = this->Map.begin();
       it != this->Map.end(); ++it)
    visited[visitedIndex[it->first]] = true;

  // Ensure every number was visited.
  for (int i = 0; i < 100; ++i)
    ASSERT_TRUE(visited[i]) << "Entry #" << i << " was never visited";
}

// const_iterator test
TYPED_TEST(DenseMapTest, ConstIteratorTest) {
  // Check conversion from iterator to const_iterator.
  typename TypeParam::iterator it = this->Map.begin();
  typename TypeParam::const_iterator cit(it);
  EXPECT_TRUE(it == cit);

  // Check copying of const_iterators.
  typename TypeParam::const_iterator cit2(cit);
  EXPECT_TRUE(cit == cit2);
}

namespace {
// Simple class that counts how many moves and copy happens when growing a map
struct CountCopyAndMove {
  static int Move;
  static int Copy;
  CountCopyAndMove() {}

  CountCopyAndMove(const CountCopyAndMove &) { Copy++; }
  CountCopyAndMove &operator=(const CountCopyAndMove &) {
    Copy++;
    return *this;
  }
  CountCopyAndMove(CountCopyAndMove &&) { Move++; }
  CountCopyAndMove &operator=(const CountCopyAndMove &&) {
    Move++;
    return *this;
  }
};
int CountCopyAndMove::Copy = 0;
int CountCopyAndMove::Move = 0;

} // anonymous namespace

// Test initializer list construction.
TEST(DenseMapCustomTest, InitializerList) {
  DenseMap<int, int> M({{0, 0}, {0, 1}, {1, 2}});
  EXPECT_EQ(2u, M.size());
  EXPECT_EQ(1u, M.count(0));
  EXPECT_EQ(0, M[0]);
  EXPECT_EQ(1u, M.count(1));
  EXPECT_EQ(2, M[1]);
}

// Test initializer list construction.
TEST(DenseMapCustomTest, EqualityComparison) {
  DenseMap<int, int> M1({{0, 0}, {1, 2}});
  DenseMap<int, int> M2({{0, 0}, {1, 2}});
  DenseMap<int, int> M3({{0, 0}, {1, 3}});

  EXPECT_EQ(M1, M2);
  EXPECT_NE(M1, M3);
}

// Test for the default minimum size of a DenseMap
TEST(DenseMapCustomTest, DefaultMinReservedSizeTest) {
  // IF THIS VALUE CHANGE, please update InitialSizeTest, InitFromIterator, and
  // ReserveTest as well!
  const int ExpectedInitialBucketCount = 64;
  // Formula from DenseMap::getMinBucketToReserveForEntries()
  const int ExpectedMaxInitialEntries = ExpectedInitialBucketCount * 3 / 4 - 1;

  DenseMap<int, CountCopyAndMove> Map;
  // Will allocate 64 buckets
  Map.reserve(1);
  unsigned MemorySize = Map.getMemorySize();
  CountCopyAndMove::Copy = 0;
  CountCopyAndMove::Move = 0;
  for (int i = 0; i < ExpectedMaxInitialEntries; ++i)
    Map.insert(std::pair<int, CountCopyAndMove>(std::piecewise_construct,
                                                std::forward_as_tuple(i),
                                                std::forward_as_tuple()));
  // Check that we didn't grow
  EXPECT_EQ(MemorySize, Map.getMemorySize());
  // Check that move was called the expected number of times
  EXPECT_EQ(ExpectedMaxInitialEntries, CountCopyAndMove::Move);
  // Check that no copy occurred
  EXPECT_EQ(0, CountCopyAndMove::Copy);

  // Adding one extra element should grow the map
  Map.insert(std::pair<int, CountCopyAndMove>(
      std::piecewise_construct,
      std::forward_as_tuple(ExpectedMaxInitialEntries),
      std::forward_as_tuple()));
  // Check that we grew
  EXPECT_NE(MemorySize, Map.getMemorySize());
  // Check that move was called the expected number of times
  //  This relies on move-construction elision, and cannot be reliably tested.
  //   EXPECT_EQ(ExpectedMaxInitialEntries + 2, CountCopyAndMove::Move);
  // Check that no copy occurred
  EXPECT_EQ(0, CountCopyAndMove::Copy);
}

// Make sure creating the map with an initial size of N actually gives us enough
// buckets to insert N items without increasing allocation size.
TEST(DenseMapCustomTest, InitialSizeTest) {
  // Test a few different sizes, 48 is *not* a random choice: we need a value
  // that is 2/3 of a power of two to stress the grow() condition, and the power
  // of two has to be at least 64 because of minimum size allocation in the
  // DenseMap (see DefaultMinReservedSizeTest). 66 is a value just above the
  // 64 default init.
  for (auto Size : {1, 2, 48, 66}) {
    DenseMap<int, CountCopyAndMove> Map(Size);
    unsigned MemorySize = Map.getMemorySize();
    CountCopyAndMove::Copy = 0;
    CountCopyAndMove::Move = 0;
    for (int i = 0; i < Size; ++i)
      Map.insert(std::pair<int, CountCopyAndMove>(std::piecewise_construct,
                                                  std::forward_as_tuple(i),
                                                  std::forward_as_tuple()));
    // Check that we didn't grow
    EXPECT_EQ(MemorySize, Map.getMemorySize());
    // Check that move was called the expected number of times
    EXPECT_EQ(Size, CountCopyAndMove::Move);
    // Check that no copy occurred
    EXPECT_EQ(0, CountCopyAndMove::Copy);
  }
}

