LoopUtils.cpp 65 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines common loop utility functions.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PriorityWorklist.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/MustExecute.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"

using namespace llvm;
using namespace llvm::PatternMatch;

static cl::opt<bool> ForceReductionIntrinsic(
    "force-reduction-intrinsics", cl::Hidden,
    cl::desc("Force creating reduction intrinsics for testing."),
    cl::init(false));

#define DEBUG_TYPE "loop-utils"

static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
static const char *LLVMLoopDisableLICM = "llvm.licm.disable";

bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
                                   MemorySSAUpdater *MSSAU,
                                   bool PreserveLCSSA) {
  bool Changed = false;

  // We re-use a vector for the in-loop predecesosrs.
  SmallVector<BasicBlock *, 4> InLoopPredecessors;

  auto RewriteExit = [&](BasicBlock *BB) {
    assert(InLoopPredecessors.empty() &&
           "Must start with an empty predecessors list!");
    auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });

    // See if there are any non-loop predecessors of this exit block and
    // keep track of the in-loop predecessors.
    bool IsDedicatedExit = true;
    for (auto *PredBB : predecessors(BB))
      if (L->contains(PredBB)) {
        if (isa<IndirectBrInst>(PredBB->getTerminator()))
          // We cannot rewrite exiting edges from an indirectbr.
          return false;
        if (isa<CallBrInst>(PredBB->getTerminator()))
          // We cannot rewrite exiting edges from a callbr.
          return false;

        InLoopPredecessors.push_back(PredBB);
      } else {
        IsDedicatedExit = false;
      }

    assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");

    // Nothing to do if this is already a dedicated exit.
    if (IsDedicatedExit)
      return false;

    auto *NewExitBB = SplitBlockPredecessors(
        BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);

    if (!NewExitBB)
      LLVM_DEBUG(
          dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
                 << *L << "\n");
    else
      LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
                        << NewExitBB->getName() << "\n");
    return true;
  };

  // Walk the exit blocks directly rather than building up a data structure for
  // them, but only visit each one once.
  SmallPtrSet<BasicBlock *, 4> Visited;
  for (auto *BB : L->blocks())
    for (auto *SuccBB : successors(BB)) {
      // We're looking for exit blocks so skip in-loop successors.
      if (L->contains(SuccBB))
        continue;

      // Visit each exit block exactly once.
      if (!Visited.insert(SuccBB).second)
        continue;

      Changed |= RewriteExit(SuccBB);
    }

  return Changed;
}

/// Returns the instructions that use values defined in the loop.
SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
  SmallVector<Instruction *, 8> UsedOutside;

  for (auto *Block : L->getBlocks())
    // FIXME: I believe that this could use copy_if if the Inst reference could
    // be adapted into a pointer.
    for (auto &Inst : *Block) {
      auto Users = Inst.users();
      if (any_of(Users, [&](User *U) {
            auto *Use = cast<Instruction>(U);
            return !L->contains(Use->getParent());
          }))
        UsedOutside.push_back(&Inst);
    }

  return UsedOutside;
}

void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
  // By definition, all loop passes need the LoopInfo analysis and the
  // Dominator tree it depends on. Because they all participate in the loop
  // pass manager, they must also preserve these.
  AU.addRequired<DominatorTreeWrapperPass>();
  AU.addPreserved<DominatorTreeWrapperPass>();
  AU.addRequired<LoopInfoWrapperPass>();
  AU.addPreserved<LoopInfoWrapperPass>();

  // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
  // here because users shouldn't directly get them from this header.
  extern char &LoopSimplifyID;
  extern char &LCSSAID;
  AU.addRequiredID(LoopSimplifyID);
  AU.addPreservedID(LoopSimplifyID);
  AU.addRequiredID(LCSSAID);
  AU.addPreservedID(LCSSAID);
  // This is used in the LPPassManager to perform LCSSA verification on passes
  // which preserve lcssa form
  AU.addRequired<LCSSAVerificationPass>();
  AU.addPreserved<LCSSAVerificationPass>();

  // Loop passes are designed to run inside of a loop pass manager which means
  // that any function analyses they require must be required by the first loop
  // pass in the manager (so that it is computed before the loop pass manager
  // runs) and preserved by all loop pasess in the manager. To make this
  // reasonably robust, the set needed for most loop passes is maintained here.
  // If your loop pass requires an analysis not listed here, you will need to
  // carefully audit the loop pass manager nesting structure that results.
  AU.addRequired<AAResultsWrapperPass>();
  AU.addPreserved<AAResultsWrapperPass>();
  AU.addPreserved<BasicAAWrapperPass>();
  AU.addPreserved<GlobalsAAWrapperPass>();
  AU.addPreserved<SCEVAAWrapperPass>();
  AU.addRequired<ScalarEvolutionWrapperPass>();
  AU.addPreserved<ScalarEvolutionWrapperPass>();
  // FIXME: When all loop passes preserve MemorySSA, it can be required and
  // preserved here instead of the individual handling in each pass.
}

/// Manually defined generic "LoopPass" dependency initialization. This is used
/// to initialize the exact set of passes from above in \c
/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
/// with:
///
///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
///
/// As-if "LoopPass" were a pass.
void llvm::initializeLoopPassPass(PassRegistry &Registry) {
  INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
  INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
}

/// Create MDNode for input string.
static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
  LLVMContext &Context = TheLoop->getHeader()->getContext();
  Metadata *MDs[] = {
      MDString::get(Context, Name),
      ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
  return MDNode::get(Context, MDs);
}

/// Set input string into loop metadata by keeping other values intact.
/// If the string is already in loop metadata update value if it is
/// different.
void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
                                   unsigned V) {
  SmallVector<Metadata *, 4> MDs(1);
  // If the loop already has metadata, retain it.
  MDNode *LoopID = TheLoop->getLoopID();
  if (LoopID) {
    for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
      MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
      // If it is of form key = value, try to parse it.
      if (Node->getNumOperands() == 2) {
        MDString *S = dyn_cast<MDString>(Node->getOperand(0));
        if (S && S->getString().equals(StringMD)) {
          ConstantInt *IntMD =
              mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
          if (IntMD && IntMD->getSExtValue() == V)
            // It is already in place. Do nothing.
            return;
          // We need to update the value, so just skip it here and it will
          // be added after copying other existed nodes.
          continue;
        }
      }
      MDs.push_back(Node);
    }
  }
  // Add new metadata.
  MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
  // Replace current metadata node with new one.
  LLVMContext &Context = TheLoop->getHeader()->getContext();
  MDNode *NewLoopID = MDNode::get(Context, MDs);
  // Set operand 0 to refer to the loop id itself.
  NewLoopID->replaceOperandWith(0, NewLoopID);
  TheLoop->setLoopID(NewLoopID);
}

