SSAUpdater.cpp 16.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the SSAUpdater class.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
#include <cassert>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "ssaupdater"

using AvailableValsTy = DenseMap<BasicBlock *, Value *>;

static AvailableValsTy &getAvailableVals(void *AV) {
  return *static_cast<AvailableValsTy*>(AV);
}

SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode *> *NewPHI)
  : InsertedPHIs(NewPHI) {}

SSAUpdater::~SSAUpdater() {
  delete static_cast<AvailableValsTy*>(AV);
}

void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
  if (!AV)
    AV = new AvailableValsTy();
  else
    getAvailableVals(AV).clear();
  ProtoType = Ty;
  ProtoName = std::string(Name);
}

bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
  return getAvailableVals(AV).count(BB);
}

Value *SSAUpdater::FindValueForBlock(BasicBlock *BB) const {
  AvailableValsTy::iterator AVI = getAvailableVals(AV).find(BB);
  return (AVI != getAvailableVals(AV).end()) ? AVI->second : nullptr;
}

void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
  assert(ProtoType && "Need to initialize SSAUpdater");
  assert(ProtoType == V->getType() &&
         "All rewritten values must have the same type");
  getAvailableVals(AV)[BB] = V;
}

static bool IsEquivalentPHI(PHINode *PHI,
                        SmallDenseMap<BasicBlock *, Value *, 8> &ValueMapping) {
  unsigned PHINumValues = PHI->getNumIncomingValues();
  if (PHINumValues != ValueMapping.size())
    return false;

  // Scan the phi to see if it matches.
  for (unsigned i = 0, e = PHINumValues; i != e; ++i)
    if (ValueMapping[PHI->getIncomingBlock(i)] !=
        PHI->getIncomingValue(i)) {
      return false;
    }

  return true;
}

Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
  Value *Res = GetValueAtEndOfBlockInternal(BB);
  return Res;
}

Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
  // If there is no definition of the renamed variable in this block, just use
  // GetValueAtEndOfBlock to do our work.
  if (!HasValueForBlock(BB))
    return GetValueAtEndOfBlock(BB);

  // Otherwise, we have the hard case.  Get the live-in values for each
  // predecessor.
  SmallVector<std::pair<BasicBlock *, Value *>, 8> PredValues;
  Value *SingularValue = nullptr;

  // We can get our predecessor info by walking the pred_iterator list, but it
  // is relatively slow.  If we already have PHI nodes in this block, walk one
  // of them to get the predecessor list instead.
  if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
    for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
      BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
      Value *PredVal = GetValueAtEndOfBlock(PredBB);
      PredValues.push_back(std::make_pair(PredBB, PredVal));

      // Compute SingularValue.
      if (i == 0)
        SingularValue = PredVal;
      else if (PredVal != SingularValue)
        SingularValue = nullptr;
    }
  } else {
    bool isFirstPred = true;
    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
      BasicBlock *PredBB = *PI;
      Value *PredVal = GetValueAtEndOfBlock(PredBB);
      PredValues.push_back(std::make_pair(PredBB, PredVal));

      // Compute SingularValue.
      if (isFirstPred) {
        SingularValue = PredVal;
        isFirstPred = false;
      } else if (PredVal != SingularValue)
        SingularValue = nullptr;
    }
  }

  // If there are no predecessors, just return undef.
  if (PredValues.empty())
    return UndefValue::get(ProtoType);

  // Otherwise, if all the merged values are the same, just use it.
  if (SingularValue)
    return SingularValue;

  // Otherwise, we do need a PHI: check to see if we already have one available
  // in this block that produces the right value.
  if (isa<PHINode>(BB->begin())) {
    SmallDenseMap<BasicBlock *, Value *, 8> ValueMapping(PredValues.begin(),
                                                         PredValues.end());
    for (PHINode &SomePHI : BB->phis()) {
      if (IsEquivalentPHI(&SomePHI, ValueMapping))
        return &SomePHI;
    }
  }

  // Ok, we have no way out, insert a new one now.
  PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
                                         ProtoName, &BB->front());

  // Fill in all the predecessors of the PHI.
  for (const auto &PredValue : PredValues)
    InsertedPHI->addIncoming(PredValue.second, PredValue.first);

  // See if the PHI node can be merged to a single value.  This can happen in
  // loop cases when we get a PHI of itself and one other value.
  if (Value *V =
          SimplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) {
    InsertedPHI->eraseFromParent();
    return V;
  }

  // Set the DebugLoc of the inserted PHI, if available.
  DebugLoc DL;
  if (const Instruction *I = BB->getFirstNonPHI())
      DL = I->getDebugLoc();
  InsertedPHI->setDebugLoc(DL);

  // If the client wants to know about all new instructions, tell it.
  if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);

