VPlan.cpp 34.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
//===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This is the LLVM vectorization plan. It represents a candidate for
/// vectorization, allowing to plan and optimize how to vectorize a given loop
/// before generating LLVM-IR.
/// The vectorizer uses vectorization plans to estimate the costs of potential
/// candidates and if profitable to execute the desired plan, generating vector
/// LLVM-IR code.
///
//===----------------------------------------------------------------------===//

#include "VPlan.h"
#include "VPlanDominatorTree.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GenericDomTreeConstruction.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <cassert>
#include <iterator>
#include <string>
#include <vector>

using namespace llvm;
extern cl::opt<bool> EnableVPlanNativePath;

#define DEBUG_TYPE "vplan"

raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
  const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
  VPSlotTracker SlotTracker(
      (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
  V.print(OS, SlotTracker);
  return OS;
}

void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
  if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this))
    Instr->print(OS, SlotTracker);
  else
    printAsOperand(OS, SlotTracker);
}

// Get the top-most entry block of \p Start. This is the entry block of the
// containing VPlan. This function is templated to support both const and non-const blocks
template <typename T> static T *getPlanEntry(T *Start) {
  T *Next = Start;
  T *Current = Start;
  while ((Next = Next->getParent()))
    Current = Next;

  SmallSetVector<T *, 8> WorkList;
  WorkList.insert(Current);

  for (unsigned i = 0; i < WorkList.size(); i++) {
    T *Current = WorkList[i];
    if (Current->getNumPredecessors() == 0)
      return Current;
    auto &Predecessors = Current->getPredecessors();
    WorkList.insert(Predecessors.begin(), Predecessors.end());
  }

  llvm_unreachable("VPlan without any entry node without predecessors");
}

VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }

const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }

/// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
  const VPBlockBase *Block = this;
  while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
    Block = Region->getEntry();
  return cast<VPBasicBlock>(Block);
}

VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
  VPBlockBase *Block = this;
  while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
    Block = Region->getEntry();
  return cast<VPBasicBlock>(Block);
}

void VPBlockBase::setPlan(VPlan *ParentPlan) {
  assert(ParentPlan->getEntry() == this &&
         "Can only set plan on its entry block.");
  Plan = ParentPlan;
}

/// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
  const VPBlockBase *Block = this;
  while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
    Block = Region->getExit();
  return cast<VPBasicBlock>(Block);
}

VPBasicBlock *VPBlockBase::getExitBasicBlock() {
  VPBlockBase *Block = this;
  while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
    Block = Region->getExit();
  return cast<VPBasicBlock>(Block);
}

VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
  if (!Successors.empty() || !Parent)
    return this;
  assert(Parent->getExit() == this &&
         "Block w/o successors not the exit of its parent.");
  return Parent->getEnclosingBlockWithSuccessors();
}

VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
  if (!Predecessors.empty() || !Parent)
    return this;
  assert(Parent->getEntry() == this &&
         "Block w/o predecessors not the entry of its parent.");
  return Parent->getEnclosingBlockWithPredecessors();
}

void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
  SmallVector<VPBlockBase *, 8> Blocks;
  for (VPBlockBase *Block : depth_first(Entry))
    Blocks.push_back(Block);

  for (VPBlockBase *Block : Blocks)
    delete Block;
}

BasicBlock *
VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
  // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
  // Pred stands for Predessor. Prev stands for Previous - last visited/created.
  BasicBlock *PrevBB = CFG.PrevBB;
  BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
                                         PrevBB->getParent(), CFG.LastBB);
  LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');

  // Hook up the new basic block to its predecessors.
  for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
    VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
    auto &PredVPSuccessors = PredVPBB->getSuccessors();
    BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];

    // In outer loop vectorization scenario, the predecessor BBlock may not yet
    // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
    // vectorization. We do not encounter this case in inner loop vectorization
    // as we start out by building a loop skeleton with the vector loop header
    // and latch blocks. As a result, we never enter this function for the
    // header block in the non VPlan-native path.
    if (!PredBB) {
      assert(EnableVPlanNativePath &&
             "Unexpected null predecessor in non VPlan-native path");
      CFG.VPBBsToFix.push_back(PredVPBB);
      continue;
    }