/// Find string metadata for loop
///
/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
/// operand or null otherwise.  If the string metadata is not found return
/// Optional's not-a-value.
Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
                                                            StringRef Name) {
  MDNode *MD = findOptionMDForLoop(TheLoop, Name);
  if (!MD)
    return None;
  switch (MD->getNumOperands()) {
  case 1:
    return nullptr;
  case 2:
    return &MD->getOperand(1);
  default:
    llvm_unreachable("loop metadata has 0 or 1 operand");
  }
}

static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
                                                   StringRef Name) {
  MDNode *MD = findOptionMDForLoop(TheLoop, Name);
  if (!MD)
    return None;
  switch (MD->getNumOperands()) {
  case 1:
    // When the value is absent it is interpreted as 'attribute set'.
    return true;
  case 2:
    if (ConstantInt *IntMD =
            mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
      return IntMD->getZExtValue();
    return true;
  }
  llvm_unreachable("unexpected number of options");
}

static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
  return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
}

llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
                                                      StringRef Name) {
  const MDOperand *AttrMD =
      findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
  if (!AttrMD)
    return None;

  ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
  if (!IntMD)
    return None;

  return IntMD->getSExtValue();
}

Optional<MDNode *> llvm::makeFollowupLoopID(
    MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
    const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
  if (!OrigLoopID) {
    if (AlwaysNew)
      return nullptr;
    return None;
  }

  assert(OrigLoopID->getOperand(0) == OrigLoopID);

  bool InheritAllAttrs = !InheritOptionsExceptPrefix;
  bool InheritSomeAttrs =
      InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
  SmallVector<Metadata *, 8> MDs;
  MDs.push_back(nullptr);

  bool Changed = false;
  if (InheritAllAttrs || InheritSomeAttrs) {
    for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) {
      MDNode *Op = cast<MDNode>(Existing.get());

      auto InheritThisAttribute = [InheritSomeAttrs,
                                   InheritOptionsExceptPrefix](MDNode *Op) {
        if (!InheritSomeAttrs)
          return false;

        // Skip malformatted attribute metadata nodes.
        if (Op->getNumOperands() == 0)
          return true;
        Metadata *NameMD = Op->getOperand(0).get();
        if (!isa<MDString>(NameMD))
          return true;
        StringRef AttrName = cast<MDString>(NameMD)->getString();

        // Do not inherit excluded attributes.
        return !AttrName.startswith(InheritOptionsExceptPrefix);
      };

      if (InheritThisAttribute(Op))
        MDs.push_back(Op);
      else
        Changed = true;
    }
  } else {
    // Modified if we dropped at least one attribute.
    Changed = OrigLoopID->getNumOperands() > 1;
  }

  bool HasAnyFollowup = false;
  for (StringRef OptionName : FollowupOptions) {
    MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
    if (!FollowupNode)
      continue;

    HasAnyFollowup = true;
    for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) {
      MDs.push_back(Option.get());
      Changed = true;
    }
  }

  // Attributes of the followup loop not specified explicity, so signal to the
  // transformation pass to add suitable attributes.
  if (!AlwaysNew && !HasAnyFollowup)
    return None;

  // If no attributes were added or remove, the previous loop Id can be reused.
  if (!AlwaysNew && !Changed)
    return OrigLoopID;

  // No attributes is equivalent to having no !llvm.loop metadata at all.
  if (MDs.size() == 1)
    return nullptr;

  // Build the new loop ID.
  MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
  FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
  return FollowupLoopID;
}

bool llvm::hasDisableAllTransformsHint(const Loop *L) {
  return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
}

bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
  return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
}

TransformationMode llvm::hasUnrollTransformation(Loop *L) {
  if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
    return TM_SuppressedByUser;

  Optional<int> Count =
      getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
  if (Count.hasValue())
    return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;

  if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
    return TM_ForcedByUser;

  if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
    return TM_ForcedByUser;

  if (hasDisableAllTransformsHint(L))
    return TM_Disable;

  return TM_Unspecified;
}

TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
  if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
    return TM_SuppressedByUser;

  Optional<int> Count =
      getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
  if (Count.hasValue())
    return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;

  if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
    return TM_ForcedByUser;

  if (hasDisableAllTransformsHint(L))
    return TM_Disable;

  return TM_Unspecified;
}

TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
  Optional<bool> Enable =
      getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");

  if (Enable == false)
    return TM_SuppressedByUser;

  Optional<int> VectorizeWidth =
      getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width");
  Optional<int> InterleaveCount =
      getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");

  // 'Forcing' vector width and interleave count to one effectively disables
  // this tranformation.
  if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1)
    return TM_SuppressedByUser;

  if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
    return TM_Disable;

  if (Enable == true)
    return TM_ForcedByUser;

  if (VectorizeWidth == 1 && InterleaveCount == 1)
    return TM_Disable;

  if (VectorizeWidth > 1 || InterleaveCount > 1)
    return TM_Enable;

  if (hasDisableAllTransformsHint(L))
    return TM_Disable;

  return TM_Unspecified;
}

TransformationMode llvm::hasDistributeTransformation(Loop *L) {
  if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
    return TM_ForcedByUser;

  if (hasDisableAllTransformsHint(L))
    return TM_Disable;

  return TM_Unspecified;
}

TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
  if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
    return TM_SuppressedByUser;

  if (hasDisableAllTransformsHint(L))
    return TM_Disable;

  return TM_Unspecified;
}

/// Does a BFS from a given node to all of its children inside a given loop.
/// The returned vector of nodes includes the starting point.
SmallVector<DomTreeNode *, 16>
llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
  SmallVector<DomTreeNode *, 16> Worklist;
  auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
    // Only include subregions in the top level loop.
    BasicBlock *BB = DTN->getBlock();
    if (CurLoop->contains(BB))
      Worklist.push_back(DTN);
  };

  AddRegionToWorklist(N);

  for (size_t I = 0; I < Worklist.size(); I++) {
    for (DomTreeNode *Child : Worklist[I]->children())
      AddRegionToWorklist(Child);
  }

  return Worklist;
}

void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
                          LoopInfo *LI, MemorySSA *MSSA) {
  assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
  auto *Preheader = L->getLoopPreheader();
  assert(Preheader && "Preheader should exist!");

  std::unique_ptr<MemorySSAUpdater> MSSAU;
  if (MSSA)
    MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);

  // Now that we know the removal is safe, remove the loop by changing the
  // branch from the preheader to go to the single exit block.
  //
  // Because we're deleting a large chunk of code at once, the sequence in which
  // we remove things is very important to avoid invalidation issues.