  LLVM_DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
  return InsertedPHI;
}

void SSAUpdater::RewriteUse(Use &U) {
  Instruction *User = cast<Instruction>(U.getUser());

  Value *V;
  if (PHINode *UserPN = dyn_cast<PHINode>(User))
    V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
  else
    V = GetValueInMiddleOfBlock(User->getParent());

  U.set(V);
}

void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
  Instruction *User = cast<Instruction>(U.getUser());

  Value *V;
  if (PHINode *UserPN = dyn_cast<PHINode>(User))
    V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
  else
    V = GetValueAtEndOfBlock(User->getParent());

  U.set(V);
}

namespace llvm {

template<>
class SSAUpdaterTraits<SSAUpdater> {
public:
  using BlkT = BasicBlock;
  using ValT = Value *;
  using PhiT = PHINode;
  using BlkSucc_iterator = succ_iterator;

  static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
  static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }

  class PHI_iterator {
  private:
    PHINode *PHI;
    unsigned idx;

  public:
    explicit PHI_iterator(PHINode *P) // begin iterator
      : PHI(P), idx(0) {}
    PHI_iterator(PHINode *P, bool) // end iterator
      : PHI(P), idx(PHI->getNumIncomingValues()) {}

    PHI_iterator &operator++() { ++idx; return *this; }
    bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
    bool operator!=(const PHI_iterator& x) const { return !operator==(x); }

    Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
    BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
  };

  static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
  static PHI_iterator PHI_end(PhiT *PHI) {
    return PHI_iterator(PHI, true);
  }

  /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
  /// vector, set Info->NumPreds, and allocate space in Info->Preds.
  static void FindPredecessorBlocks(BasicBlock *BB,
                                    SmallVectorImpl<BasicBlock *> *Preds) {
    // We can get our predecessor info by walking the pred_iterator list,
    // but it is relatively slow.  If we already have PHI nodes in this
    // block, walk one of them to get the predecessor list instead.
    if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
      Preds->append(SomePhi->block_begin(), SomePhi->block_end());
    } else {
      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
        Preds->push_back(*PI);
    }
  }

  /// GetUndefVal - Get an undefined value of the same type as the value
  /// being handled.
  static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
    return UndefValue::get(Updater->ProtoType);
  }

  /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
  /// Reserve space for the operands but do not fill them in yet.
  static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
                               SSAUpdater *Updater) {
    PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
                                   Updater->ProtoName, &BB->front());
    return PHI;
  }

  /// AddPHIOperand - Add the specified value as an operand of the PHI for
  /// the specified predecessor block.
  static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
    PHI->addIncoming(Val, Pred);
  }

  /// InstrIsPHI - Check if an instruction is a PHI.
  ///
  static PHINode *InstrIsPHI(Instruction *I) {
    return dyn_cast<PHINode>(I);
  }

  /// ValueIsPHI - Check if a value is a PHI.
  static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
    return dyn_cast<PHINode>(Val);
  }

  /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
  /// operands, i.e., it was just added.
  static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
    PHINode *PHI = ValueIsPHI(Val, Updater);
    if (PHI && PHI->getNumIncomingValues() == 0)
      return PHI;
    return nullptr;
  }

  /// GetPHIValue - For the specified PHI instruction, return the value
  /// that it defines.
  static Value *GetPHIValue(PHINode *PHI) {
    return PHI;
  }
};

} // end namespace llvm

/// Check to see if AvailableVals has an entry for the specified BB and if so,
/// return it.  If not, construct SSA form by first calculating the required
/// placement of PHIs and then inserting new PHIs where needed.
Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
  AvailableValsTy &AvailableVals = getAvailableVals(AV);
  if (Value *V = AvailableVals[BB])
    return V;

  SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
  return Impl.GetValue(BB);
}

//===----------------------------------------------------------------------===//
// LoadAndStorePromoter Implementation
//===----------------------------------------------------------------------===//

LoadAndStorePromoter::
LoadAndStorePromoter(ArrayRef<const Instruction *> Insts,
                     SSAUpdater &S, StringRef BaseName) : SSA(S) {
  if (Insts.empty()) return;

  const Value *SomeVal;
  if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
    SomeVal = LI;
  else
    SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);

  if (BaseName.empty())
    BaseName = SomeVal->getName();
  SSA.Initialize(SomeVal->getType(), BaseName);
}

void LoadAndStorePromoter::run(const SmallVectorImpl<Instruction *> &Insts) {
  // First step: bucket up uses of the alloca by the block they occur in.
  // This is important because we have to handle multiple defs/uses in a block
  // ourselves: SSAUpdater is purely for cross-block references.
  DenseMap<BasicBlock *, TinyPtrVector<Instruction *>> UsesByBlock;

  for (Instruction *User : Insts)
    UsesByBlock[User->getParent()].push_back(User);

