LoopVectorizationLegality.cpp 47.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
//===- LoopVectorizationLegality.cpp --------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file provides loop vectorization legality analysis. Original code
// resided in LoopVectorize.cpp for a long time.
//
// At this point, it is implemented as a utility class, not as an analysis
// pass. It should be easy to create an analysis pass around it if there
// is a need (but D45420 needs to happen first).
//
#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Transforms/Vectorize/LoopVectorize.h"

using namespace llvm;
using namespace PatternMatch;

#define LV_NAME "loop-vectorize"
#define DEBUG_TYPE LV_NAME

extern cl::opt<bool> EnableVPlanPredication;

static cl::opt<bool>
    EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
                       cl::desc("Enable if-conversion during vectorization."));

static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
    "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
    cl::desc("The maximum allowed number of runtime memory checks with a "
             "vectorize(enable) pragma."));

static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
    "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
    cl::desc("The maximum number of SCEV checks allowed."));

static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
    "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
    cl::desc("The maximum number of SCEV checks allowed with a "
             "vectorize(enable) pragma"));

/// Maximum vectorization interleave count.
static const unsigned MaxInterleaveFactor = 16;

namespace llvm {

bool LoopVectorizeHints::Hint::validate(unsigned Val) {
  switch (Kind) {
  case HK_WIDTH:
    return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
  case HK_UNROLL:
    return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
  case HK_FORCE:
    return (Val <= 1);
  case HK_ISVECTORIZED:
  case HK_PREDICATE:
    return (Val == 0 || Val == 1);
  }
  return false;
}

LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
                                       bool InterleaveOnlyWhenForced,
                                       OptimizationRemarkEmitter &ORE)
    : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
      Interleave("interleave.count", InterleaveOnlyWhenForced, HK_UNROLL),
      Force("vectorize.enable", FK_Undefined, HK_FORCE),
      IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
      Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE), TheLoop(L),
      ORE(ORE) {
  // Populate values with existing loop metadata.
  getHintsFromMetadata();

  // force-vector-interleave overrides DisableInterleaving.
  if (VectorizerParams::isInterleaveForced())
    Interleave.Value = VectorizerParams::VectorizationInterleave;

  if (IsVectorized.Value != 1)
    // If the vectorization width and interleaving count are both 1 then
    // consider the loop to have been already vectorized because there's
    // nothing more that we can do.
    IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1;
  LLVM_DEBUG(if (InterleaveOnlyWhenForced && Interleave.Value == 1) dbgs()
             << "LV: Interleaving disabled by the pass manager\n");
}

void LoopVectorizeHints::setAlreadyVectorized() {
  LLVMContext &Context = TheLoop->getHeader()->getContext();

  MDNode *IsVectorizedMD = MDNode::get(
      Context,
      {MDString::get(Context, "llvm.loop.isvectorized"),
       ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
  MDNode *LoopID = TheLoop->getLoopID();
  MDNode *NewLoopID =
      makePostTransformationMetadata(Context, LoopID,
                                     {Twine(Prefix(), "vectorize.").str(),
                                      Twine(Prefix(), "interleave.").str()},
                                     {IsVectorizedMD});
  TheLoop->setLoopID(NewLoopID);

  // Update internal cache.
  IsVectorized.Value = 1;
}

bool LoopVectorizeHints::allowVectorization(
    Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
  if (getForce() == LoopVectorizeHints::FK_Disabled) {
    LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
    emitRemarkWithHints();
    return false;
  }

  if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
    LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
    emitRemarkWithHints();
    return false;
  }

  if (getIsVectorized() == 1) {
    LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
    // FIXME: Add interleave.disable metadata. This will allow
    // vectorize.disable to be used without disabling the pass and errors
    // to differentiate between disabled vectorization and a width of 1.
    ORE.emit([&]() {
      return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
                                        "AllDisabled", L->getStartLoc(),
                                        L->getHeader())
             << "loop not vectorized: vectorization and interleaving are "
                "explicitly disabled, or the loop has already been "
                "vectorized";
    });
    return false;
  }

  return true;
}

void LoopVectorizeHints::emitRemarkWithHints() const {
  using namespace ore;

  ORE.emit([&]() {
    if (Force.Value == LoopVectorizeHints::FK_Disabled)
      return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
                                      TheLoop->getStartLoc(),
                                      TheLoop->getHeader())
             << "loop not vectorized: vectorization is explicitly disabled";
    else {
      OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
                                 TheLoop->getStartLoc(), TheLoop->getHeader());
      R << "loop not vectorized";
      if (Force.Value == LoopVectorizeHints::FK_Enabled) {
        R << " (Force=" << NV("Force", true);
        if (Width.Value != 0)
          R << ", Vector Width=" << NV("VectorWidth", Width.Value);
        if (Interleave.Value != 0)
          R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value);
        R << ")";
      }
      return R;
    }
  });
}

const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
  if (getWidth() == 1)
    return LV_NAME;
  if (getForce() == LoopVectorizeHints::FK_Disabled)
    return LV_NAME;
  if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
    return LV_NAME;
  return OptimizationRemarkAnalysis::AlwaysPrint;
}

void LoopVectorizeHints::getHintsFromMetadata() {
  MDNode *LoopID = TheLoop->getLoopID();
  if (!LoopID)
    return;