  // Tell ScalarEvolution that the loop is deleted. Do this before
  // deleting the loop so that ScalarEvolution can look at the loop
  // to determine what it needs to clean up.
  if (SE)
    SE->forgetLoop(L);

  auto *ExitBlock = L->getUniqueExitBlock();
  assert(ExitBlock && "Should have a unique exit block!");
  assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");

  auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
  assert(OldBr && "Preheader must end with a branch");
  assert(OldBr->isUnconditional() && "Preheader must have a single successor");
  // Connect the preheader to the exit block. Keep the old edge to the header
  // around to perform the dominator tree update in two separate steps
  // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
  // preheader -> header.
  //
  //
  // 0.  Preheader          1.  Preheader           2.  Preheader
  //        |                    |   |                   |
  //        V                    |   V                   |
  //      Header <--\            | Header <--\           | Header <--\
  //       |  |     |            |  |  |     |           |  |  |     |
  //       |  V     |            |  |  V     |           |  |  V     |
  //       | Body --/            |  | Body --/           |  | Body --/
  //       V                     V  V                    V  V
  //      Exit                   Exit                    Exit
  //
  // By doing this is two separate steps we can perform the dominator tree
  // update without using the batch update API.
  //
  // Even when the loop is never executed, we cannot remove the edge from the
  // source block to the exit block. Consider the case where the unexecuted loop
  // branches back to an outer loop. If we deleted the loop and removed the edge
  // coming to this inner loop, this will break the outer loop structure (by
  // deleting the backedge of the outer loop). If the outer loop is indeed a
  // non-loop, it will be deleted in a future iteration of loop deletion pass.
  IRBuilder<> Builder(OldBr);
  Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
  // Remove the old branch. The conditional branch becomes a new terminator.
  OldBr->eraseFromParent();

  // Rewrite phis in the exit block to get their inputs from the Preheader
  // instead of the exiting block.
  for (PHINode &P : ExitBlock->phis()) {
    // Set the zero'th element of Phi to be from the preheader and remove all
    // other incoming values. Given the loop has dedicated exits, all other
    // incoming values must be from the exiting blocks.
    int PredIndex = 0;
    P.setIncomingBlock(PredIndex, Preheader);
    // Removes all incoming values from all other exiting blocks (including
    // duplicate values from an exiting block).
    // Nuke all entries except the zero'th entry which is the preheader entry.
    // NOTE! We need to remove Incoming Values in the reverse order as done
    // below, to keep the indices valid for deletion (removeIncomingValues
    // updates getNumIncomingValues and shifts all values down into the operand
    // being deleted).
    for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
      P.removeIncomingValue(e - i, false);

    assert((P.getNumIncomingValues() == 1 &&
            P.getIncomingBlock(PredIndex) == Preheader) &&
           "Should have exactly one value and that's from the preheader!");
  }

  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
  if (DT) {
    DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
    if (MSSA) {
      MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}, *DT);
      if (VerifyMemorySSA)
        MSSA->verifyMemorySSA();
    }
  }

  // Disconnect the loop body by branching directly to its exit.
  Builder.SetInsertPoint(Preheader->getTerminator());
  Builder.CreateBr(ExitBlock);
  // Remove the old branch.
  Preheader->getTerminator()->eraseFromParent();

  if (DT) {
    DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
    if (MSSA) {
      MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
                          *DT);
      SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
                                                   L->block_end());
      MSSAU->removeBlocks(DeadBlockSet);
      if (VerifyMemorySSA)
        MSSA->verifyMemorySSA();
    }
  }

  // Use a map to unique and a vector to guarantee deterministic ordering.
  llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
  llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;

  // Given LCSSA form is satisfied, we should not have users of instructions
  // within the dead loop outside of the loop. However, LCSSA doesn't take
  // unreachable uses into account. We handle them here.
  // We could do it after drop all references (in this case all users in the
  // loop will be already eliminated and we have less work to do but according
  // to API doc of User::dropAllReferences only valid operation after dropping
  // references, is deletion. So let's substitute all usages of
  // instruction from the loop with undef value of corresponding type first.
  for (auto *Block : L->blocks())
    for (Instruction &I : *Block) {
      auto *Undef = UndefValue::get(I.getType());
      for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
        Use &U = *UI;
        ++UI;
        if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
          if (L->contains(Usr->getParent()))
            continue;
        // If we have a DT then we can check that uses outside a loop only in
        // unreachable block.
        if (DT)
          assert(!DT->isReachableFromEntry(U) &&
                 "Unexpected user in reachable block");
        U.set(Undef);
      }
      auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
      if (!DVI)
        continue;
      auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
      if (Key != DeadDebugSet.end())
        continue;
      DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
      DeadDebugInst.push_back(DVI);
    }

  // After the loop has been deleted all the values defined and modified
  // inside the loop are going to be unavailable.
  // Since debug values in the loop have been deleted, inserting an undef
  // dbg.value truncates the range of any dbg.value before the loop where the
  // loop used to be. This is particularly important for constant values.
  DIBuilder DIB(*ExitBlock->getModule());
  Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
  assert(InsertDbgValueBefore &&
         "There should be a non-PHI instruction in exit block, else these "
         "instructions will have no parent.");
  for (auto *DVI : DeadDebugInst)
    DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
                                DVI->getVariable(), DVI->getExpression(),
                                DVI->getDebugLoc(), InsertDbgValueBefore);

  // Remove the block from the reference counting scheme, so that we can
  // delete it freely later.
  for (auto *Block : L->blocks())
    Block->dropAllReferences();

  if (MSSA && VerifyMemorySSA)
    MSSA->verifyMemorySSA();

  if (LI) {
    // Erase the instructions and the blocks without having to worry
    // about ordering because we already dropped the references.
    // NOTE: This iteration is safe because erasing the block does not remove
    // its entry from the loop's block list.  We do that in the next section.
    for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
         LpI != LpE; ++LpI)
      (*LpI)->eraseFromParent();

    // Finally, the blocks from loopinfo.  This has to happen late because
    // otherwise our loop iterators won't work.