    assert(PredBB && "Predecessor basic-block not found building successor.");
    auto *PredBBTerminator = PredBB->getTerminator();
    LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
    if (isa<UnreachableInst>(PredBBTerminator)) {
      assert(PredVPSuccessors.size() == 1 &&
             "Predecessor ending w/o branch must have single successor.");
      PredBBTerminator->eraseFromParent();
      BranchInst::Create(NewBB, PredBB);
    } else {
      assert(PredVPSuccessors.size() == 2 &&
             "Predecessor ending with branch must have two successors.");
      unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
      assert(!PredBBTerminator->getSuccessor(idx) &&
             "Trying to reset an existing successor block.");
      PredBBTerminator->setSuccessor(idx, NewBB);
    }
  }
  return NewBB;
}

void VPBasicBlock::execute(VPTransformState *State) {
  bool Replica = State->Instance &&
                 !(State->Instance->Part == 0 && State->Instance->Lane == 0);
  VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
  VPBlockBase *SingleHPred = nullptr;
  BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.

  // 1. Create an IR basic block, or reuse the last one if possible.
  // The last IR basic block is reused, as an optimization, in three cases:
  // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
  // B. when the current VPBB has a single (hierarchical) predecessor which
  //    is PrevVPBB and the latter has a single (hierarchical) successor; and
  // C. when the current VPBB is an entry of a region replica - where PrevVPBB
  //    is the exit of this region from a previous instance, or the predecessor
  //    of this region.
  if (PrevVPBB && /* A */
      !((SingleHPred = getSingleHierarchicalPredecessor()) &&
        SingleHPred->getExitBasicBlock() == PrevVPBB &&
        PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
      !(Replica && getPredecessors().empty())) {       /* C */
    NewBB = createEmptyBasicBlock(State->CFG);
    State->Builder.SetInsertPoint(NewBB);
    // Temporarily terminate with unreachable until CFG is rewired.
    UnreachableInst *Terminator = State->Builder.CreateUnreachable();
    State->Builder.SetInsertPoint(Terminator);
    // Register NewBB in its loop. In innermost loops its the same for all BB's.
    Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
    L->addBasicBlockToLoop(NewBB, *State->LI);
    State->CFG.PrevBB = NewBB;
  }

  // 2. Fill the IR basic block with IR instructions.
  LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
                    << " in BB:" << NewBB->getName() << '\n');

  State->CFG.VPBB2IRBB[this] = NewBB;
  State->CFG.PrevVPBB = this;

  for (VPRecipeBase &Recipe : Recipes)
    Recipe.execute(*State);

  VPValue *CBV;
  if (EnableVPlanNativePath && (CBV = getCondBit())) {
    Value *IRCBV = CBV->getUnderlyingValue();
    assert(IRCBV && "Unexpected null underlying value for condition bit");

    // Condition bit value in a VPBasicBlock is used as the branch selector. In
    // the VPlan-native path case, since all branches are uniform we generate a
    // branch instruction using the condition value from vector lane 0 and dummy
    // successors. The successors are fixed later when the successor blocks are
    // visited.
    Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0);
    NewCond = State->Builder.CreateExtractElement(NewCond,
                                                  State->Builder.getInt32(0));

    // Replace the temporary unreachable terminator with the new conditional
    // branch.
    auto *CurrentTerminator = NewBB->getTerminator();
    assert(isa<UnreachableInst>(CurrentTerminator) &&
           "Expected to replace unreachable terminator with conditional "
           "branch.");
    auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
    CondBr->setSuccessor(0, nullptr);
    ReplaceInstWithInst(CurrentTerminator, CondBr);
  }

  LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
}

void VPRegionBlock::execute(VPTransformState *State) {
  ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);

  if (!isReplicator()) {
    // Visit the VPBlocks connected to "this", starting from it.
    for (VPBlockBase *Block : RPOT) {
      if (EnableVPlanNativePath) {
        // The inner loop vectorization path does not represent loop preheader
        // and exit blocks as part of the VPlan. In the VPlan-native path, skip
        // vectorizing loop preheader block. In future, we may replace this
        // check with the check for loop preheader.
        if (Block->getNumPredecessors() == 0)
          continue;

        // Skip vectorizing loop exit block. In future, we may replace this
        // check with the check for loop exit.
        if (Block->getNumSuccessors() == 0)
          continue;
      }

      LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
      Block->execute(State);
    }
    return;
  }

  assert(!State->Instance && "Replicating a Region with non-null instance.");

