VPlanSLP.cpp 15.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
//===- VPlanSLP.cpp - SLP Analysis based on VPlan -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// This file implements SLP analysis based on VPlan. The analysis is based on
/// the ideas described in
///
///   Look-ahead SLP: auto-vectorization in the presence of commutative
///   operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
///   Luís F. W. Góes
///
//===----------------------------------------------------------------------===//

#include "VPlan.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <cassert>
#include <iterator>
#include <string>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "vplan-slp"

// Number of levels to look ahead when re-ordering multi node operands.
static unsigned LookaheadMaxDepth = 5;

VPInstruction *VPlanSlp::markFailed() {
  // FIXME: Currently this is used to signal we hit instructions we cannot
  //        trivially SLP'ize.
  CompletelySLP = false;
  return nullptr;
}

void VPlanSlp::addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New) {
  if (all_of(Operands, [](VPValue *V) {
        return cast<VPInstruction>(V)->getUnderlyingInstr();
      })) {
    unsigned BundleSize = 0;
    for (VPValue *V : Operands) {
      Type *T = cast<VPInstruction>(V)->getUnderlyingInstr()->getType();
      assert(!T->isVectorTy() && "Only scalar types supported for now");
      BundleSize += T->getScalarSizeInBits();
    }
    WidestBundleBits = std::max(WidestBundleBits, BundleSize);
  }

  auto Res = BundleToCombined.try_emplace(to_vector<4>(Operands), New);
  assert(Res.second &&
         "Already created a combined instruction for the operand bundle");
  (void)Res;
}

bool VPlanSlp::areVectorizable(ArrayRef<VPValue *> Operands) const {
  // Currently we only support VPInstructions.
  if (!all_of(Operands, [](VPValue *Op) {
        return Op && isa<VPInstruction>(Op) &&
               cast<VPInstruction>(Op)->getUnderlyingInstr();
      })) {
    LLVM_DEBUG(dbgs() << "VPSLP: not all operands are VPInstructions\n");
    return false;
  }

  // Check if opcodes and type width agree for all instructions in the bundle.
  // FIXME: Differing widths/opcodes can be handled by inserting additional
  //        instructions.
  // FIXME: Deal with non-primitive types.
  const Instruction *OriginalInstr =
      cast<VPInstruction>(Operands[0])->getUnderlyingInstr();
  unsigned Opcode = OriginalInstr->getOpcode();
  unsigned Width = OriginalInstr->getType()->getPrimitiveSizeInBits();
  if (!all_of(Operands, [Opcode, Width](VPValue *Op) {
        const Instruction *I = cast<VPInstruction>(Op)->getUnderlyingInstr();
        return I->getOpcode() == Opcode &&
               I->getType()->getPrimitiveSizeInBits() == Width;
      })) {
    LLVM_DEBUG(dbgs() << "VPSLP: Opcodes do not agree \n");
    return false;
  }

  // For now, all operands must be defined in the same BB.
  if (any_of(Operands, [this](VPValue *Op) {
        return cast<VPInstruction>(Op)->getParent() != &this->BB;
      })) {
    LLVM_DEBUG(dbgs() << "VPSLP: operands in different BBs\n");
    return false;
  }

  if (any_of(Operands,
             [](VPValue *Op) { return Op->hasMoreThanOneUniqueUser(); })) {
    LLVM_DEBUG(dbgs() << "VPSLP: Some operands have multiple users.\n");
    return false;
  }

  // For loads, check that there are no instructions writing to memory in
  // between them.
  // TODO: we only have to forbid instructions writing to memory that could
  //       interfere with any of the loads in the bundle
  if (Opcode == Instruction::Load) {
    unsigned LoadsSeen = 0;
    VPBasicBlock *Parent = cast<VPInstruction>(Operands[0])->getParent();
    for (auto &I : *Parent) {
      auto *VPI = cast<VPInstruction>(&I);
      if (VPI->getOpcode() == Instruction::Load &&
          std::find(Operands.begin(), Operands.end(), VPI) != Operands.end())
        LoadsSeen++;

      if (LoadsSeen == Operands.size())
        break;
      if (LoadsSeen > 0 && VPI->mayWriteToMemory()) {
        LLVM_DEBUG(
            dbgs() << "VPSLP: instruction modifying memory between loads\n");
        return false;
      }
    }