// Make sure creating the map with a iterator range does not trigger grow()
TEST(DenseMapCustomTest, InitFromIterator) {
  std::vector<std::pair<int, CountCopyAndMove>> Values;
  // The size is a random value greater than 64 (hardcoded DenseMap min init)
  const int Count = 65;
  for (int i = 0; i < Count; i++)
    Values.emplace_back(i, CountCopyAndMove());

  CountCopyAndMove::Move = 0;
  CountCopyAndMove::Copy = 0;
  DenseMap<int, CountCopyAndMove> Map(Values.begin(), Values.end());
  // Check that no move occurred
  EXPECT_EQ(0, CountCopyAndMove::Move);
  // Check that copy was called the expected number of times
  EXPECT_EQ(Count, CountCopyAndMove::Copy);
}

// Make sure reserve actually gives us enough buckets to insert N items
// without increasing allocation size.
TEST(DenseMapCustomTest, ReserveTest) {
  // Test a few different size, 48 is *not* a random choice: we need a value
  // that is 2/3 of a power of two to stress the grow() condition, and the power
  // of two has to be at least 64 because of minimum size allocation in the
  // DenseMap (see DefaultMinReservedSizeTest). 66 is a value just above the
  // 64 default init.
  for (auto Size : {1, 2, 48, 66}) {
    DenseMap<int, CountCopyAndMove> Map;
    Map.reserve(Size);
    unsigned MemorySize = Map.getMemorySize();
    CountCopyAndMove::Copy = 0;
    CountCopyAndMove::Move = 0;
    for (int i = 0; i < Size; ++i)
      Map.insert(std::pair<int, CountCopyAndMove>(std::piecewise_construct,
                                                  std::forward_as_tuple(i),
                                                  std::forward_as_tuple()));
    // Check that we didn't grow
    EXPECT_EQ(MemorySize, Map.getMemorySize());
    // Check that move was called the expected number of times
    EXPECT_EQ(Size, CountCopyAndMove::Move);
    // Check that no copy occurred
    EXPECT_EQ(0, CountCopyAndMove::Copy);
  }
}

// Make sure DenseMap works with StringRef keys.
TEST(DenseMapCustomTest, StringRefTest) {
  DenseMap<StringRef, int> M;

  M["a"] = 1;
  M["b"] = 2;
  M["c"] = 3;

  EXPECT_EQ(3u, M.size());
  EXPECT_EQ(1, M.lookup("a"));
  EXPECT_EQ(2, M.lookup("b"));
  EXPECT_EQ(3, M.lookup("c"));

  EXPECT_EQ(0, M.lookup("q"));

  // Test the empty string, spelled various ways.
  EXPECT_EQ(0, M.lookup(""));
  EXPECT_EQ(0, M.lookup(StringRef()));
  EXPECT_EQ(0, M.lookup(StringRef("a", 0)));
  M[""] = 42;
  EXPECT_EQ(42, M.lookup(""));
  EXPECT_EQ(42, M.lookup(StringRef()));
  EXPECT_EQ(42, M.lookup(StringRef("a", 0)));
}

// Key traits that allows lookup with either an unsigned or char* key;
// In the latter case, "a" == 0, "b" == 1 and so on.
struct TestDenseMapInfo {
  static inline unsigned getEmptyKey() { return ~0; }
  static inline unsigned getTombstoneKey() { return ~0U - 1; }
  static unsigned getHashValue(const unsigned& Val) { return Val * 37U; }
  static unsigned getHashValue(const char* Val) {
    return (unsigned)(Val[0] - 'a') * 37U;
  }
  static bool isEqual(const unsigned& LHS, const unsigned& RHS) {
    return LHS == RHS;
  }
  static bool isEqual(const char* LHS, const unsigned& RHS) {
    return (unsigned)(LHS[0] - 'a') == RHS;
  }
};

// find_as() tests
TEST(DenseMapCustomTest, FindAsTest) {
  DenseMap<unsigned, unsigned, TestDenseMapInfo> map;
  map[0] = 1;
  map[1] = 2;
  map[2] = 3;

  // Size tests
  EXPECT_EQ(3u, map.size());