    SmallPtrSet<BasicBlock *, 8> blocks;
    blocks.insert(L->block_begin(), L->block_end());
    for (BasicBlock *BB : blocks)
      LI->removeBlock(BB);

    // The last step is to update LoopInfo now that we've eliminated this loop.
    // Note: LoopInfo::erase remove the given loop and relink its subloops with
    // its parent. While removeLoop/removeChildLoop remove the given loop but
    // not relink its subloops, which is what we want.
    if (Loop *ParentLoop = L->getParentLoop()) {
      Loop::iterator I = find(*ParentLoop, L);
      assert(I != ParentLoop->end() && "Couldn't find loop");
      ParentLoop->removeChildLoop(I);
    } else {
      Loop::iterator I = find(*LI, L);
      assert(I != LI->end() && "Couldn't find loop");
      LI->removeLoop(I);
    }
    LI->destroy(L);
  }
}

/// Checks if \p L has single exit through latch block except possibly
/// "deoptimizing" exits. Returns branch instruction terminating the loop
/// latch if above check is successful, nullptr otherwise.
static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
  BasicBlock *Latch = L->getLoopLatch();
  if (!Latch)
    return nullptr;

  BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
  if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
    return nullptr;

  assert((LatchBR->getSuccessor(0) == L->getHeader() ||
          LatchBR->getSuccessor(1) == L->getHeader()) &&
         "At least one edge out of the latch must go to the header");

  SmallVector<BasicBlock *, 4> ExitBlocks;
  L->getUniqueNonLatchExitBlocks(ExitBlocks);
  if (any_of(ExitBlocks, [](const BasicBlock *EB) {
        return !EB->getTerminatingDeoptimizeCall();
      }))
    return nullptr;

  return LatchBR;
}

Optional<unsigned>
llvm::getLoopEstimatedTripCount(Loop *L,
                                unsigned *EstimatedLoopInvocationWeight) {
  // Support loops with an exiting latch and other existing exists only
  // deoptimize.
  BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
  if (!LatchBranch)
    return None;

  // To estimate the number of times the loop body was executed, we want to
  // know the number of times the backedge was taken, vs. the number of times
  // we exited the loop.
  uint64_t BackedgeTakenWeight, LatchExitWeight;
  if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight))
    return None;

  if (LatchBranch->getSuccessor(0) != L->getHeader())
    std::swap(BackedgeTakenWeight, LatchExitWeight);

  if (!LatchExitWeight)
    return None;

  if (EstimatedLoopInvocationWeight)
    *EstimatedLoopInvocationWeight = LatchExitWeight;

  // Estimated backedge taken count is a ratio of the backedge taken weight by
  // the weight of the edge exiting the loop, rounded to nearest.
  uint64_t BackedgeTakenCount =
      llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight);
  // Estimated trip count is one plus estimated backedge taken count.
  return BackedgeTakenCount + 1;
}

bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
                                     unsigned EstimatedloopInvocationWeight) {
  // Support loops with an exiting latch and other existing exists only
  // deoptimize.
  BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
  if (!LatchBranch)
    return false;

  // Calculate taken and exit weights.
  unsigned LatchExitWeight = 0;
  unsigned BackedgeTakenWeight = 0;

  if (EstimatedTripCount > 0) {
    LatchExitWeight = EstimatedloopInvocationWeight;
    BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
  }

  // Make a swap if back edge is taken when condition is "false".
  if (LatchBranch->getSuccessor(0) != L->getHeader())
    std::swap(BackedgeTakenWeight, LatchExitWeight);

  MDBuilder MDB(LatchBranch->getContext());

  // Set/Update profile metadata.
  LatchBranch->setMetadata(
      LLVMContext::MD_prof,
      MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));

  return true;
}

bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
                                              ScalarEvolution &SE) {
  Loop *OuterL = InnerLoop->getParentLoop();
  if (!OuterL)
    return true;

  // Get the backedge taken count for the inner loop
  BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
  const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
  if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
      !InnerLoopBECountSC->getType()->isIntegerTy())
    return false;

  // Get whether count is invariant to the outer loop
  ScalarEvolution::LoopDisposition LD =
      SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
  if (LD != ScalarEvolution::LoopInvariant)
    return false;

  return true;
}

Value *llvm::createMinMaxOp(IRBuilderBase &Builder,
                            RecurrenceDescriptor::MinMaxRecurrenceKind RK,
                            Value *Left, Value *Right) {
  CmpInst::Predicate P = CmpInst::ICMP_NE;
  switch (RK) {
  default:
    llvm_unreachable("Unknown min/max recurrence kind");
  case RecurrenceDescriptor::MRK_UIntMin:
    P = CmpInst::ICMP_ULT;
    break;
  case RecurrenceDescriptor::MRK_UIntMax:
    P = CmpInst::ICMP_UGT;
    break;
  case RecurrenceDescriptor::MRK_SIntMin:
    P = CmpInst::ICMP_SLT;
    break;
  case RecurrenceDescriptor::MRK_SIntMax:
    P = CmpInst::ICMP_SGT;
    break;
  case RecurrenceDescriptor::MRK_FloatMin:
    P = CmpInst::FCMP_OLT;
    break;
  case RecurrenceDescriptor::MRK_FloatMax:
    P = CmpInst::FCMP_OGT;
    break;
  }

  // We only match FP sequences that are 'fast', so we can unconditionally
  // set it on any generated instructions.
  IRBuilderBase::FastMathFlagGuard FMFG(Builder);
  FastMathFlags FMF;
  FMF.setFast();
  Builder.setFastMathFlags(FMF);
  Value *Cmp = Builder.CreateCmp(P, Left, Right, "rdx.minmax.cmp");
  Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
  return Select;
}

// Helper to generate an ordered reduction.
Value *
llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
                          unsigned Op,
                          RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
                          ArrayRef<Value *> RedOps) {
  unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();