    if (!all_of(Operands, [](VPValue *Op) {
          return cast<LoadInst>(cast<VPInstruction>(Op)->getUnderlyingInstr())
              ->isSimple();
        })) {
      LLVM_DEBUG(dbgs() << "VPSLP: only simple loads are supported.\n");
      return false;
    }
  }

  if (Opcode == Instruction::Store)
    if (!all_of(Operands, [](VPValue *Op) {
          return cast<StoreInst>(cast<VPInstruction>(Op)->getUnderlyingInstr())
              ->isSimple();
        })) {
      LLVM_DEBUG(dbgs() << "VPSLP: only simple stores are supported.\n");
      return false;
    }

  return true;
}

static SmallVector<VPValue *, 4> getOperands(ArrayRef<VPValue *> Values,
                                             unsigned OperandIndex) {
  SmallVector<VPValue *, 4> Operands;
  for (VPValue *V : Values) {
    auto *U = cast<VPUser>(V);
    Operands.push_back(U->getOperand(OperandIndex));
  }
  return Operands;
}

static bool areCommutative(ArrayRef<VPValue *> Values) {
  return Instruction::isCommutative(
      cast<VPInstruction>(Values[0])->getOpcode());
}

static SmallVector<SmallVector<VPValue *, 4>, 4>
getOperands(ArrayRef<VPValue *> Values) {
  SmallVector<SmallVector<VPValue *, 4>, 4> Result;
  auto *VPI = cast<VPInstruction>(Values[0]);

  switch (VPI->getOpcode()) {
  case Instruction::Load:
    llvm_unreachable("Loads terminate a tree, no need to get operands");
  case Instruction::Store:
    Result.push_back(getOperands(Values, 0));
    break;
  default:
    for (unsigned I = 0, NumOps = VPI->getNumOperands(); I < NumOps; ++I)
      Result.push_back(getOperands(Values, I));
    break;
  }

  return Result;
}

/// Returns the opcode of Values or ~0 if they do not all agree.
static Optional<unsigned> getOpcode(ArrayRef<VPValue *> Values) {
  unsigned Opcode = cast<VPInstruction>(Values[0])->getOpcode();
  if (any_of(Values, [Opcode](VPValue *V) {
        return cast<VPInstruction>(V)->getOpcode() != Opcode;
      }))
    return None;
  return {Opcode};
}

/// Returns true if A and B access sequential memory if they are loads or
/// stores or if they have identical opcodes otherwise.
static bool areConsecutiveOrMatch(VPInstruction *A, VPInstruction *B,
                                  VPInterleavedAccessInfo &IAI) {
  if (A->getOpcode() != B->getOpcode())
    return false;

  if (A->getOpcode() != Instruction::Load &&
      A->getOpcode() != Instruction::Store)
    return true;
  auto *GA = IAI.getInterleaveGroup(A);
  auto *GB = IAI.getInterleaveGroup(B);

  return GA && GB && GA == GB && GA->getIndex(A) + 1 == GB->getIndex(B);
}

/// Implements getLAScore from Listing 7 in the paper.
/// Traverses and compares operands of V1 and V2 to MaxLevel.
static unsigned getLAScore(VPValue *V1, VPValue *V2, unsigned MaxLevel,
                           VPInterleavedAccessInfo &IAI) {
  if (!isa<VPInstruction>(V1) || !isa<VPInstruction>(V2))
    return 0;

  if (MaxLevel == 0)
    return (unsigned)areConsecutiveOrMatch(cast<VPInstruction>(V1),
                                           cast<VPInstruction>(V2), IAI);

  unsigned Score = 0;
  for (unsigned I = 0, EV1 = cast<VPUser>(V1)->getNumOperands(); I < EV1; ++I)
    for (unsigned J = 0, EV2 = cast<VPUser>(V2)->getNumOperands(); J < EV2; ++J)
      Score += getLAScore(cast<VPUser>(V1)->getOperand(I),
                          cast<VPUser>(V2)->getOperand(J), MaxLevel - 1, IAI);
  return Score;
}

std::pair<VPlanSlp::OpMode, VPValue *>
VPlanSlp::getBest(OpMode Mode, VPValue *Last,
                  SmallPtrSetImpl<VPValue *> &Candidates,
                  VPInterleavedAccessInfo &IAI) {
  assert((Mode == OpMode::Load || Mode == OpMode::Opcode) &&
         "Currently we only handle load and commutative opcodes");
  LLVM_DEBUG(dbgs() << "      getBest\n");