  // Okay, now we can iterate over all the blocks in the function with uses,
  // processing them.  Keep track of which loads are loading a live-in value.
  // Walk the uses in the use-list order to be determinstic.
  SmallVector<LoadInst *, 32> LiveInLoads;
  DenseMap<Value *, Value *> ReplacedLoads;

  for (Instruction *User : Insts) {
    BasicBlock *BB = User->getParent();
    TinyPtrVector<Instruction *> &BlockUses = UsesByBlock[BB];

    // If this block has already been processed, ignore this repeat use.
    if (BlockUses.empty()) continue;

    // Okay, this is the first use in the block.  If this block just has a
    // single user in it, we can rewrite it trivially.
    if (BlockUses.size() == 1) {
      // If it is a store, it is a trivial def of the value in the block.
      if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
        updateDebugInfo(SI);
        SSA.AddAvailableValue(BB, SI->getOperand(0));
      } else
        // Otherwise it is a load, queue it to rewrite as a live-in load.
        LiveInLoads.push_back(cast<LoadInst>(User));
      BlockUses.clear();
      continue;
    }

    // Otherwise, check to see if this block is all loads.
    bool HasStore = false;
    for (Instruction *I : BlockUses) {
      if (isa<StoreInst>(I)) {
        HasStore = true;
        break;
      }
    }

    // If so, we can queue them all as live in loads.  We don't have an
    // efficient way to tell which on is first in the block and don't want to
    // scan large blocks, so just add all loads as live ins.
    if (!HasStore) {
      for (Instruction *I : BlockUses)
        LiveInLoads.push_back(cast<LoadInst>(I));
      BlockUses.clear();
      continue;
    }

    // Otherwise, we have mixed loads and stores (or just a bunch of stores).
    // Since SSAUpdater is purely for cross-block values, we need to determine
    // the order of these instructions in the block.  If the first use in the
    // block is a load, then it uses the live in value.  The last store defines
    // the live out value.  We handle this by doing a linear scan of the block.
    Value *StoredValue = nullptr;
    for (Instruction &I : *BB) {
      if (LoadInst *L = dyn_cast<LoadInst>(&I)) {
        // If this is a load from an unrelated pointer, ignore it.
        if (!isInstInList(L, Insts)) continue;

        // If we haven't seen a store yet, this is a live in use, otherwise
        // use the stored value.
        if (StoredValue) {
          replaceLoadWithValue(L, StoredValue);
          L->replaceAllUsesWith(StoredValue);
          ReplacedLoads[L] = StoredValue;
        } else {
          LiveInLoads.push_back(L);
        }
        continue;
      }

      if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
        // If this is a store to an unrelated pointer, ignore it.
        if (!isInstInList(SI, Insts)) continue;
        updateDebugInfo(SI);

        // Remember that this is the active value in the block.
        StoredValue = SI->getOperand(0);
      }
    }

    // The last stored value that happened is the live-out for the block.
    assert(StoredValue && "Already checked that there is a store in block");
    SSA.AddAvailableValue(BB, StoredValue);
    BlockUses.clear();
  }

  // Okay, now we rewrite all loads that use live-in values in the loop,
  // inserting PHI nodes as necessary.
  for (LoadInst *ALoad : LiveInLoads) {
    Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
    replaceLoadWithValue(ALoad, NewVal);

    // Avoid assertions in unreachable code.
    if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType());
    ALoad->replaceAllUsesWith(NewVal);
    ReplacedLoads[ALoad] = NewVal;
  }

  // Allow the client to do stuff before we start nuking things.
  doExtraRewritesBeforeFinalDeletion();

  // Now that everything is rewritten, delete the old instructions from the
  // function.  They should all be dead now.
  for (Instruction *User : Insts) {
    // If this is a load that still has uses, then the load must have been added
    // as a live value in the SSAUpdate data structure for a block (e.g. because
    // the loaded value was stored later).  In this case, we need to recursively
    // propagate the updates until we get to the real value.
    if (!User->use_empty()) {
      Value *NewVal = ReplacedLoads[User];
      assert(NewVal && "not a replaced load?");

      // Propagate down to the ultimate replacee.  The intermediately loads
      // could theoretically already have been deleted, so we don't want to
      // dereference the Value*'s.
      DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
      while (RLI != ReplacedLoads.end()) {
        NewVal = RLI->second;
        RLI = ReplacedLoads.find(NewVal);
      }

      replaceLoadWithValue(cast<LoadInst>(User), NewVal);
      User->replaceAllUsesWith(NewVal);
    }

    instructionDeleted(User);
    User->eraseFromParent();
  }
}

bool
LoadAndStorePromoter::isInstInList(Instruction *I,
                                   const SmallVectorImpl<Instruction *> &Insts)
                                   const {
  return is_contained(Insts, I);
}