  // First operand should refer to the loop id itself.
  assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
  assert(LoopID->getOperand(0) == LoopID && "invalid loop id");

  for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
    const MDString *S = nullptr;
    SmallVector<Metadata *, 4> Args;

    // The expected hint is either a MDString or a MDNode with the first
    // operand a MDString.
    if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
      if (!MD || MD->getNumOperands() == 0)
        continue;
      S = dyn_cast<MDString>(MD->getOperand(0));
      for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
        Args.push_back(MD->getOperand(i));
    } else {
      S = dyn_cast<MDString>(LoopID->getOperand(i));
      assert(Args.size() == 0 && "too many arguments for MDString");
    }

    if (!S)
      continue;

    // Check if the hint starts with the loop metadata prefix.
    StringRef Name = S->getString();
    if (Args.size() == 1)
      setHint(Name, Args[0]);
  }
}

void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
  if (!Name.startswith(Prefix()))
    return;
  Name = Name.substr(Prefix().size(), StringRef::npos);

  const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
  if (!C)
    return;
  unsigned Val = C->getZExtValue();

  Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized, &Predicate};
  for (auto H : Hints) {
    if (Name == H->Name) {
      if (H->validate(Val))
        H->Value = Val;
      else
        LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
      break;
    }
  }
}

bool LoopVectorizationRequirements::doesNotMeet(
    Function *F, Loop *L, const LoopVectorizeHints &Hints) {
  const char *PassName = Hints.vectorizeAnalysisPassName();
  bool Failed = false;
  if (UnsafeAlgebraInst && !Hints.allowReordering()) {
    ORE.emit([&]() {
      return OptimizationRemarkAnalysisFPCommute(
                 PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(),
                 UnsafeAlgebraInst->getParent())
             << "loop not vectorized: cannot prove it is safe to reorder "
                "floating-point operations";
    });
    Failed = true;
  }

  // Test if runtime memcheck thresholds are exceeded.
  bool PragmaThresholdReached =
      NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
  bool ThresholdReached =
      NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
  if ((ThresholdReached && !Hints.allowReordering()) ||
      PragmaThresholdReached) {
    ORE.emit([&]() {
      return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
                                                L->getStartLoc(),
                                                L->getHeader())
             << "loop not vectorized: cannot prove it is safe to reorder "
                "memory operations";
    });
    LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
    Failed = true;
  }

  return Failed;
}

// Return true if the inner loop \p Lp is uniform with regard to the outer loop
// \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
// executing the inner loop will execute the same iterations). This check is
// very constrained for now but it will be relaxed in the future. \p Lp is
// considered uniform if it meets all the following conditions:
//   1) it has a canonical IV (starting from 0 and with stride 1),
//   2) its latch terminator is a conditional branch and,
//   3) its latch condition is a compare instruction whose operands are the
//      canonical IV and an OuterLp invariant.
// This check doesn't take into account the uniformity of other conditions not
// related to the loop latch because they don't affect the loop uniformity.
//
// NOTE: We decided to keep all these checks and its associated documentation
// together so that we can easily have a picture of the current supported loop
// nests. However, some of the current checks don't depend on \p OuterLp and
// would be redundantly executed for each \p Lp if we invoked this function for
// different candidate outer loops. This is not the case for now because we
// don't currently have the infrastructure to evaluate multiple candidate outer
// loops and \p OuterLp will be a fixed parameter while we only support explicit
// outer loop vectorization. It's also very likely that these checks go away
// before introducing the aforementioned infrastructure. However, if this is not
// the case, we should move the \p OuterLp independent checks to a separate
// function that is only executed once for each \p Lp.
static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
  assert(Lp->getLoopLatch() && "Expected loop with a single latch.");

  // If Lp is the outer loop, it's uniform by definition.
  if (Lp == OuterLp)
    return true;
  assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");

  // 1.
  PHINode *IV = Lp->getCanonicalInductionVariable();
  if (!IV) {
    LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
    return false;
  }

  // 2.
  BasicBlock *Latch = Lp->getLoopLatch();
  auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
  if (!LatchBr || LatchBr->isUnconditional()) {
    LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
    return false;
  }

  // 3.
  auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
  if (!LatchCmp) {
    LLVM_DEBUG(
        dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
    return false;
  }