  SmallVector<VPValue *, 4> BestCandidates;
  LLVM_DEBUG(dbgs() << "        Candidates  for "
                    << *cast<VPInstruction>(Last)->getUnderlyingInstr() << " ");
  for (auto *Candidate : Candidates) {
    auto *LastI = cast<VPInstruction>(Last);
    auto *CandidateI = cast<VPInstruction>(Candidate);
    if (areConsecutiveOrMatch(LastI, CandidateI, IAI)) {
      LLVM_DEBUG(dbgs() << *cast<VPInstruction>(Candidate)->getUnderlyingInstr()
                        << " ");
      BestCandidates.push_back(Candidate);
    }
  }
  LLVM_DEBUG(dbgs() << "\n");

  if (BestCandidates.empty())
    return {OpMode::Failed, nullptr};

  if (BestCandidates.size() == 1)
    return {Mode, BestCandidates[0]};

  VPValue *Best = nullptr;
  unsigned BestScore = 0;
  for (unsigned Depth = 1; Depth < LookaheadMaxDepth; Depth++) {
    unsigned PrevScore = ~0u;
    bool AllSame = true;

    // FIXME: Avoid visiting the same operands multiple times.
    for (auto *Candidate : BestCandidates) {
      unsigned Score = getLAScore(Last, Candidate, Depth, IAI);
      if (PrevScore == ~0u)
        PrevScore = Score;
      if (PrevScore != Score)
        AllSame = false;
      PrevScore = Score;

      if (Score > BestScore) {
        BestScore = Score;
        Best = Candidate;
      }
    }
    if (!AllSame)
      break;
  }
  LLVM_DEBUG(dbgs() << "Found best "
                    << *cast<VPInstruction>(Best)->getUnderlyingInstr()
                    << "\n");
  Candidates.erase(Best);

  return {Mode, Best};
}

SmallVector<VPlanSlp::MultiNodeOpTy, 4> VPlanSlp::reorderMultiNodeOps() {
  SmallVector<MultiNodeOpTy, 4> FinalOrder;
  SmallVector<OpMode, 4> Mode;
  FinalOrder.reserve(MultiNodeOps.size());
  Mode.reserve(MultiNodeOps.size());

  LLVM_DEBUG(dbgs() << "Reordering multinode\n");

  for (auto &Operands : MultiNodeOps) {
    FinalOrder.push_back({Operands.first, {Operands.second[0]}});
    if (cast<VPInstruction>(Operands.second[0])->getOpcode() ==
        Instruction::Load)
      Mode.push_back(OpMode::Load);
    else
      Mode.push_back(OpMode::Opcode);
  }

  for (unsigned Lane = 1, E = MultiNodeOps[0].second.size(); Lane < E; ++Lane) {
    LLVM_DEBUG(dbgs() << "  Finding best value for lane " << Lane << "\n");
    SmallPtrSet<VPValue *, 4> Candidates;
    LLVM_DEBUG(dbgs() << "  Candidates  ");
    for (auto Ops : MultiNodeOps) {
      LLVM_DEBUG(
          dbgs() << *cast<VPInstruction>(Ops.second[Lane])->getUnderlyingInstr()
                 << " ");
      Candidates.insert(Ops.second[Lane]);
    }
    LLVM_DEBUG(dbgs() << "\n");

    for (unsigned Op = 0, E = MultiNodeOps.size(); Op < E; ++Op) {
      LLVM_DEBUG(dbgs() << "  Checking " << Op << "\n");
      if (Mode[Op] == OpMode::Failed)
        continue;

      VPValue *Last = FinalOrder[Op].second[Lane - 1];
      std::pair<OpMode, VPValue *> Res =
          getBest(Mode[Op], Last, Candidates, IAI);
      if (Res.second)
        FinalOrder[Op].second.push_back(Res.second);
      else
        // TODO: handle this case
        FinalOrder[Op].second.push_back(markFailed());
    }
  }

  return FinalOrder;
}

void VPlanSlp::dumpBundle(ArrayRef<VPValue *> Values) {
  dbgs() << " Ops: ";
  for (auto Op : Values) {
    if (auto *VPInstr = cast_or_null<VPInstruction>(Op))
      if (auto *Instr = VPInstr->getUnderlyingInstr()) {
        dbgs() << *Instr << " | ";
        continue;
      }
    dbgs() << " nullptr | ";
  }
  dbgs() << "\n";
}