  // Extract and apply reduction ops in ascending order:
  // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
  Value *Result = Acc;
  for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
    Value *Ext =
        Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));

    if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
      Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
                                   "bin.rdx");
    } else {
      assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
             "Invalid min/max");
      Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext);
    }

    if (!RedOps.empty())
      propagateIRFlags(Result, RedOps);
  }

  return Result;
}

// Helper to generate a log2 shuffle reduction.
Value *
llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, unsigned Op,
                          RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
                          ArrayRef<Value *> RedOps) {
  unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
  // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
  // and vector ops, reducing the set of values being computed by half each
  // round.
  assert(isPowerOf2_32(VF) &&
         "Reduction emission only supported for pow2 vectors!");
  Value *TmpVec = Src;
  SmallVector<int, 32> ShuffleMask(VF);
  for (unsigned i = VF; i != 1; i >>= 1) {
    // Move the upper half of the vector to the lower half.
    for (unsigned j = 0; j != i / 2; ++j)
      ShuffleMask[j] = i / 2 + j;

    // Fill the rest of the mask with undef.
    std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);

    Value *Shuf = Builder.CreateShuffleVector(
        TmpVec, UndefValue::get(TmpVec->getType()), ShuffleMask, "rdx.shuf");

    if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
      // The builder propagates its fast-math-flags setting.
      TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
                                   "bin.rdx");
    } else {
      assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
             "Invalid min/max");
      TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf);
    }
    if (!RedOps.empty())
      propagateIRFlags(TmpVec, RedOps);

    // We may compute the reassociated scalar ops in a way that does not
    // preserve nsw/nuw etc. Conservatively, drop those flags.
    if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec))
      ReductionInst->dropPoisonGeneratingFlags();
  }
  // The result is in the first element of the vector.
  return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
}

/// Create a simple vector reduction specified by an opcode and some
/// flags (if generating min/max reductions).
Value *llvm::createSimpleTargetReduction(
    IRBuilderBase &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
    Value *Src, TargetTransformInfo::ReductionFlags Flags,
    ArrayRef<Value *> RedOps) {
  auto *SrcVTy = cast<VectorType>(Src->getType());

  std::function<Value *()> BuildFunc;
  using RD = RecurrenceDescriptor;
  RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;

  switch (Opcode) {
  case Instruction::Add:
    BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
    break;
  case Instruction::Mul:
    BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
    break;
  case Instruction::And:
    BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
    break;
  case Instruction::Or:
    BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
    break;
  case Instruction::Xor:
    BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
    break;
  case Instruction::FAdd:
    BuildFunc = [&]() {
      auto Rdx = Builder.CreateFAddReduce(
          Constant::getNullValue(SrcVTy->getElementType()), Src);
      return Rdx;
    };
    break;
  case Instruction::FMul:
    BuildFunc = [&]() {
      Type *Ty = SrcVTy->getElementType();
      auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src);
      return Rdx;
    };
    break;
  case Instruction::ICmp:
    if (Flags.IsMaxOp) {
      MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
      BuildFunc = [&]() {
        return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
      };
    } else {
      MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
      BuildFunc = [&]() {
        return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
      };
    }
    break;
  case Instruction::FCmp:
    if (Flags.IsMaxOp) {
      MinMaxKind = RD::MRK_FloatMax;
      BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
    } else {
      MinMaxKind = RD::MRK_FloatMin;
      BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
    }
    break;
  default:
    llvm_unreachable("Unhandled opcode");
    break;
  }
  if (ForceReductionIntrinsic ||
      TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
    return BuildFunc();
  return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
}

/// Create a vector reduction using a given recurrence descriptor.
Value *llvm::createTargetReduction(IRBuilderBase &B,
                                   const TargetTransformInfo *TTI,
                                   RecurrenceDescriptor &Desc, Value *Src,
                                   bool NoNaN) {
  // TODO: Support in-order reductions based on the recurrence descriptor.
  using RD = RecurrenceDescriptor;
  RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
  TargetTransformInfo::ReductionFlags Flags;
  Flags.NoNaN = NoNaN;

  // All ops in the reduction inherit fast-math-flags from the recurrence
  // descriptor.
  IRBuilderBase::FastMathFlagGuard FMFGuard(B);
  B.setFastMathFlags(Desc.getFastMathFlags());

  switch (RecKind) {
  case RD::RK_FloatAdd:
    return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
  case RD::RK_FloatMult:
    return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
  case RD::RK_IntegerAdd:
    return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
  case RD::RK_IntegerMult:
    return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
  case RD::RK_IntegerAnd:
    return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
  case RD::RK_IntegerOr:
    return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
  case RD::RK_IntegerXor:
    return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
  case RD::RK_IntegerMinMax: {
    RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
    Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
    Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
    return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
  }
  case RD::RK_FloatMinMax: {
    Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
    return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
  }
  default:
    llvm_unreachable("Unhandled RecKind");
  }
}

void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
  auto *VecOp = dyn_cast<Instruction>(I);
  if (!VecOp)
    return;
  auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
                                            : dyn_cast<Instruction>(OpValue);
  if (!Intersection)
    return;
  const unsigned Opcode = Intersection->getOpcode();
  VecOp->copyIRFlags(Intersection);
  for (auto *V : VL) {
    auto *Instr = dyn_cast<Instruction>(V);
    if (!Instr)
      continue;
    if (OpValue == nullptr || Opcode == Instr->getOpcode())
      VecOp->andIRFlags(V);
  }
}

bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
                                 ScalarEvolution &SE) {
  const SCEV *Zero = SE.getZero(S->getType());
  return SE.isAvailableAtLoopEntry(S, L) &&
         SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
}

bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
                                    ScalarEvolution &SE) {
  const SCEV *Zero = SE.getZero(S->getType());
  return SE.isAvailableAtLoopEntry(S, L) &&
         SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
}

bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
                             bool Signed) {
  unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
  APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
    APInt::getMinValue(BitWidth);
  auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
  return SE.isAvailableAtLoopEntry(S, L) &&
         SE.isLoopEntryGuardedByCond(L, Predicate, S,
                                     SE.getConstant(Min));
}

bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
                             bool Signed) {
  unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
  APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
    APInt::getMaxValue(BitWidth);
  auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
  return SE.isAvailableAtLoopEntry(S, L) &&
         SE.isLoopEntryGuardedByCond(L, Predicate, S,
                                     SE.getConstant(Max));
}

//===----------------------------------------------------------------------===//
// rewriteLoopExitValues - Optimize IV users outside the loop.
// As a side effect, reduces the amount of IV processing within the loop.
//===----------------------------------------------------------------------===//