  Value *CondOp0 = LatchCmp->getOperand(0);
  Value *CondOp1 = LatchCmp->getOperand(1);
  Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
  if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
      !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
    LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
    return false;
  }

  return true;
}

// Return true if \p Lp and all its nested loops are uniform with regard to \p
// OuterLp.
static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
  if (!isUniformLoop(Lp, OuterLp))
    return false;

  // Check if nested loops are uniform.
  for (Loop *SubLp : *Lp)
    if (!isUniformLoopNest(SubLp, OuterLp))
      return false;

  return true;
}

/// Check whether it is safe to if-convert this phi node.
///
/// Phi nodes with constant expressions that can trap are not safe to if
/// convert.
static bool canIfConvertPHINodes(BasicBlock *BB) {
  for (PHINode &Phi : BB->phis()) {
    for (Value *V : Phi.incoming_values())
      if (auto *C = dyn_cast<Constant>(V))
        if (C->canTrap())
          return false;
  }
  return true;
}

static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
  if (Ty->isPointerTy())
    return DL.getIntPtrType(Ty);

  // It is possible that char's or short's overflow when we ask for the loop's
  // trip count, work around this by changing the type size.
  if (Ty->getScalarSizeInBits() < 32)
    return Type::getInt32Ty(Ty->getContext());

  return Ty;
}

static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
  Ty0 = convertPointerToIntegerType(DL, Ty0);
  Ty1 = convertPointerToIntegerType(DL, Ty1);
  if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
    return Ty0;
  return Ty1;
}

/// Check that the instruction has outside loop users and is not an
/// identified reduction variable.
static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
                               SmallPtrSetImpl<Value *> &AllowedExit) {
  // Reductions, Inductions and non-header phis are allowed to have exit users. All
  // other instructions must not have external users.
  if (!AllowedExit.count(Inst))
    // Check that all of the users of the loop are inside the BB.
    for (User *U : Inst->users()) {
      Instruction *UI = cast<Instruction>(U);
      // This user may be a reduction exit value.
      if (!TheLoop->contains(UI)) {
        LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
        return true;
      }
    }
  return false;
}

int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
  const ValueToValueMap &Strides =
      getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();

  bool CanAddPredicate = !TheLoop->getHeader()->getParent()->hasOptSize();
  int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, CanAddPredicate, false);
  if (Stride == 1 || Stride == -1)
    return Stride;
  return 0;
}

bool LoopVectorizationLegality::isUniform(Value *V) {
  return LAI->isUniform(V);
}

bool LoopVectorizationLegality::canVectorizeOuterLoop() {
  assert(!TheLoop->empty() && "We are not vectorizing an outer loop.");
  // Store the result and return it at the end instead of exiting early, in case
  // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
  bool Result = true;
  bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);

  for (BasicBlock *BB : TheLoop->blocks()) {
    // Check whether the BB terminator is a BranchInst. Any other terminator is
    // not supported yet.
    auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
    if (!Br) {
      reportVectorizationFailure("Unsupported basic block terminator",
          "loop control flow is not understood by vectorizer",
          "CFGNotUnderstood", ORE, TheLoop);
      if (DoExtraAnalysis)
        Result = false;
      else
        return false;
    }

    // Check whether the BranchInst is a supported one. Only unconditional
    // branches, conditional branches with an outer loop invariant condition or
    // backedges are supported.
    // FIXME: We skip these checks when VPlan predication is enabled as we
    // want to allow divergent branches. This whole check will be removed
    // once VPlan predication is on by default.
    if (!EnableVPlanPredication && Br && Br->isConditional() &&
        !TheLoop->isLoopInvariant(Br->getCondition()) &&
        !LI->isLoopHeader(Br->getSuccessor(0)) &&
        !LI->isLoopHeader(Br->getSuccessor(1))) {
      reportVectorizationFailure("Unsupported conditional branch",
          "loop control flow is not understood by vectorizer",
          "CFGNotUnderstood", ORE, TheLoop);
      if (DoExtraAnalysis)
        Result = false;
      else
        return false;
    }
  }

  // Check whether inner loops are uniform. At this point, we only support
  // simple outer loops scenarios with uniform nested loops.
  if (!isUniformLoopNest(TheLoop /*loop nest*/,
                         TheLoop /*context outer loop*/)) {
    reportVectorizationFailure("Outer loop contains divergent loops",
        "loop control flow is not understood by vectorizer",
        "CFGNotUnderstood", ORE, TheLoop);
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  // Check whether we are able to set up outer loop induction.
  if (!setupOuterLoopInductions()) {
    reportVectorizationFailure("Unsupported outer loop Phi(s)",
                               "Unsupported outer loop Phi(s)",
                               "UnsupportedPhi", ORE, TheLoop);
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  return Result;
}

void LoopVectorizationLegality::addInductionPhi(
    PHINode *Phi, const InductionDescriptor &ID,
    SmallPtrSetImpl<Value *> &AllowedExit) {
  Inductions[Phi] = ID;