VPInstruction *VPlanSlp::buildGraph(ArrayRef<VPValue *> Values) {
  assert(!Values.empty() && "Need some operands!");

  // If we already visited this instruction bundle, re-use the existing node
  auto I = BundleToCombined.find(to_vector<4>(Values));
  if (I != BundleToCombined.end()) {
#ifndef NDEBUG
    // Check that the resulting graph is a tree. If we re-use a node, this means
    // its values have multiple users. We only allow this, if all users of each
    // value are the same instruction.
    for (auto *V : Values) {
      auto UI = V->user_begin();
      auto *FirstUser = *UI++;
      while (UI != V->user_end()) {
        assert(*UI == FirstUser && "Currently we only support SLP trees.");
        UI++;
      }
    }
#endif
    return I->second;
  }

  // Dump inputs
  LLVM_DEBUG({
    dbgs() << "buildGraph: ";
    dumpBundle(Values);
  });

  if (!areVectorizable(Values))
    return markFailed();

  assert(getOpcode(Values) && "Opcodes for all values must match");
  unsigned ValuesOpcode = getOpcode(Values).getValue();

  SmallVector<VPValue *, 4> CombinedOperands;
  if (areCommutative(Values)) {
    bool MultiNodeRoot = !MultiNodeActive;
    MultiNodeActive = true;
    for (auto &Operands : getOperands(Values)) {
      LLVM_DEBUG({
        dbgs() << "  Visiting Commutative";
        dumpBundle(Operands);
      });

      auto OperandsOpcode = getOpcode(Operands);
      if (OperandsOpcode && OperandsOpcode == getOpcode(Values)) {
        LLVM_DEBUG(dbgs() << "    Same opcode, continue building\n");
        CombinedOperands.push_back(buildGraph(Operands));
      } else {
        LLVM_DEBUG(dbgs() << "    Adding multinode Ops\n");
        // Create dummy VPInstruction, which will we replace later by the
        // re-ordered operand.
        VPInstruction *Op = new VPInstruction(0, {});
        CombinedOperands.push_back(Op);
        MultiNodeOps.emplace_back(Op, Operands);
      }
    }

    if (MultiNodeRoot) {
      LLVM_DEBUG(dbgs() << "Reorder \n");
      MultiNodeActive = false;

      auto FinalOrder = reorderMultiNodeOps();

      MultiNodeOps.clear();
      for (auto &Ops : FinalOrder) {
        VPInstruction *NewOp = buildGraph(Ops.second);
        Ops.first->replaceAllUsesWith(NewOp);
        for (unsigned i = 0; i < CombinedOperands.size(); i++)
          if (CombinedOperands[i] == Ops.first)
            CombinedOperands[i] = NewOp;
        delete Ops.first;
        Ops.first = NewOp;
      }
      LLVM_DEBUG(dbgs() << "Found final order\n");
    }
  } else {
    LLVM_DEBUG(dbgs() << "  NonCommuntative\n");
    if (ValuesOpcode == Instruction::Load)
      for (VPValue *V : Values)
        CombinedOperands.push_back(cast<VPInstruction>(V)->getOperand(0));
    else
      for (auto &Operands : getOperands(Values))
        CombinedOperands.push_back(buildGraph(Operands));
  }

  unsigned Opcode;
  switch (ValuesOpcode) {
  case Instruction::Load:
    Opcode = VPInstruction::SLPLoad;
    break;
  case Instruction::Store:
    Opcode = VPInstruction::SLPStore;
    break;
  default:
    Opcode = ValuesOpcode;
    break;
  }

  if (!CompletelySLP)
    return markFailed();

  assert(CombinedOperands.size() > 0 && "Need more some operands");
  auto *VPI = new VPInstruction(Opcode, CombinedOperands);
  VPI->setUnderlyingInstr(cast<VPInstruction>(Values[0])->getUnderlyingInstr());

  LLVM_DEBUG(dbgs() << "Create VPInstruction "; VPI->print(dbgs());
             cast<VPInstruction>(Values[0])->print(dbgs()); dbgs() << "\n");
  addCombined(Values, VPI);
  return VPI;
}