  // Enter replicating mode.
  State->Instance = {0, 0};

  for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
    State->Instance->Part = Part;
    for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) {
      State->Instance->Lane = Lane;
      // Visit the VPBlocks connected to \p this, starting from it.
      for (VPBlockBase *Block : RPOT) {
        LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
        Block->execute(State);
      }
    }
  }

  // Exit replicating mode.
  State->Instance.reset();
}

void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
  assert(!Parent && "Recipe already in some VPBasicBlock");
  assert(InsertPos->getParent() &&
         "Insertion position not in any VPBasicBlock");
  Parent = InsertPos->getParent();
  Parent->getRecipeList().insert(InsertPos->getIterator(), this);
}

void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
  assert(!Parent && "Recipe already in some VPBasicBlock");
  assert(InsertPos->getParent() &&
         "Insertion position not in any VPBasicBlock");
  Parent = InsertPos->getParent();
  Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
}

void VPRecipeBase::removeFromParent() {
  assert(getParent() && "Recipe not in any VPBasicBlock");
  getParent()->getRecipeList().remove(getIterator());
  Parent = nullptr;
}

iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
  assert(getParent() && "Recipe not in any VPBasicBlock");
  return getParent()->getRecipeList().erase(getIterator());
}

void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
  removeFromParent();
  insertAfter(InsertPos);
}

void VPInstruction::generateInstruction(VPTransformState &State,
                                        unsigned Part) {
  IRBuilder<> &Builder = State.Builder;

  if (Instruction::isBinaryOp(getOpcode())) {
    Value *A = State.get(getOperand(0), Part);
    Value *B = State.get(getOperand(1), Part);
    Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
    State.set(this, V, Part);
    return;
  }

  switch (getOpcode()) {
  case VPInstruction::Not: {
    Value *A = State.get(getOperand(0), Part);
    Value *V = Builder.CreateNot(A);
    State.set(this, V, Part);
    break;
  }
  case VPInstruction::ICmpULE: {
    Value *IV = State.get(getOperand(0), Part);
    Value *TC = State.get(getOperand(1), Part);
    Value *V = Builder.CreateICmpULE(IV, TC);
    State.set(this, V, Part);
    break;
  }
  case Instruction::Select: {
    Value *Cond = State.get(getOperand(0), Part);
    Value *Op1 = State.get(getOperand(1), Part);
    Value *Op2 = State.get(getOperand(2), Part);
    Value *V = Builder.CreateSelect(Cond, Op1, Op2);
    State.set(this, V, Part);
    break;
  }
  case VPInstruction::ActiveLaneMask: {
    // Get first lane of vector induction variable.
    Value *VIVElem0 = State.get(getOperand(0), {Part, 0});
    // Get first lane of backedge-taken-count.
    Value *ScalarBTC = State.get(getOperand(1), {Part, 0});

    auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
    auto *PredTy = FixedVectorType::get(Int1Ty, State.VF);
    Instruction *Call = Builder.CreateIntrinsic(
        Intrinsic::get_active_lane_mask, {PredTy, ScalarBTC->getType()},
        {VIVElem0, ScalarBTC}, nullptr, "active.lane.mask");
    State.set(this, Call, Part);
    break;
  }
  default:
    llvm_unreachable("Unsupported opcode for instruction");
  }
}

void VPInstruction::execute(VPTransformState &State) {
  assert(!State.Instance && "VPInstruction executing an Instance");
  for (unsigned Part = 0; Part < State.UF; ++Part)
    generateInstruction(State, Part);
}

void VPInstruction::print(raw_ostream &O, const Twine &Indent,
                          VPSlotTracker &SlotTracker) const {
  O << "\"EMIT ";
  print(O, SlotTracker);
}

void VPInstruction::print(raw_ostream &O) const {
  VPSlotTracker SlotTracker(getParent()->getPlan());
  print(O, SlotTracker);
}

void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const {
  if (hasResult()) {
    printAsOperand(O, SlotTracker);
    O << " = ";
  }

  switch (getOpcode()) {
  case VPInstruction::Not:
    O << "not";
    break;
  case VPInstruction::ICmpULE:
    O << "icmp ule";
    break;
  case VPInstruction::SLPLoad:
    O << "combined load";
    break;
  case VPInstruction::SLPStore:
    O << "combined store";
    break;
  case VPInstruction::ActiveLaneMask:
    O << "active lane mask";
    break;

  default:
    O << Instruction::getOpcodeName(getOpcode());
  }

  for (const VPValue *Operand : operands()) {
    O << " ";
    Operand->printAsOperand(O, SlotTracker);
  }
}