  // In case this induction also comes with casts that we know we can ignore
  // in the vectorized loop body, record them here. All casts could be recorded
  // here for ignoring, but suffices to record only the first (as it is the
  // only one that may bw used outside the cast sequence).
  const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
  if (!Casts.empty())
    InductionCastsToIgnore.insert(*Casts.begin());

  Type *PhiTy = Phi->getType();
  const DataLayout &DL = Phi->getModule()->getDataLayout();

  // Get the widest type.
  if (!PhiTy->isFloatingPointTy()) {
    if (!WidestIndTy)
      WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
    else
      WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
  }

  // Int inductions are special because we only allow one IV.
  if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
      ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
      isa<Constant>(ID.getStartValue()) &&
      cast<Constant>(ID.getStartValue())->isNullValue()) {

    // Use the phi node with the widest type as induction. Use the last
    // one if there are multiple (no good reason for doing this other
    // than it is expedient). We've checked that it begins at zero and
    // steps by one, so this is a canonical induction variable.
    if (!PrimaryInduction || PhiTy == WidestIndTy)
      PrimaryInduction = Phi;
  }

  // Both the PHI node itself, and the "post-increment" value feeding
  // back into the PHI node may have external users.
  // We can allow those uses, except if the SCEVs we have for them rely
  // on predicates that only hold within the loop, since allowing the exit
  // currently means re-using this SCEV outside the loop (see PR33706 for more
  // details).
  if (PSE.getUnionPredicate().isAlwaysTrue()) {
    AllowedExit.insert(Phi);
    AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
  }

  LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
}

bool LoopVectorizationLegality::setupOuterLoopInductions() {
  BasicBlock *Header = TheLoop->getHeader();

  // Returns true if a given Phi is a supported induction.
  auto isSupportedPhi = [&](PHINode &Phi) -> bool {
    InductionDescriptor ID;
    if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
        ID.getKind() == InductionDescriptor::IK_IntInduction) {
      addInductionPhi(&Phi, ID, AllowedExit);
      return true;
    } else {
      // Bail out for any Phi in the outer loop header that is not a supported
      // induction.
      LLVM_DEBUG(
          dbgs()
          << "LV: Found unsupported PHI for outer loop vectorization.\n");
      return false;
    }
  };

  if (llvm::all_of(Header->phis(), isSupportedPhi))
    return true;
  else
    return false;
}

/// Checks if a function is scalarizable according to the TLI, in
/// the sense that it should be vectorized and then expanded in
/// multiple scalarcalls. This is represented in the
/// TLI via mappings that do not specify a vector name, as in the
/// following example:
///
///    const VecDesc VecIntrinsics[] = {
///      {"llvm.phx.abs.i32", "", 4}
///    };
static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
  const StringRef ScalarName = CI.getCalledFunction()->getName();
  bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
  // Check that all known VFs are not associated to a vector
  // function, i.e. the vector name is emty.
  if (Scalarize)
    for (unsigned VF = 2, WidestVF = TLI.getWidestVF(ScalarName);
         VF <= WidestVF; VF *= 2) {
      Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
    }
  return Scalarize;
}

bool LoopVectorizationLegality::canVectorizeInstrs() {
  BasicBlock *Header = TheLoop->getHeader();

  // Look for the attribute signaling the absence of NaNs.
  Function &F = *Header->getParent();
  HasFunNoNaNAttr =
      F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";

  // For each block in the loop.
  for (BasicBlock *BB : TheLoop->blocks()) {
    // Scan the instructions in the block and look for hazards.
    for (Instruction &I : *BB) {
      if (auto *Phi = dyn_cast<PHINode>(&I)) {
        Type *PhiTy = Phi->getType();
        // Check that this PHI type is allowed.
        if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
            !PhiTy->isPointerTy()) {
          reportVectorizationFailure("Found a non-int non-pointer PHI",
                                     "loop control flow is not understood by vectorizer",
                                     "CFGNotUnderstood", ORE, TheLoop);
          return false;
        }

        // If this PHINode is not in the header block, then we know that we
        // can convert it to select during if-conversion. No need to check if
        // the PHIs in this block are induction or reduction variables.
        if (BB != Header) {
          // Non-header phi nodes that have outside uses can be vectorized. Add
          // them to the list of allowed exits.
          // Unsafe cyclic dependencies with header phis are identified during
          // legalization for reduction, induction and first order
          // recurrences.
          AllowedExit.insert(&I);
          continue;
        }