// Return true if the SCEV expansion generated by the rewriter can replace the
// original value. SCEV guarantees that it produces the same value, but the way
// it is produced may be illegal IR.  Ideally, this function will only be
// called for verification.
static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) {
  // If an SCEV expression subsumed multiple pointers, its expansion could
  // reassociate the GEP changing the base pointer. This is illegal because the
  // final address produced by a GEP chain must be inbounds relative to its
  // underlying object. Otherwise basic alias analysis, among other things,
  // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
  // producing an expression involving multiple pointers. Until then, we must
  // bail out here.
  //
  // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
  // because it understands lcssa phis while SCEV does not.
  Value *FromPtr = FromVal;
  Value *ToPtr = ToVal;
  if (auto *GEP = dyn_cast<GEPOperator>(FromVal))
    FromPtr = GEP->getPointerOperand();

  if (auto *GEP = dyn_cast<GEPOperator>(ToVal))
    ToPtr = GEP->getPointerOperand();

  if (FromPtr != FromVal || ToPtr != ToVal) {
    // Quickly check the common case
    if (FromPtr == ToPtr)
      return true;

    // SCEV may have rewritten an expression that produces the GEP's pointer
    // operand. That's ok as long as the pointer operand has the same base
    // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
    // base of a recurrence. This handles the case in which SCEV expansion
    // converts a pointer type recurrence into a nonrecurrent pointer base
    // indexed by an integer recurrence.

    // If the GEP base pointer is a vector of pointers, abort.
    if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
      return false;

    const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
    const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
    if (FromBase == ToBase)
      return true;

    LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out "
                      << *FromBase << " != " << *ToBase << "\n");

    return false;
  }
  return true;
}

static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
  SmallPtrSet<const Instruction *, 8> Visited;
  SmallVector<const Instruction *, 8> WorkList;
  Visited.insert(I);
  WorkList.push_back(I);
  while (!WorkList.empty()) {
    const Instruction *Curr = WorkList.pop_back_val();
    // This use is outside the loop, nothing to do.
    if (!L->contains(Curr))
      continue;
    // Do we assume it is a "hard" use which will not be eliminated easily?
    if (Curr->mayHaveSideEffects())
      return true;
    // Otherwise, add all its users to worklist.
    for (auto U : Curr->users()) {
      auto *UI = cast<Instruction>(U);
      if (Visited.insert(UI).second)
        WorkList.push_back(UI);
    }
  }
  return false;
}

// Collect information about PHI nodes which can be transformed in
// rewriteLoopExitValues.
struct RewritePhi {
  PHINode *PN;               // For which PHI node is this replacement?
  unsigned Ith;              // For which incoming value?
  const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
  Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
  bool HighCost;               // Is this expansion a high-cost?

  Value *Expansion = nullptr;
  bool ValidRewrite = false;

  RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
             bool H)
      : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
        HighCost(H) {}
};

// Check whether it is possible to delete the loop after rewriting exit
// value. If it is possible, ignore ReplaceExitValue and do rewriting
// aggressively.
static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
  BasicBlock *Preheader = L->getLoopPreheader();
  // If there is no preheader, the loop will not be deleted.
  if (!Preheader)
    return false;

  // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
  // We obviate multiple ExitingBlocks case for simplicity.
  // TODO: If we see testcase with multiple ExitingBlocks can be deleted
  // after exit value rewriting, we can enhance the logic here.
  SmallVector<BasicBlock *, 4> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);
  SmallVector<BasicBlock *, 8> ExitBlocks;
  L->getUniqueExitBlocks(ExitBlocks);
  if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
    return false;

  BasicBlock *ExitBlock = ExitBlocks[0];
  BasicBlock::iterator BI = ExitBlock->begin();
  while (PHINode *P = dyn_cast<PHINode>(BI)) {
    Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);

    // If the Incoming value of P is found in RewritePhiSet, we know it
    // could be rewritten to use a loop invariant value in transformation
    // phase later. Skip it in the loop invariant check below.
    bool found = false;
    for (const RewritePhi &Phi : RewritePhiSet) {
      if (!Phi.ValidRewrite)
        continue;
      unsigned i = Phi.Ith;
      if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
        found = true;
        break;
      }
    }

    Instruction *I;
    if (!found && (I = dyn_cast<Instruction>(Incoming)))
      if (!L->hasLoopInvariantOperands(I))
        return false;

    ++BI;
  }

  for (auto *BB : L->blocks())
    if (llvm::any_of(*BB, [](Instruction &I) {
          return I.mayHaveSideEffects();
        }))
      return false;

  return true;
}

int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
                                ScalarEvolution *SE,
                                const TargetTransformInfo *TTI,
                                SCEVExpander &Rewriter, DominatorTree *DT,
                                ReplaceExitVal ReplaceExitValue,
                                SmallVector<WeakTrackingVH, 16> &DeadInsts) {
  // Check a pre-condition.
  assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
         "Indvars did not preserve LCSSA!");

  SmallVector<BasicBlock*, 8> ExitBlocks;
  L->getUniqueExitBlocks(ExitBlocks);

  SmallVector<RewritePhi, 8> RewritePhiSet;
  // Find all values that are computed inside the loop, but used outside of it.
  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
  // the exit blocks of the loop to find them.
  for (BasicBlock *ExitBB : ExitBlocks) {
    // If there are no PHI nodes in this exit block, then no values defined
    // inside the loop are used on this path, skip it.
    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
    if (!PN) continue;

    unsigned NumPreds = PN->getNumIncomingValues();

    // Iterate over all of the PHI nodes.
    BasicBlock::iterator BBI = ExitBB->begin();
    while ((PN = dyn_cast<PHINode>(BBI++))) {
      if (PN->use_empty())
        continue; // dead use, don't replace it

      if (!SE->isSCEVable(PN->getType()))
        continue;

      // It's necessary to tell ScalarEvolution about this explicitly so that
      // it can walk the def-use list and forget all SCEVs, as it may not be
      // watching the PHI itself. Once the new exit value is in place, there
      // may not be a def-use connection between the loop and every instruction
      // which got a SCEVAddRecExpr for that loop.
      SE->forgetValue(PN);

      // Iterate over all of the values in all the PHI nodes.
      for (unsigned i = 0; i != NumPreds; ++i) {
        // If the value being merged in is not integer or is not defined
        // in the loop, skip it.
        Value *InVal = PN->getIncomingValue(i);
        if (!isa<Instruction>(InVal))
          continue;

        // If this pred is for a subloop, not L itself, skip it.
        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
          continue; // The Block is in a subloop, skip it.