/// Generate the code inside the body of the vectorized loop. Assumes a single
/// LoopVectorBody basic-block was created for this. Introduce additional
/// basic-blocks as needed, and fill them all.
void VPlan::execute(VPTransformState *State) {
  // -1. Check if the backedge taken count is needed, and if so build it.
  if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
    Value *TC = State->TripCount;
    IRBuilder<> Builder(State->CFG.PrevBB->getTerminator());
    auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1),
                                   "trip.count.minus.1");
    auto VF = State->VF;
    Value *VTCMO =
        VF == 1 ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
    for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part)
      State->set(BackedgeTakenCount, VTCMO, Part);
  }

  // 0. Set the reverse mapping from VPValues to Values for code generation.
  for (auto &Entry : Value2VPValue)
    State->VPValue2Value[Entry.second] = Entry.first;

  BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
  BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
  assert(VectorHeaderBB && "Loop preheader does not have a single successor.");

  // 1. Make room to generate basic-blocks inside loop body if needed.
  BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock(
      VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
  Loop *L = State->LI->getLoopFor(VectorHeaderBB);
  L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
  // Remove the edge between Header and Latch to allow other connections.
  // Temporarily terminate with unreachable until CFG is rewired.
  // Note: this asserts the generated code's assumption that
  // getFirstInsertionPt() can be dereferenced into an Instruction.
  VectorHeaderBB->getTerminator()->eraseFromParent();
  State->Builder.SetInsertPoint(VectorHeaderBB);
  UnreachableInst *Terminator = State->Builder.CreateUnreachable();
  State->Builder.SetInsertPoint(Terminator);

  // 2. Generate code in loop body.
  State->CFG.PrevVPBB = nullptr;
  State->CFG.PrevBB = VectorHeaderBB;
  State->CFG.LastBB = VectorLatchBB;

  for (VPBlockBase *Block : depth_first(Entry))
    Block->execute(State);

  // Setup branch terminator successors for VPBBs in VPBBsToFix based on
  // VPBB's successors.
  for (auto VPBB : State->CFG.VPBBsToFix) {
    assert(EnableVPlanNativePath &&
           "Unexpected VPBBsToFix in non VPlan-native path");
    BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
    assert(BB && "Unexpected null basic block for VPBB");

    unsigned Idx = 0;
    auto *BBTerminator = BB->getTerminator();

    for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
      VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
      BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
      ++Idx;
    }
  }

  // 3. Merge the temporary latch created with the last basic-block filled.
  BasicBlock *LastBB = State->CFG.PrevBB;
  // Connect LastBB to VectorLatchBB to facilitate their merge.
  assert((EnableVPlanNativePath ||
          isa<UnreachableInst>(LastBB->getTerminator())) &&
         "Expected InnerLoop VPlan CFG to terminate with unreachable");
  assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) &&
         "Expected VPlan CFG to terminate with branch in NativePath");
  LastBB->getTerminator()->eraseFromParent();
  BranchInst::Create(VectorLatchBB, LastBB);

  // Merge LastBB with Latch.
  bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
  (void)Merged;
  assert(Merged && "Could not merge last basic block with latch.");
  VectorLatchBB = LastBB;

  // We do not attempt to preserve DT for outer loop vectorization currently.
  if (!EnableVPlanNativePath)
    updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB,
                        L->getExitBlock());
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD
void VPlan::dump() const { dbgs() << *this << '\n'; }
#endif