        // We only allow if-converted PHIs with exactly two incoming values.
        if (Phi->getNumIncomingValues() != 2) {
          reportVectorizationFailure("Found an invalid PHI",
              "loop control flow is not understood by vectorizer",
              "CFGNotUnderstood", ORE, TheLoop, Phi);
          return false;
        }

        RecurrenceDescriptor RedDes;
        if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
                                                 DT)) {
          if (RedDes.hasUnsafeAlgebra())
            Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
          AllowedExit.insert(RedDes.getLoopExitInstr());
          Reductions[Phi] = RedDes;
          continue;
        }

        // TODO: Instead of recording the AllowedExit, it would be good to record the
        // complementary set: NotAllowedExit. These include (but may not be
        // limited to):
        // 1. Reduction phis as they represent the one-before-last value, which
        // is not available when vectorized 
        // 2. Induction phis and increment when SCEV predicates cannot be used
        // outside the loop - see addInductionPhi
        // 3. Non-Phis with outside uses when SCEV predicates cannot be used
        // outside the loop - see call to hasOutsideLoopUser in the non-phi
        // handling below
        // 4. FirstOrderRecurrence phis that can possibly be handled by
        // extraction.
        // By recording these, we can then reason about ways to vectorize each
        // of these NotAllowedExit. 
        InductionDescriptor ID;
        if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
          addInductionPhi(Phi, ID, AllowedExit);
          if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
            Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
          continue;
        }

        if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
                                                         SinkAfter, DT)) {
          AllowedExit.insert(Phi);
          FirstOrderRecurrences.insert(Phi);
          continue;
        }

        // As a last resort, coerce the PHI to a AddRec expression
        // and re-try classifying it a an induction PHI.
        if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
          addInductionPhi(Phi, ID, AllowedExit);
          continue;
        }

        reportVectorizationFailure("Found an unidentified PHI",
            "value that could not be identified as "
            "reduction is used outside the loop",
            "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
        return false;
      } // end of PHI handling

      // We handle calls that:
      //   * Are debug info intrinsics.
      //   * Have a mapping to an IR intrinsic.
      //   * Have a vector version available.
      auto *CI = dyn_cast<CallInst>(&I);

      if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
          !isa<DbgInfoIntrinsic>(CI) &&
          !(CI->getCalledFunction() && TLI &&
            (!VFDatabase::getMappings(*CI).empty() ||
             isTLIScalarize(*TLI, *CI)))) {
        // If the call is a recognized math libary call, it is likely that
        // we can vectorize it given loosened floating-point constraints.
        LibFunc Func;
        bool IsMathLibCall =
            TLI && CI->getCalledFunction() &&
            CI->getType()->isFloatingPointTy() &&
            TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
            TLI->hasOptimizedCodeGen(Func);

        if (IsMathLibCall) {
          // TODO: Ideally, we should not use clang-specific language here,
          // but it's hard to provide meaningful yet generic advice.
          // Also, should this be guarded by allowExtraAnalysis() and/or be part
          // of the returned info from isFunctionVectorizable()?
          reportVectorizationFailure(
              "Found a non-intrinsic callsite",
              "library call cannot be vectorized. "
              "Try compiling with -fno-math-errno, -ffast-math, "
              "or similar flags",
              "CantVectorizeLibcall", ORE, TheLoop, CI);
        } else {
          reportVectorizationFailure("Found a non-intrinsic callsite",
                                     "call instruction cannot be vectorized",
                                     "CantVectorizeLibcall", ORE, TheLoop, CI);
        }
        return false;
      }

      // Some intrinsics have scalar arguments and should be same in order for
      // them to be vectorized (i.e. loop invariant).
      if (CI) {
        auto *SE = PSE.getSE();
        Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
        for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
          if (hasVectorInstrinsicScalarOpd(IntrinID, i)) {
            if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) {
              reportVectorizationFailure("Found unvectorizable intrinsic",
                  "intrinsic instruction cannot be vectorized",
                  "CantVectorizeIntrinsic", ORE, TheLoop, CI);
              return false;
            }
          }
      }

      // Check that the instruction return type is vectorizable.
      // Also, we can't vectorize extractelement instructions.
      if ((!VectorType::isValidElementType(I.getType()) &&
           !I.getType()->isVoidTy()) ||
          isa<ExtractElementInst>(I)) {
        reportVectorizationFailure("Found unvectorizable type",
            "instruction return type cannot be vectorized",
            "CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
        return false;
      }

      // Check that the stored type is vectorizable.
      if (auto *ST = dyn_cast<StoreInst>(&I)) {
        Type *T = ST->getValueOperand()->getType();
        if (!VectorType::isValidElementType(T)) {
          reportVectorizationFailure("Store instruction cannot be vectorized",
                                     "store instruction cannot be vectorized",
                                     "CantVectorizeStore", ORE, TheLoop, ST);
          return false;
        }