        // Check that InVal is defined in the loop.
        Instruction *Inst = cast<Instruction>(InVal);
        if (!L->contains(Inst))
          continue;

        // Okay, this instruction has a user outside of the current loop
        // and varies predictably *inside* the loop.  Evaluate the value it
        // contains when the loop exits, if possible.  We prefer to start with
        // expressions which are true for all exits (so as to maximize
        // expression reuse by the SCEVExpander), but resort to per-exit
        // evaluation if that fails.
        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
        if (isa<SCEVCouldNotCompute>(ExitValue) ||
            !SE->isLoopInvariant(ExitValue, L) ||
            !isSafeToExpand(ExitValue, *SE)) {
          // TODO: This should probably be sunk into SCEV in some way; maybe a
          // getSCEVForExit(SCEV*, L, ExitingBB)?  It can be generalized for
          // most SCEV expressions and other recurrence types (e.g. shift
          // recurrences).  Is there existing code we can reuse?
          const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
          if (isa<SCEVCouldNotCompute>(ExitCount))
            continue;
          if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
            if (AddRec->getLoop() == L)
              ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
          if (isa<SCEVCouldNotCompute>(ExitValue) ||
              !SE->isLoopInvariant(ExitValue, L) ||
              !isSafeToExpand(ExitValue, *SE))
            continue;
        }

        // Computing the value outside of the loop brings no benefit if it is
        // definitely used inside the loop in a way which can not be optimized
        // away. Avoid doing so unless we know we have a value which computes
        // the ExitValue already. TODO: This should be merged into SCEV
        // expander to leverage its knowledge of existing expressions.
        if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
            !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
          continue;

        // Check if expansions of this SCEV would count as being high cost.
        bool HighCost = Rewriter.isHighCostExpansion(
            ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);

        // Note that we must not perform expansions until after
        // we query *all* the costs, because if we perform temporary expansion
        // inbetween, one that we might not intend to keep, said expansion
        // *may* affect cost calculation of the the next SCEV's we'll query,
        // and next SCEV may errneously get smaller cost.

        // Collect all the candidate PHINodes to be rewritten.
        RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost);
      }
    }
  }

  // Now that we've done preliminary filtering and billed all the SCEV's,
  // we can perform the last sanity check - the expansion must be valid.
  for (RewritePhi &Phi : RewritePhiSet) {
    Phi.Expansion = Rewriter.expandCodeFor(Phi.ExpansionSCEV, Phi.PN->getType(),
                                           Phi.ExpansionPoint);

    LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = "
                      << *(Phi.Expansion) << '\n'
                      << "  LoopVal = " << *(Phi.ExpansionPoint) << "\n");

    // FIXME: isValidRewrite() is a hack. it should be an assert, eventually.
    Phi.ValidRewrite = isValidRewrite(SE, Phi.ExpansionPoint, Phi.Expansion);
    if (!Phi.ValidRewrite) {
      DeadInsts.push_back(Phi.Expansion);
      continue;
    }

#ifndef NDEBUG
    // If we reuse an instruction from a loop which is neither L nor one of
    // its containing loops, we end up breaking LCSSA form for this loop by
    // creating a new use of its instruction.
    if (auto *ExitInsn = dyn_cast<Instruction>(Phi.Expansion))
      if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
        if (EVL != L)
          assert(EVL->contains(L) && "LCSSA breach detected!");
#endif
  }

  // TODO: after isValidRewrite() is an assertion, evaluate whether
  // it is beneficial to change how we calculate high-cost:
  // if we have SCEV 'A' which we know we will expand, should we calculate
  // the cost of other SCEV's after expanding SCEV 'A',
  // thus potentially giving cost bonus to those other SCEV's?

  bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
  int NumReplaced = 0;

  // Transformation.
  for (const RewritePhi &Phi : RewritePhiSet) {
    if (!Phi.ValidRewrite)
      continue;

    PHINode *PN = Phi.PN;
    Value *ExitVal = Phi.Expansion;

    // Only do the rewrite when the ExitValue can be expanded cheaply.
    // If LoopCanBeDel is true, rewrite exit value aggressively.
    if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
      DeadInsts.push_back(ExitVal);
      continue;
    }

    NumReplaced++;
    Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
    PN->setIncomingValue(Phi.Ith, ExitVal);

    // If this instruction is dead now, delete it. Don't do it now to avoid
    // invalidating iterators.
    if (isInstructionTriviallyDead(Inst, TLI))
      DeadInsts.push_back(Inst);

    // Replace PN with ExitVal if that is legal and does not break LCSSA.
    if (PN->getNumIncomingValues() == 1 &&
        LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
      PN->replaceAllUsesWith(ExitVal);
      PN->eraseFromParent();
    }
  }

  // The insertion point instruction may have been deleted; clear it out
  // so that the rewriter doesn't trip over it later.
  Rewriter.clearInsertPoint();
  return NumReplaced;
}

/// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
/// \p OrigLoop.
void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
                                        Loop *RemainderLoop, uint64_t UF) {
  assert(UF > 0 && "Zero unrolled factor is not supported");
  assert(UnrolledLoop != RemainderLoop &&
         "Unrolled and Remainder loops are expected to distinct");

  // Get number of iterations in the original scalar loop.
  unsigned OrigLoopInvocationWeight = 0;
  Optional<unsigned> OrigAverageTripCount =
      getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
  if (!OrigAverageTripCount)
    return;

  // Calculate number of iterations in unrolled loop.
  unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
  // Calculate number of iterations for remainder loop.
  unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;

  setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
                            OrigLoopInvocationWeight);
  setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
                            OrigLoopInvocationWeight);
}

/// Utility that implements appending of loops onto a worklist.
/// Loops are added in preorder (analogous for reverse postorder for trees),
/// and the worklist is processed LIFO.
template <typename RangeT>
void llvm::appendReversedLoopsToWorklist(
    RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
  // We use an internal worklist to build up the preorder traversal without
  // recursion.
  SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;

  // We walk the initial sequence of loops in reverse because we generally want
  // to visit defs before uses and the worklist is LIFO.
  for (Loop *RootL : Loops) {
    assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
    assert(PreOrderWorklist.empty() &&
           "Must start with an empty preorder walk worklist.");
    PreOrderWorklist.push_back(RootL);
    do {
      Loop *L = PreOrderWorklist.pop_back_val();
      PreOrderWorklist.append(L->begin(), L->end());
      PreOrderLoops.push_back(L);
    } while (!PreOrderWorklist.empty());