void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
                                BasicBlock *LoopLatchBB,
                                BasicBlock *LoopExitBB) {
  BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
  assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
  // The vector body may be more than a single basic-block by this point.
  // Update the dominator tree information inside the vector body by propagating
  // it from header to latch, expecting only triangular control-flow, if any.
  BasicBlock *PostDomSucc = nullptr;
  for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
    // Get the list of successors of this block.
    std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
    assert(Succs.size() <= 2 &&
           "Basic block in vector loop has more than 2 successors.");
    PostDomSucc = Succs[0];
    if (Succs.size() == 1) {
      assert(PostDomSucc->getSinglePredecessor() &&
             "PostDom successor has more than one predecessor.");
      DT->addNewBlock(PostDomSucc, BB);
      continue;
    }
    BasicBlock *InterimSucc = Succs[1];
    if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
      PostDomSucc = Succs[1];
      InterimSucc = Succs[0];
    }
    assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
           "One successor of a basic block does not lead to the other.");
    assert(InterimSucc->getSinglePredecessor() &&
           "Interim successor has more than one predecessor.");
    assert(PostDomSucc->hasNPredecessors(2) &&
           "PostDom successor has more than two predecessors.");
    DT->addNewBlock(InterimSucc, BB);
    DT->addNewBlock(PostDomSucc, BB);
  }
  // Latch block is a new dominator for the loop exit.
  DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
  assert(DT->verify(DominatorTree::VerificationLevel::Fast));
}

const Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
  return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
         Twine(getOrCreateBID(Block));
}

const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
  const std::string &Name = Block->getName();
  if (!Name.empty())
    return Name;
  return "VPB" + Twine(getOrCreateBID(Block));
}

void VPlanPrinter::dump() {
  Depth = 1;
  bumpIndent(0);
  OS << "digraph VPlan {\n";
  OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
  if (!Plan.getName().empty())
    OS << "\\n" << DOT::EscapeString(Plan.getName());
  if (Plan.BackedgeTakenCount) {
    OS << ", where:\\n";
    Plan.BackedgeTakenCount->print(OS, SlotTracker);
    OS << " := BackedgeTakenCount";
  }
  OS << "\"]\n";
  OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
  OS << "edge [fontname=Courier, fontsize=30]\n";
  OS << "compound=true\n";

  for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
    dumpBlock(Block);

  OS << "}\n";
}

void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
  if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
    dumpBasicBlock(BasicBlock);
  else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
    dumpRegion(Region);
  else
    llvm_unreachable("Unsupported kind of VPBlock.");
}

void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
                            bool Hidden, const Twine &Label) {
  // Due to "dot" we print an edge between two regions as an edge between the
  // exit basic block and the entry basic of the respective regions.
  const VPBlockBase *Tail = From->getExitBasicBlock();
  const VPBlockBase *Head = To->getEntryBasicBlock();
  OS << Indent << getUID(Tail) << " -> " << getUID(Head);
  OS << " [ label=\"" << Label << '\"';
  if (Tail != From)
    OS << " ltail=" << getUID(From);
  if (Head != To)
    OS << " lhead=" << getUID(To);
  if (Hidden)
    OS << "; splines=none";
  OS << "]\n";
}

void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
  auto &Successors = Block->getSuccessors();
  if (Successors.size() == 1)
    drawEdge(Block, Successors.front(), false, "");
  else if (Successors.size() == 2) {
    drawEdge(Block, Successors.front(), false, "T");
    drawEdge(Block, Successors.back(), false, "F");
  } else {
    unsigned SuccessorNumber = 0;
    for (auto *Successor : Successors)
      drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
  }
}

void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
  OS << Indent << getUID(BasicBlock) << " [label =\n";
  bumpIndent(1);
  OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\"";
  bumpIndent(1);

  // Dump the block predicate.
  const VPValue *Pred = BasicBlock->getPredicate();
  if (Pred) {
    OS << " +\n" << Indent << " \"BlockPredicate: ";
    if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) {
      PredI->printAsOperand(OS, SlotTracker);
      OS << " (" << DOT::EscapeString(PredI->getParent()->getName())
         << ")\\l\"";
    } else
      Pred->printAsOperand(OS, SlotTracker);
  }

  for (const VPRecipeBase &Recipe : *BasicBlock) {
    OS << " +\n" << Indent;
    Recipe.print(OS, Indent, SlotTracker);
    OS << "\\l\"";
  }