        // For nontemporal stores, check that a nontemporal vector version is
        // supported on the target.
        if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
          // Arbitrarily try a vector of 2 elements.
          auto *VecTy = FixedVectorType::get(T, /*NumElements=*/2);
          assert(VecTy && "did not find vectorized version of stored type");
          if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
            reportVectorizationFailure(
                "nontemporal store instruction cannot be vectorized",
                "nontemporal store instruction cannot be vectorized",
                "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
            return false;
          }
        }

      } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
        if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
          // For nontemporal loads, check that a nontemporal vector version is
          // supported on the target (arbitrarily try a vector of 2 elements).
          auto *VecTy = FixedVectorType::get(I.getType(), /*NumElements=*/2);
          assert(VecTy && "did not find vectorized version of load type");
          if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
            reportVectorizationFailure(
                "nontemporal load instruction cannot be vectorized",
                "nontemporal load instruction cannot be vectorized",
                "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
            return false;
          }
        }

        // FP instructions can allow unsafe algebra, thus vectorizable by
        // non-IEEE-754 compliant SIMD units.
        // This applies to floating-point math operations and calls, not memory
        // operations, shuffles, or casts, as they don't change precision or
        // semantics.
      } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
                 !I.isFast()) {
        LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
        Hints->setPotentiallyUnsafe();
      }

      // Reduction instructions are allowed to have exit users.
      // All other instructions must not have external users.
      if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
        // We can safely vectorize loops where instructions within the loop are
        // used outside the loop only if the SCEV predicates within the loop is
        // same as outside the loop. Allowing the exit means reusing the SCEV
        // outside the loop.
        if (PSE.getUnionPredicate().isAlwaysTrue()) {
          AllowedExit.insert(&I);
          continue;
        }
        reportVectorizationFailure("Value cannot be used outside the loop",
                                   "value cannot be used outside the loop",
                                   "ValueUsedOutsideLoop", ORE, TheLoop, &I);
        return false;
      }
    } // next instr.
  }

  if (!PrimaryInduction) {
    if (Inductions.empty()) {
      reportVectorizationFailure("Did not find one integer induction var",
          "loop induction variable could not be identified",
          "NoInductionVariable", ORE, TheLoop);
      return false;
    } else if (!WidestIndTy) {
      reportVectorizationFailure("Did not find one integer induction var",
          "integer loop induction variable could not be identified",
          "NoIntegerInductionVariable", ORE, TheLoop);
      return false;
    } else {
      LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
    }
  }

  // For first order recurrences, we use the previous value (incoming value from
  // the latch) to check if it dominates all users of the recurrence. Bail out
  // if we have to sink such an instruction for another recurrence, as the
  // dominance requirement may not hold after sinking.
  BasicBlock *LoopLatch = TheLoop->getLoopLatch();
  if (any_of(FirstOrderRecurrences, [LoopLatch, this](const PHINode *Phi) {
        Instruction *V =
            cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch));
        return SinkAfter.find(V) != SinkAfter.end();
      }))
    return false;

  // Now we know the widest induction type, check if our found induction
  // is the same size. If it's not, unset it here and InnerLoopVectorizer
  // will create another.
  if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
    PrimaryInduction = nullptr;

  return true;
}

bool LoopVectorizationLegality::canVectorizeMemory() {
  LAI = &(*GetLAA)(*TheLoop);
  const OptimizationRemarkAnalysis *LAR = LAI->getReport();
  if (LAR) {
    ORE->emit([&]() {
      return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
                                        "loop not vectorized: ", *LAR);
    });
  }
  if (!LAI->canVectorizeMemory())
    return false;

  if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
    reportVectorizationFailure("Stores to a uniform address",
        "write to a loop invariant address could not be vectorized",
        "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
    return false;
  }
  Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
  PSE.addPredicate(LAI->getPSE().getUnionPredicate());

  return true;
}

bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
  Value *In0 = const_cast<Value *>(V);
  PHINode *PN = dyn_cast_or_null<PHINode>(In0);
  if (!PN)
    return false;

  return Inductions.count(PN);
}

bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
  auto *Inst = dyn_cast<Instruction>(V);
  return (Inst && InductionCastsToIgnore.count(Inst));
}

bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
  return isInductionPhi(V) || isCastedInductionVariable(V);
}

bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
  return FirstOrderRecurrences.count(Phi);
}

bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
  return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
}

bool LoopVectorizationLegality::blockCanBePredicated(
    BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs, bool PreserveGuards) {
  const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();

  for (Instruction &I : *BB) {
    // Check that we don't have a constant expression that can trap as operand.
    for (Value *Operand : I.operands()) {
      if (auto *C = dyn_cast<Constant>(Operand))
        if (C->canTrap())
          return false;
    }