    Worklist.insert(std::move(PreOrderLoops));
    PreOrderLoops.clear();
  }
}

template <typename RangeT>
void llvm::appendLoopsToWorklist(RangeT &&Loops,
                                 SmallPriorityWorklist<Loop *, 4> &Worklist) {
  appendReversedLoopsToWorklist(reverse(Loops), Worklist);
}

template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
    ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);

template void
llvm::appendLoopsToWorklist<Loop &>(Loop &L,
                                    SmallPriorityWorklist<Loop *, 4> &Worklist);

void llvm::appendLoopsToWorklist(LoopInfo &LI,
                                 SmallPriorityWorklist<Loop *, 4> &Worklist) {
  appendReversedLoopsToWorklist(LI, Worklist);
}

Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
                      LoopInfo *LI, LPPassManager *LPM) {
  Loop &New = *LI->AllocateLoop();
  if (PL)
    PL->addChildLoop(&New);
  else
    LI->addTopLevelLoop(&New);

  if (LPM)
    LPM->addLoop(New);

  // Add all of the blocks in L to the new loop.
  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
       I != E; ++I)
    if (LI->getLoopFor(*I) == L)
      New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);

  // Add all of the subloops to the new loop.
  for (Loop *I : *L)
    cloneLoop(I, &New, VM, LI, LPM);

  return &New;
}

/// IR Values for the lower and upper bounds of a pointer evolution.  We
/// need to use value-handles because SCEV expansion can invalidate previously
/// expanded values.  Thus expansion of a pointer can invalidate the bounds for
/// a previous one.
struct PointerBounds {
  TrackingVH<Value> Start;
  TrackingVH<Value> End;
};

/// Expand code for the lower and upper bound of the pointer group \p CG
/// in \p TheLoop.  \return the values for the bounds.
static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
                                  Loop *TheLoop, Instruction *Loc,
                                  SCEVExpander &Exp, ScalarEvolution *SE) {
  // TODO: Add helper to retrieve pointers to CG.
  Value *Ptr = CG->RtCheck.Pointers[CG->Members[0]].PointerValue;
  const SCEV *Sc = SE->getSCEV(Ptr);

  unsigned AS = Ptr->getType()->getPointerAddressSpace();
  LLVMContext &Ctx = Loc->getContext();

  // Use this type for pointer arithmetic.
  Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);

  if (SE->isLoopInvariant(Sc, TheLoop)) {
    LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:"
                      << *Ptr << "\n");
    // Ptr could be in the loop body. If so, expand a new one at the correct
    // location.
    Instruction *Inst = dyn_cast<Instruction>(Ptr);
    Value *NewPtr = (Inst && TheLoop->contains(Inst))
                        ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
                        : Ptr;
    // We must return a half-open range, which means incrementing Sc.
    const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy));
    Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc);
    return {NewPtr, NewPtrPlusOne};
  } else {
    Value *Start = nullptr, *End = nullptr;
    LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
    Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
    End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
    LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High
                      << "\n");
    return {Start, End};
  }
}

/// Turns a collection of checks into a collection of expanded upper and
/// lower bounds for both pointers in the check.
static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
             Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp) {
  SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;

  // Here we're relying on the SCEV Expander's cache to only emit code for the
  // same bounds once.
  transform(PointerChecks, std::back_inserter(ChecksWithBounds),
            [&](const RuntimePointerCheck &Check) {
              PointerBounds First = expandBounds(Check.first, L, Loc, Exp, SE),
                            Second =
                                expandBounds(Check.second, L, Loc, Exp, SE);
              return std::make_pair(First, Second);
            });

  return ChecksWithBounds;
}

std::pair<Instruction *, Instruction *> llvm::addRuntimeChecks(
    Instruction *Loc, Loop *TheLoop,
    const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
    ScalarEvolution *SE) {
  // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
  // TODO: Pass  RtPtrChecking instead of PointerChecks and SE separately, if possible
  const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
  SCEVExpander Exp(*SE, DL, "induction");
  auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, SE, Exp);

  LLVMContext &Ctx = Loc->getContext();
  Instruction *FirstInst = nullptr;
  IRBuilder<> ChkBuilder(Loc);
  // Our instructions might fold to a constant.
  Value *MemoryRuntimeCheck = nullptr;

  // FIXME: this helper is currently a duplicate of the one in
  // LoopVectorize.cpp.
  auto GetFirstInst = [](Instruction *FirstInst, Value *V,
                         Instruction *Loc) -> Instruction * {
    if (FirstInst)
      return FirstInst;
    if (Instruction *I = dyn_cast<Instruction>(V))
      return I->getParent() == Loc->getParent() ? I : nullptr;
    return nullptr;
  };

  for (const auto &Check : ExpandedChecks) {
    const PointerBounds &A = Check.first, &B = Check.second;
    // Check if two pointers (A and B) conflict where conflict is computed as:
    // start(A) <= end(B) && start(B) <= end(A)
    unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
    unsigned AS1 = B.Start->getType()->getPointerAddressSpace();

    assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
           (AS1 == A.End->getType()->getPointerAddressSpace()) &&
           "Trying to bounds check pointers with different address spaces");

    Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
    Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);

    Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
    Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
    Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
    Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");

    // [A|B].Start points to the first accessed byte under base [A|B].
    // [A|B].End points to the last accessed byte, plus one.
    // There is no conflict when the intervals are disjoint:
    // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
    //
    // bound0 = (B.Start < A.End)
    // bound1 = (A.Start < B.End)
    //  IsConflict = bound0 & bound1
    Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
    FirstInst = GetFirstInst(FirstInst, Cmp0, Loc);
    Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
    FirstInst = GetFirstInst(FirstInst, Cmp1, Loc);
    Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
    FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
    if (MemoryRuntimeCheck) {
      IsConflict =
          ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
      FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
    }
    MemoryRuntimeCheck = IsConflict;
  }

  if (!MemoryRuntimeCheck)
    return std::make_pair(nullptr, nullptr);

  // We have to do this trickery because the IRBuilder might fold the check to a
  // constant expression in which case there is no Instruction anchored in a
  // the block.
  Instruction *Check =
      BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx));
  ChkBuilder.Insert(Check, "memcheck.conflict");
  FirstInst = GetFirstInst(FirstInst, Check, Loc);
  return std::make_pair(FirstInst, Check);
}