  // Normal lookup tests
  EXPECT_EQ(1u, map.count(1));
  EXPECT_EQ(1u, map.find(0)->second);
  EXPECT_EQ(2u, map.find(1)->second);
  EXPECT_EQ(3u, map.find(2)->second);
  EXPECT_TRUE(map.find(3) == map.end());

  // find_as() tests
  EXPECT_EQ(1u, map.find_as("a")->second);
  EXPECT_EQ(2u, map.find_as("b")->second);
  EXPECT_EQ(3u, map.find_as("c")->second);
  EXPECT_TRUE(map.find_as("d") == map.end());
}

struct ContiguousDenseMapInfo {
  static inline unsigned getEmptyKey() { return ~0; }
  static inline unsigned getTombstoneKey() { return ~0U - 1; }
  static unsigned getHashValue(const unsigned& Val) { return Val; }
  static bool isEqual(const unsigned& LHS, const unsigned& RHS) {
    return LHS == RHS;
  }
};

// Test that filling a small dense map with exactly the number of elements in
// the map grows to have enough space for an empty bucket.
TEST(DenseMapCustomTest, SmallDenseMapGrowTest) {
  SmallDenseMap<unsigned, unsigned, 32, ContiguousDenseMapInfo> map;
  // Add some number of elements, then delete a few to leave us some tombstones.
  // If we just filled the map with 32 elements we'd grow because of not enough
  // tombstones which masks the issue here.
  for (unsigned i = 0; i < 20; ++i)
    map[i] = i + 1;
  for (unsigned i = 0; i < 10; ++i)
    map.erase(i);
  for (unsigned i = 20; i < 32; ++i)
    map[i] = i + 1;

  // Size tests
  EXPECT_EQ(22u, map.size());

  // Try to find an element which doesn't exist.  There was a bug in
  // SmallDenseMap which led to a map with num elements == small capacity not
  // having an empty bucket any more.  Finding an element not in the map would
  // therefore never terminate.
  EXPECT_TRUE(map.find(32) == map.end());
}

TEST(DenseMapCustomTest, LargeSmallDenseMapCompaction) {
  SmallDenseMap<unsigned, unsigned, 128, ContiguousDenseMapInfo> map;
  // Fill to < 3/4 load.
  for (unsigned i = 0; i < 95; ++i)
    map[i] = i;
  // And erase, leaving behind tombstones.
  for (unsigned i = 0; i < 95; ++i)
    map.erase(i);
  // Fill further, so that less than 1/8 are empty, but still below 3/4 load.
  for (unsigned i = 95; i < 128; ++i)
    map[i] = i;

  EXPECT_EQ(33u, map.size());
  // Similar to the previous test, check for a non-existing element, as an
  // indirect check that tombstones have been removed.
  EXPECT_TRUE(map.find(0) == map.end());
}

TEST(DenseMapCustomTest, TryEmplaceTest) {
  DenseMap<int, std::unique_ptr<int>> Map;
  std::unique_ptr<int> P(new int(2));
  auto Try1 = Map.try_emplace(0, new int(1));
  EXPECT_TRUE(Try1.second);
  auto Try2 = Map.try_emplace(0, std::move(P));
  EXPECT_FALSE(Try2.second);
  EXPECT_EQ(Try1.first, Try2.first);
  EXPECT_NE(nullptr, P);
}

TEST(DenseMapCustomTest, ConstTest) {
  // Test that const pointers work okay for count and find, even when the
  // underlying map is a non-const pointer.
  DenseMap<int *, int> Map;
  int A;
  int *B = &A;
  const int *C = &A;
  Map.insert({B, 0});
  EXPECT_EQ(Map.count(B), 1u);
  EXPECT_EQ(Map.count(C), 1u);
  EXPECT_NE(Map.find(B), Map.end());
  EXPECT_NE(Map.find(C), Map.end());
}

struct IncompleteStruct;

TEST(DenseMapCustomTest, OpaquePointerKey) {
  // Test that we can use a pointer to an incomplete type as a DenseMap key.
  // This is an important build time optimization, since many classes have
  // DenseMap members.
  DenseMap<IncompleteStruct *, int> Map;
  int Keys[3] = {0, 0, 0};
  IncompleteStruct *K1 = reinterpret_cast<IncompleteStruct *>(&Keys[0]);
  IncompleteStruct *K2 = reinterpret_cast<IncompleteStruct *>(&Keys[1]);
  IncompleteStruct *K3 = reinterpret_cast<IncompleteStruct *>(&Keys[2]);
  Map.insert({K1, 1});
  Map.insert({K2, 2});
  Map.insert({K3, 3});
  EXPECT_EQ(Map.count(K1), 1u);
  EXPECT_EQ(Map[K1], 1);
  EXPECT_EQ(Map[K2], 2);
  EXPECT_EQ(Map[K3], 3);
  Map.clear();
  EXPECT_EQ(Map.find(K1), Map.end());
  EXPECT_EQ(Map.find(K2), Map.end());
  EXPECT_EQ(Map.find(K3), Map.end());
}
}