    // We can predicate blocks with calls to assume, as long as we drop them in
    // case we flatten the CFG via predication.
    if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
      ConditionalAssumes.insert(&I);
      continue;
    }

    // We might be able to hoist the load.
    if (I.mayReadFromMemory()) {
      auto *LI = dyn_cast<LoadInst>(&I);
      if (!LI)
        return false;
      if (!SafePtrs.count(LI->getPointerOperand())) {
        // !llvm.mem.parallel_loop_access implies if-conversion safety.
        // Otherwise, record that the load needs (real or emulated) masking
        // and let the cost model decide.
        if (!IsAnnotatedParallel || PreserveGuards)
          MaskedOp.insert(LI);
        continue;
      }
    }

    if (I.mayWriteToMemory()) {
      auto *SI = dyn_cast<StoreInst>(&I);
      if (!SI)
        return false;
      // Predicated store requires some form of masking:
      // 1) masked store HW instruction,
      // 2) emulation via load-blend-store (only if safe and legal to do so,
      //    be aware on the race conditions), or
      // 3) element-by-element predicate check and scalar store.
      MaskedOp.insert(SI);
      continue;
    }
    if (I.mayThrow())
      return false;
  }

  return true;
}

bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
  if (!EnableIfConversion) {
    reportVectorizationFailure("If-conversion is disabled",
                               "if-conversion is disabled",
                               "IfConversionDisabled",
                               ORE, TheLoop);
    return false;
  }

  assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");

  // A list of pointers which are known to be dereferenceable within scope of
  // the loop body for each iteration of the loop which executes.  That is,
  // the memory pointed to can be dereferenced (with the access size implied by
  // the value's type) unconditionally within the loop header without
  // introducing a new fault.
  SmallPtrSet<Value *, 8> SafePointers;

  // Collect safe addresses.
  for (BasicBlock *BB : TheLoop->blocks()) {
    if (!blockNeedsPredication(BB)) {
      for (Instruction &I : *BB)
        if (auto *Ptr = getLoadStorePointerOperand(&I))
          SafePointers.insert(Ptr);
      continue;
    }

    // For a block which requires predication, a address may be safe to access
    // in the loop w/o predication if we can prove dereferenceability facts
    // sufficient to ensure it'll never fault within the loop. For the moment,
    // we restrict this to loads; stores are more complicated due to
    // concurrency restrictions.
    ScalarEvolution &SE = *PSE.getSE();
    for (Instruction &I : *BB) {
      LoadInst *LI = dyn_cast<LoadInst>(&I);
      if (LI && !mustSuppressSpeculation(*LI) &&
          isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT))
        SafePointers.insert(LI->getPointerOperand());
    }
  }

  // Collect the blocks that need predication.
  BasicBlock *Header = TheLoop->getHeader();
  for (BasicBlock *BB : TheLoop->blocks()) {
    // We don't support switch statements inside loops.
    if (!isa<BranchInst>(BB->getTerminator())) {
      reportVectorizationFailure("Loop contains a switch statement",
                                 "loop contains a switch statement",
                                 "LoopContainsSwitch", ORE, TheLoop,
                                 BB->getTerminator());
      return false;
    }

    // We must be able to predicate all blocks that need to be predicated.
    if (blockNeedsPredication(BB)) {
      if (!blockCanBePredicated(BB, SafePointers)) {
        reportVectorizationFailure(
            "Control flow cannot be substituted for a select",
            "control flow cannot be substituted for a select",
            "NoCFGForSelect", ORE, TheLoop,
            BB->getTerminator());
        return false;
      }
    } else if (BB != Header && !canIfConvertPHINodes(BB)) {
      reportVectorizationFailure(
          "Control flow cannot be substituted for a select",
          "control flow cannot be substituted for a select",
          "NoCFGForSelect", ORE, TheLoop,
          BB->getTerminator());
      return false;
    }
  }

  // We can if-convert this loop.
  return true;
}

// Helper function to canVectorizeLoopNestCFG.
bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
                                                    bool UseVPlanNativePath) {
  assert((UseVPlanNativePath || Lp->empty()) &&
         "VPlan-native path is not enabled.");

  // TODO: ORE should be improved to show more accurate information when an
  // outer loop can't be vectorized because a nested loop is not understood or
  // legal. Something like: "outer_loop_location: loop not vectorized:
  // (inner_loop_location) loop control flow is not understood by vectorizer".