  // Dump the condition bit.
  const VPValue *CBV = BasicBlock->getCondBit();
  if (CBV) {
    OS << " +\n" << Indent << " \"CondBit: ";
    if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) {
      CBI->printAsOperand(OS, SlotTracker);
      OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\"";
    } else {
      CBV->printAsOperand(OS, SlotTracker);
      OS << "\"";
    }
  }

  bumpIndent(-2);
  OS << "\n" << Indent << "]\n";
  dumpEdges(BasicBlock);
}

void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
  OS << Indent << "subgraph " << getUID(Region) << " {\n";
  bumpIndent(1);
  OS << Indent << "fontname=Courier\n"
     << Indent << "label=\""
     << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
     << DOT::EscapeString(Region->getName()) << "\"\n";
  // Dump the blocks of the region.
  assert(Region->getEntry() && "Region contains no inner blocks.");
  for (const VPBlockBase *Block : depth_first(Region->getEntry()))
    dumpBlock(Block);
  bumpIndent(-1);
  OS << Indent << "}\n";
  dumpEdges(Region);
}

void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) {
  std::string IngredientString;
  raw_string_ostream RSO(IngredientString);
  if (auto *Inst = dyn_cast<Instruction>(V)) {
    if (!Inst->getType()->isVoidTy()) {
      Inst->printAsOperand(RSO, false);
      RSO << " = ";
    }
    RSO << Inst->getOpcodeName() << " ";
    unsigned E = Inst->getNumOperands();
    if (E > 0) {
      Inst->getOperand(0)->printAsOperand(RSO, false);
      for (unsigned I = 1; I < E; ++I)
        Inst->getOperand(I)->printAsOperand(RSO << ", ", false);
    }
  } else // !Inst
    V->printAsOperand(RSO, false);
  RSO.flush();
  O << DOT::EscapeString(IngredientString);
}

void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
                              VPSlotTracker &SlotTracker) const {
  O << "\"WIDEN-CALL " << VPlanIngredient(&Ingredient);
}

void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
                                VPSlotTracker &SlotTracker) const {
  O << "\"WIDEN-SELECT" << VPlanIngredient(&Ingredient)
    << (InvariantCond ? " (condition is loop invariant)" : "");
}

void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
                          VPSlotTracker &SlotTracker) const {
  O << "\"WIDEN\\l\"";
  O << "\"  " << VPlanIngredient(&Ingredient);
}

void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
                                          VPSlotTracker &SlotTracker) const {
  O << "\"WIDEN-INDUCTION";
  if (Trunc) {
    O << "\\l\"";
    O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
    O << " +\n" << Indent << "\"  " << VPlanIngredient(Trunc);
  } else
    O << " " << VPlanIngredient(IV);
}

void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
                             VPSlotTracker &SlotTracker) const {
  O << "\"WIDEN-GEP ";
  O << (IsPtrLoopInvariant ? "Inv" : "Var");
  size_t IndicesNumber = IsIndexLoopInvariant.size();
  for (size_t I = 0; I < IndicesNumber; ++I)
    O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
  O << "\\l\"";
  O << " +\n" << Indent << "\"  " << VPlanIngredient(GEP);
}

void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
                             VPSlotTracker &SlotTracker) const {
  O << "\"WIDEN-PHI " << VPlanIngredient(Phi);
}

void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
                          VPSlotTracker &SlotTracker) const {
  O << "\"BLEND ";
  Phi->printAsOperand(O, false);
  O << " =";
  if (getNumIncomingValues() == 1) {
    // Not a User of any mask: not really blending, this is a
    // single-predecessor phi.
    O << " ";
    getIncomingValue(0)->printAsOperand(O, SlotTracker);
  } else {
    for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
      O << " ";
      getIncomingValue(I)->printAsOperand(O, SlotTracker);
      O << "/";
      getMask(I)->printAsOperand(O, SlotTracker);
    }
  }
}

void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
                              VPSlotTracker &SlotTracker) const {
  O << "\"" << (IsUniform ? "CLONE " : "REPLICATE ")
    << VPlanIngredient(Ingredient);
  if (AlsoPack)
    O << " (S->V)";
}

void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
                                VPSlotTracker &SlotTracker) const {
  O << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst);
}

void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
                                           VPSlotTracker &SlotTracker) const {
  O << "\"WIDEN " << VPlanIngredient(&Instr);
  O << ", ";
  getAddr()->printAsOperand(O, SlotTracker);
  VPValue *Mask = getMask();
  if (Mask) {
    O << ", ";
    Mask->printAsOperand(O, SlotTracker);
  }
}

void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
  Value *CanonicalIV = State.CanonicalIV;
  Type *STy = CanonicalIV->getType();
  IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
  auto VF = State.VF;
  Value *VStart = VF == 1
                      ? CanonicalIV
                      : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast");
  for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
    SmallVector<Constant *, 8> Indices;
    for (unsigned Lane = 0; Lane < VF; ++Lane)
      Indices.push_back(ConstantInt::get(STy, Part * VF + Lane));
    // If VF == 1, there is only one iteration in the loop above, thus the
    // element pushed back into Indices is ConstantInt::get(STy, Part)
    Constant *VStep = VF == 1 ? Indices.back() : ConstantVector::get(Indices);
    // Add the consecutive indices to the vector value.
    Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
    State.set(getVPValue(), CanonicalVectorIV, Part);
  }
}

void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
                                     VPSlotTracker &SlotTracker) const {
  O << "\"EMIT ";
  getVPValue()->printAsOperand(O, SlotTracker);
  O << " = WIDEN-CANONICAL-INDUCTION";
}

template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);

void VPValue::replaceAllUsesWith(VPValue *New) {
  for (VPUser *User : users())
    for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
      if (User->getOperand(I) == this)
        User->setOperand(I, New);
}

void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
  if (const Value *UV = getUnderlyingValue()) {
    OS << "ir<";
    UV->printAsOperand(OS, false);
    OS << ">";
    return;
  }

  unsigned Slot = Tracker.getSlot(this);
  if (Slot == unsigned(-1))
    OS << "<badref>";
  else
    OS << "vp<%" << Tracker.getSlot(this) << ">";
}

void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
                                          Old2NewTy &Old2New,
                                          InterleavedAccessInfo &IAI) {
  ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
  for (VPBlockBase *Base : RPOT) {
    visitBlock(Base, Old2New, IAI);
  }
}

void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
                                         InterleavedAccessInfo &IAI) {
  if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
    for (VPRecipeBase &VPI : *VPBB) {
      assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
      auto *VPInst = cast<VPInstruction>(&VPI);
      auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
      auto *IG = IAI.getInterleaveGroup(Inst);
      if (!IG)
        continue;

      auto NewIGIter = Old2New.find(IG);
      if (NewIGIter == Old2New.end())
        Old2New[IG] = new InterleaveGroup<VPInstruction>(
            IG->getFactor(), IG->isReverse(), IG->getAlign());

      if (Inst == IG->getInsertPos())
        Old2New[IG]->setInsertPos(VPInst);

      InterleaveGroupMap[VPInst] = Old2New[IG];
      InterleaveGroupMap[VPInst]->insertMember(
          VPInst, IG->getIndex(Inst),
          Align(IG->isReverse() ? (-1) * int(IG->getFactor())
                                : IG->getFactor()));
    }
  } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
    visitRegion(Region, Old2New, IAI);
  else
    llvm_unreachable("Unsupported kind of VPBlock.");
}

VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
                                                 InterleavedAccessInfo &IAI) {
  Old2NewTy Old2New;
  visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
}

void VPSlotTracker::assignSlot(const VPValue *V) {
  assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
  const Value *UV = V->getUnderlyingValue();
  if (UV)
    return;
  const auto *VPI = dyn_cast<VPInstruction>(V);
  if (VPI && !VPI->hasResult())
    return;

  Slots[V] = NextSlot++;
}

void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) {
  if (auto *Region = dyn_cast<VPRegionBlock>(VPBB))
    assignSlots(Region);
  else
    assignSlots(cast<VPBasicBlock>(VPBB));
}

void VPSlotTracker::assignSlots(const VPRegionBlock *Region) {
  ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry());
  for (const VPBlockBase *Block : RPOT)
    assignSlots(Block);
}

void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) {
  for (const VPRecipeBase &Recipe : *VPBB) {
    if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe))
      assignSlot(VPI);
    else if (const auto *VPIV = dyn_cast<VPWidenCanonicalIVRecipe>(&Recipe))
      assignSlot(VPIV->getVPValue());
  }
}

void VPSlotTracker::assignSlots(const VPlan &Plan) {

  for (const VPValue *V : Plan.VPExternalDefs)
    assignSlot(V);

  for (auto &E : Plan.Value2VPValue)
    if (!isa<VPInstruction>(E.second))
      assignSlot(E.second);

  for (const VPValue *V : Plan.VPCBVs)
    assignSlot(V);

  if (Plan.BackedgeTakenCount)
    assignSlot(Plan.BackedgeTakenCount);

  ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry());
  for (const VPBlockBase *Block : RPOT)
    assignSlots(Block);
}