  // Store the result and return it at the end instead of exiting early, in case
  // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
  bool Result = true;
  bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);

  // We must have a loop in canonical form. Loops with indirectbr in them cannot
  // be canonicalized.
  if (!Lp->getLoopPreheader()) {
    reportVectorizationFailure("Loop doesn't have a legal pre-header",
        "loop control flow is not understood by vectorizer",
        "CFGNotUnderstood", ORE, TheLoop);
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  // We must have a single backedge.
  if (Lp->getNumBackEdges() != 1) {
    reportVectorizationFailure("The loop must have a single backedge",
        "loop control flow is not understood by vectorizer",
        "CFGNotUnderstood", ORE, TheLoop);
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  // We must have a single exiting block.
  if (!Lp->getExitingBlock()) {
    reportVectorizationFailure("The loop must have an exiting block",
        "loop control flow is not understood by vectorizer",
        "CFGNotUnderstood", ORE, TheLoop);
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  // We only handle bottom-tested loops, i.e. loop in which the condition is
  // checked at the end of each iteration. With that we can assume that all
  // instructions in the loop are executed the same number of times.
  if (Lp->getExitingBlock() != Lp->getLoopLatch()) {
    reportVectorizationFailure("The exiting block is not the loop latch",
        "loop control flow is not understood by vectorizer",
        "CFGNotUnderstood", ORE, TheLoop);
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  return Result;
}

bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
    Loop *Lp, bool UseVPlanNativePath) {
  // Store the result and return it at the end instead of exiting early, in case
  // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
  bool Result = true;
  bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
  if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  // Recursively check whether the loop control flow of nested loops is
  // understood.
  for (Loop *SubLp : *Lp)
    if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
      if (DoExtraAnalysis)
        Result = false;
      else
        return false;
    }

  return Result;
}

bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
  // Store the result and return it at the end instead of exiting early, in case
  // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
  bool Result = true;

  bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
  // Check whether the loop-related control flow in the loop nest is expected by
  // vectorizer.
  if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  // We need to have a loop header.
  LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
                    << '\n');

  // Specific checks for outer loops. We skip the remaining legal checks at this
  // point because they don't support outer loops.
  if (!TheLoop->empty()) {
    assert(UseVPlanNativePath && "VPlan-native path is not enabled.");

    if (!canVectorizeOuterLoop()) {
      reportVectorizationFailure("Unsupported outer loop",
                                 "unsupported outer loop",
                                 "UnsupportedOuterLoop",
                                 ORE, TheLoop);
      // TODO: Implement DoExtraAnalysis when subsequent legal checks support
      // outer loops.
      return false;
    }

    LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
    return Result;
  }

  assert(TheLoop->empty() && "Inner loop expected.");
  // Check if we can if-convert non-single-bb loops.
  unsigned NumBlocks = TheLoop->getNumBlocks();
  if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
    LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  // Check if we can vectorize the instructions and CFG in this loop.
  if (!canVectorizeInstrs()) {
    LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  // Go over each instruction and look at memory deps.
  if (!canVectorizeMemory()) {
    LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
                    << (LAI->getRuntimePointerChecking()->Need
                            ? " (with a runtime bound check)"
                            : "")
                    << "!\n");

  unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
  if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
    SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;

  if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
    reportVectorizationFailure("Too many SCEV checks needed",
        "Too many SCEV assumptions need to be made and checked at runtime",
        "TooManySCEVRunTimeChecks", ORE, TheLoop);
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  // Okay! We've done all the tests. If any have failed, return false. Otherwise
  // we can vectorize, and at this point we don't have any other mem analysis
  // which may limit our maximum vectorization factor, so just return true with
  // no restrictions.
  return Result;
}

bool LoopVectorizationLegality::prepareToFoldTailByMasking() {

  LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");

  SmallPtrSet<const Value *, 8> ReductionLiveOuts;

  for (auto &Reduction : getReductionVars())
    ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());

  // TODO: handle non-reduction outside users when tail is folded by masking.
  for (auto *AE : AllowedExit) {
    // Check that all users of allowed exit values are inside the loop or
    // are the live-out of a reduction.
    if (ReductionLiveOuts.count(AE))
      continue;
    for (User *U : AE->users()) {
      Instruction *UI = cast<Instruction>(U);
      if (TheLoop->contains(UI))
        continue;
      reportVectorizationFailure(
          "Cannot fold tail by masking, loop has an outside user for",
          "Cannot fold tail by masking in the presence of live outs.",
          "LiveOutFoldingTailByMasking", ORE, TheLoop, UI);
      return false;
    }
  }

  // The list of pointers that we can safely read and write to remains empty.
  SmallPtrSet<Value *, 8> SafePointers;

  // Check and mark all blocks for predication, including those that ordinarily
  // do not need predication such as the header block.
  for (BasicBlock *BB : TheLoop->blocks()) {
    if (!blockCanBePredicated(BB, SafePointers, /* MaskAllLoads= */ true)) {
      reportVectorizationFailure(
          "Cannot fold tail by masking as required",
          "control flow cannot be substituted for a select",
          "NoCFGForSelect", ORE, TheLoop,
          BB->getTerminator());
      return false;
    }
  }

  LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
  return true;
}

} // namespace llvm